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Introduction

A brief history on quasiconvex duality on vector spaces
and our contribution in the conditional case

Quasiconvex analysis has important applications in several optimiza-
tion problems in science, economics and in finance, where convexity may
be lost due to absence of global risk aversion, as for example in Prospect
Theory [57].

The first relevant mathematical findings on quasiconvex functions were
provided by De Finetti [18], mostly motivated by Paretian ordinal utility.
Since then many authors, as [13], [14], [26], [58], [70] and [72] - to men-
tion just a few, contributed significantly to the subject. More recently, a
Decision Theory complete duality involving quasiconvex real valued func-
tions has been proposed by [10]: in this theory a key role is played by the
uniqueness of the representation and in such a way a one to one relation-
ship between the primal functional and his dual counterpart is provided.
For a review of quasiconvex analysis and its application and for an exhaus-
tive list of references on this topic we refer to Penot [71].

Our interest in quasiconvex analysis was triggered by the recent paper
[11] on quasiconvex risk measures, where the authors show that it is rea-
sonable to weaken the convexity axiom in the theory of convex risk mea-
sures, introduced in [31] and [36]. This allows to maintain a good control
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2 Introduction

of the risk, if one also replaces cash additivity by cash subadditivity [25].
The choice of relax the axiom of cash additivity is one of the main topics
nowadays, especially when markets present lack of liquidity. Maccheroni
et al. [11] point out that loosing this property convexity is not anymore
equivalent to the principle of diversification: ‘diversification should not
increase the risk ’. The recent interest in quasiconvex static risk measures
is also testified by a second paper [19] on this subject, that was inspired by
[11].
Furthermore when passing to the dynamics of the risk the usual axioms
of risk measures seem too restrictive and incompatible with time consis-
tency: Kupper and Schachermayer [55] showed that the only law invariant
time consistent convex risk measure turns out to be the entropic one.

A function f : L→ R := R∪{−∞}∪{∞} defined on a vector space L
is quasiconvex if for all c ∈ R the lower level sets {X ∈ L | f (X)≤ c} are
convex. In a general setting, the dual representation of such functions was
shown by Penot and Volle [72]. The following theorem, reformulated in
order to be compared to our results, was proved by Volle [77], Th. 3.4. and
its proof relies on a straightforward application of Hahn Banach Theorem.
Theorem ([77]). Let L be a locally convex topological vector space, L′

be its dual space and f : L→ R := R∪{−∞}∪{∞} be quasiconvex and
lower semicontinuous. Then

f (X) = sup
X ′∈L′

R(X ′(X),X ′) (C.1)

where R : R×L′→ R is defined by

R(t,X ′) := inf
ξ∈L

{
f (ξ ) | X ′(ξ )≥ t

}
.

The generality of this theorem rests on the very weak assumptions made
on the domain of the function f , i.e. on the space L. On the other hand,
the fact that only real valued maps are admitted considerably limits its
potential applications, specially in a dynamic framework.
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To the best of our knowledge, a conditional version of this representa-
tion was lacking in the literature. When (Ω ,F ,(Ft)t≥0,P) is a filtered
probability space, many problems having dynamic features lead to the
analysis of maps π : Lt → Ls between the subspaces Lt ⊆ L1(Ω ,Ft ,P)
and Ls ⊆ L0(Ω ,Fs,P), 0≤ s < t.

In the first chapter of this thesis we consider quasiconvex maps of this
form and analyze their dual representation. We provide (see Theorem 1.2
for the exact statement) a conditional version of (C.1):

π(X) = ess sup
Q∈L∗t ∩P

R(EQ[X |Fs],Q), (C.2)

where

R(Y,Q) := ess inf
ξ∈Lt
{π(ξ ) | EQ[ξ |Fs]≥Q Y} , Y ∈ Ls,

L∗t is the order continuous dual space of Lt and P =:
{

dQ
dP | Q << P

}
.

Furthermore, we show that if the map π is quasiconvex, monotone and
cash additive then it is convex and we easily derive from (C.2) the well
known representation of a conditional risk measure [17].
The formula (C.2) is obtained under quite weak assumptions on the space
Lt which allow us to consider maps π defined on the typical spaces used
in the literature in this framework: L∞(Ω ,Ft ,P), Lp(Ω ,Ft ,P), the Orlicz
spaces LΨ (Ω ,Ft ,P). In Theorem 1.2 we assume that π is lower semicon-
tinuous, with respect to the weak topology σ(Lt ,L∗t ). As shown in Propo-
sition 1.2 this condition is equivalent to continuity from below, which is
a natural requirement in this context. We also provide in Theorem 1.3 the
dual representation under a strong upper semicontinuity assumption.

The proofs of our main Theorems 1.2 and 1.3 are not based on tech-
niques similar to those applied in the quasiconvex real valued case [77],
nor to those used for convex conditional maps [17]. Indeed, the so called
scalarization of π via the real valued map X → EP[π(X)] does not work,
since this scalarization preserves convexity but not quasiconvexity. The
idea of our proof is to apply (C.1) to the real valued quasiconvex map
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πA : Lt → R defined by πA(X) := esssupω∈A π(X)(ω), A ∈Fs, and to ap-
proximate π(X) with

π
Γ (X) := ∑

A∈Γ

πA(X)1A,

where Γ is a finite partition of Ω of Fs measurable sets A ∈ Γ . As ex-
plained in Section 1.6.1, some delicate issues arise when one tries to apply
this simple and natural idea to prove that:

ess sup
Q∈L∗t ∩P

ess inf
ξ∈Lt
{π(ξ )|EQ[ξ |Fs]≥Q EQ[X |Fs]}

= ess inf
Γ

ess sup
Q∈L∗t ∩P

ess inf
ξ∈Lt

{
π

Γ (ξ )|EQ[ξ |Fs]≥Q EQ[X |Fs]
}

(C.3)

The uniform approximation result here needed is stated in the key Lemma
1.8 and Section 1.6.3 is devoted to prove it.

The starting point of this Thesis: Stochastic Utilities and
the Conditional Certainty Equivalent

In the last decade many methodologies for pricing in incomplete mar-
kets were build on expected utility maximization with respect to terminal
wealth: classic examples of this approach are the notions of fair price [15],
certainty equivalent [32] and indifference price [5], [16], [44].

These techniques were developed both in a static framework and in a
dynamic context [22]. In the dynamic case however, the utility function
represents preferences at a fixed time T, while the pricing occurs at any
time between today and the expiration T (backward pricing). The martin-
gale property of the indirect utility (the value function of the optimization
problem [24]) is an automatic consequence of the dynamic programming
principle.

This classic backward approach has recently been argued in [6], [43],
[63], [64] and a novel forward theory has been proposed: the utility func-
tion is stochastic, time dependent and moves forward.
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In this theory, the forward utility (which replaces the indirect utility of
the classic case) is built through the underlying financial market and must
satisfy some appropriate martingale conditions.

Our research is inspired by the theory just mentioned, but a different
approach is here developed: our preliminary object will be a stochastic
dynamic utility u(x, t,ω) - i.e. a stochastic field [53] - representing the
evolution of the preferences of the agent (see Definition 2.1).

The definition of the Conditional Certainty Equivalent (CCE) that we
propose and analyze (Definition 2.10), is the natural generalization to the
dynamic and stochastic environment of the classical notion of the certainty
equivalent, as given in [75]. The CCE, denoted by Cs,t(·), provides the time
s value of an Ft measurable claim (s ≤ t) in terms only of the Stochastic
Dynamic Utility (SDU) and the filtration.

The SDU that we consider does not require a priori the presence of a
financial market; neither it will have any specific recursive structure, nor
will necessarily be an indirect utility function based on optimal trading in
the market. However appropriate conditions are required on the SDU in
order to deduce interesting properties for the CCE.

The next step, which is left for future research, would be the investi-
gation of the compatibility conditions between the value assigned by the
CCE and existing prices when an underlying market indeed exists. Clearly,
not all SDU are compatible with the market. One extreme case is when the
SDU can be determined by the market and the initial preferences structure,
as in the case of the forward utility theory.

When we first bumped into the notion of Conditional Certainty Equiv-
alent we immediately realized that this was in general a non concave map:
anyway it was a monotone and quasiconcave operator between vector lat-
tices. For this reason a theory of duality involving quasiconcavity instead
of concavity was necessary to start a rigorous study of this topic. Due to
the particular structure of the CCE, we were soon able to provide a direct
proof of the dual representation (see Section 2.5): we exploit directly the
results of Maccheroni et al. [10], avoiding any intermediate approximation



6 Introduction

argument. In this way the reader can appreciate the value of the result -that
confirms what have been obtained in Chapter 1- without getting crazy in a
thick maze of technical lemmas.

However, in order to show the dual representation of the CCE we must
first define it on appropriate vector lattices. A common approach is to re-
strict the view to bounded random variables, so that no further integrabil-
ity conditions are requested. But as soon as we try to extend the scenario
to unbounded random variables it immediately appears that the distortion
provoked by utility function can be mastered only in ad hoc frameworks.

To this end we introduce in Section 2.4, in the spirit of [7], a generalized
class of Orlicz spaces which are naturally associated to the SDU taken
into account. We show with some examples that these spaces also play
a fundamental role for time compatibility of the CCE, since Cs,t : Mût →
Mûs , where Mût is the generalized Orlicz space of Ft measurable random
variables associated to u(x, t,ω).

Further comments

Chapter 2 appears as a short parenthesis in this work and can be read as a
self contained discussion. But as a matter of fact this was the main reason
that lead us in our research: one of the simplest example of evaluation map,
such it is the Certainty Equivalent, fails in general to be concave. Since the
standard duality theory for concave maps fails we were forced to look for
a generalization of the duality results provided by Penot and Volle.
For this reason we report here the original proof of the dual representation
theorem for the CCE (Theorem 1.2), which gave us the motivation and
the strength to look for the more general and involving one provided in
Chapter 1.

A brand new point of view: the module approach

The concept of module over a ring of functions is not new in the
overview of mathematical studies but appeared around fifties as in [38],
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[41], [42] and [69]. Hahn Banach type extension theorems were firstly
provided for particular classes of rings and finally at the end of seventies
(see for instance [9]) general ordered rings were considered, so that the
case of L0 was included. Anyway, until [28], no Hyperplane Separation
Theorems were obtained. It is well known that many fundamental results
in Mathematical Finance rely on it: for instance Arbitrage Theory and the
duality results on risk measure or utility maximization.

In the series of three papers [27], [28] and [54] the authors brilliantly
succeed in the hard task of giving an opportune and useful topological
structure to L0-modules and to extent those functional analysis theorems
which are relevant for financial applications. Once a rigorous analytical
background has been carefully built up, it is easy to develop it obtaining
many interesting results. In Chapter 3 of this Thesis we are able to gener-
alize the quasiconvex duality theory to this particular framework.

It is worth to notice that this effort to extend the results in Chapter 1
to L0-modules, is not a mathematical itch. Whenever dealing with condi-
tional financial applications - such as conditional risk measures - vector
spaces present many drawbacks as it has been argued in Filipovic et al.
[27]. In the paper Approaches to Conditional Risk, the authors compare
the two possible points of view using vector spaces (as it is common in the
present literature) or L0- modules. The results obtained are crystalline and
highlight how the second choice better suites the financial scopes.
The intuition hidden behind the use of modules is simple and natural: sup-
pose a set S of time-T maturity contingent claims is fixed and an agent is
computing the risk of a portfolio selection at an intermediate time t < T .
A flow of information - described by Ft - will be available at that time t:
as a consequence, all the Ft -measurable random variables will be known.
Thus the Ft measurable random variables will act as constants in the pro-
cess of diversification of our portfolio, forcing us to consider the new set
S ·L0(Ω ,Ft ,P) as the domain of the risk measures. This product struc-
ture is exactly the one that appears when working with L0-modules.

The main result of quasiconvex duality is given in Theorem 3.1 and
Corollaries 3.1 and 3.2. Differently from Theorems 1.2 and 1.3 here the
representation is obtained dropping the assumption of monotonicity, as it
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happened for real valued quasiconvex maps. The map π : E → L̄0(G ) can
be represented as

π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ),

where E is a L0-module and L (E,L0(G )) the module of continuous L0-
linear functionals over E.
A posteriori, adding the assumption of monotonicity, we can restrict the
optimization problem over the set of positive and normalized functional,
as we show in Theorem 3.2.

The proof of these results are plain applications of the Hyperplane Sep-
aration theorems and not in any way linked to some approximation or
scalarization argument. If one carefully analyzes them then he would ap-
preciate many similarities with the original demonstrations by Penot and
Volle.
A remarkable upgrade compared to Chapter 1, which appears as the best
evidence of the power an novelty brought by modules, is the strong unique-
ness result for conditional risk measures (see Theorem 3.2 for the precise
statement), which perfectly matches what had been obtained in [10] for
the static case.
Under suitable conditions, ρ : Lp

G (F )→ L0(G ) is a conditional quasicon-
vex risk measure if and only if

ρ(X) = sup
Q∈Pq

R
(

E
[
−dQ

dP
X |G

]
,Q
)

(C.4)

where R is unique in the class M prop(L0(G )×Pq). In this sense, in agree-
ment with [10], we may assert that there exists a complete quasiconvex
duality between quasiconvex risk measures and M prop(L0(G )×Pq).
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Chapter 1
On the dual representation on vector
spaces

Conditional maps are a characteristic feature of the Probabilistic environ-
ment. We may hazard that the ‘red line’that distinguishes Probability from
Analysis is the concept of Conditional Expectation, which is the sim-
plest example of conditional map. The conditional expectation EP[X |G ]
filters a random variable X with the information provided by the sigma
algebra G , giving a sort of backward projection of X . When Probability
crashes in Mathematical Finance and Economics a great number of ques-
tions arise: in fact any linear property -such those satisfied by the condi-
tional expectation- crumbles under the heavy load of the risk aversion of
the agents playing in the markets. This affects the properties of the condi-
tional maps taken into account in Pricing Theory and Risk Management.
A peculiar example can be found in [74] where a general theory of Nonlin-
ear Expectations is developed relying on Backward Stochastic Differential
Equations.
The current literature is rolling around four mainstreams about condi-
tional maps: the discussion of the axioms, the right domain (usually vector
spaces of random variables), the robustness of the method and the time
consistency. In this Chapter we would like to make a tiny step forward on
these themes: considering general vector spaces and quasiconvex condi-
tional maps we will nevertheless obtain a robust representation which is
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a crucial prerequisite for discussing (in the future research) time consis-
tency.

1.1 Conditional quasiconvex maps

The probability space (Ω ,F ,P) is fixed throughout this chapter and sup-
posed to be non-atomic. G ⊆F is any sigma algebra contained in F .
As usual we denote with L0(Ω ,F ,P) the space of F measurable ran-
dom variables that are P a.s. finite and by L̄0(Ω ,F ,P) the space of ex-
tended random variables that take values in R ∪ {∞}. We also define
L0
+(F ) = {Y ∈ L0

F | Y ≥ 0} and L0
++(F ) = {Y ∈ L0

F | Y > 0}. EQ[X ]
represents the expected value of a random variable X with respect to a
given probability measure Q. For every set A ∈F the indicator function
1A belongs to L0(Ω ,F ,P) and is valued 1 for P-almost every ω ∈ A and
0 for P-almost every ω ∈ AC.

The Lebesgue spaces,

Lp(Ω ,F ,P) = {X ∈ L0(Ω ,F ,P) | EP[|X |p]<+∞} p ∈ [0,∞]

and the Orlicz spaces (see next Chapter for further details)

Lû(Ω ,F ,P) =
{

X ∈ L0(Ω ,F ,P)| ∃α > 0 EP[û(αX)]< ∞
}

MΦ(Ω ,F ,P) =
{

X ∈ L0(Ω ,F ,P) |EP[Φ(αX)]< ∞ ∀α > 0
}

will simply be denoted by Lp/Lû/Mû, unless it is necessary to specify the
sigma algebra, in which case we write Lp

F /Lû
F /Mû

F .
It may happen that given a TVS L we denote by L∗ either the topological
dual space of L or the order dual space (see [2] p. 327 for the exact def-
inition). Topological/order dual spaces may coincide as for Lp spaces or
Morse spaces MΦ , but in general they can differ as for the Orlicz space
LΦ (for an opportune choice of Φ). Anyway we will specify case by case
what we are intending by L∗.
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In presence of an arbitrary measure µ , if confusion may arise, we will
explicitly write =µ (resp. ≥µ ), meaning µ almost everywhere. Otherwise,
all equalities/inequalities among random variables are meant to hold P-
a.s..

The essential (P almost surely) supremum esssupλ (Xλ ) of an arbi-
trary family of random variables Xλ ∈ L0(Ω ,F ,P) will be simply de-
noted by supλ (Xλ ), and similarly for the essential infimum. The supre-
mum supλ (Xλ ) ∈ L̄0(Ω ,F ,P) gives by definition the smallest extended
random variable greater of any Xλ ; similarly the infimum is the greatest
extended random variable smaller of any Xλ . Both of them are unique
up to a set of P-measure equal to 0. The reader can look at [30] Sec-
tion A.5 for an exhaustive list of properties. Here we only recall that
1A supλ (Xλ ) = supλ (1AXλ ) for any F measurable set A.
∨ (resp. ∧) denotes the essential (P almost surely) maximum (resp. the

essential minimum) between two random variables, which are the usual
lattice operations. Hereafter the symbol ↪→ denotes inclusion and lattice
embedding between two lattices; a lattice embedding is an isomorphism
between two vector spaces that preserves the lattice operations.

We consider a lattice LF := L(Ω ,F ,P) ⊆ L0(Ω ,F ,P) and a lattice
LG := L(Ω ,G ,P)⊆ L̄0(Ω ,G ,P) of F (resp. G ) measurable random vari-
ables.

Definition 1.1. A map π : LF → LG is said to be

(MON) monotone increasing if for every X ,Y ∈ LF

X ≤ Y ⇒ π(X)≤ π(Y ) ;

(QCO) quasiconvex if for every X ,Y ∈ LF , Λ ∈ L0
G and 0≤Λ ≤ 1

π(ΛX +(1−Λ)Y )≤ π(X)∨π(Y ) ;

(LSC) τ−lower semicontinuous if the set {X ∈ LF | π(X) ≤ Y} is
closed for every Y ∈ LG with respect to a topology τ on LF .
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(USC)? τ−strong upper semicontinuous if the set {X ∈ LF | π(X)<Y}
is open for every Y ∈ LG with respect to a topology τ on LF and there
exists at least one θ ∈ LF such that π(θ)<+∞.

Remark 1.1. On the condition (QCO)
As it happens for real valued maps, the definition of (QCO) is equivalent
to the fact that all the lower level sets

A (Y ) = {X ∈ LF | π(X)≤ Y} ∀Y ∈ LG

are conditionally convex i.e. for all X1,X2 ∈A (Y ) and any G -measurable
r.v. Λ , 0≤Λ ≤ 1, one has ΛX1 +(1−Λ)X2 ∈A (Y ).
Indeed let π(Xi)≤ Y , i = 1,2: thanks to (QCO)

π(ΛX1 +(1−Λ)X2)≤max{π(X),π(Y )} ≤ Y

i.e. A (Y ) is conditionally convex.
Viceversa set Y = max{π(X1),π(X2)} then X1,X2 ∈ A (Y ) implies from
convexity that ΛX1 +(1−Λ)X2 ∈A (Y ) and then π(ΛX1 +(1−Λ)X2)≤
Y .

Remark 1.2. On the condition (LSC)
The class of closed and convex sets is the same in any topology compat-
ible with a given dual system (Grothendieck [39] Chapter 2, Section 15).
We remind the reader that a topology τ is compatible with a dual system
(E,E ′) if the topological dual space of E w.r.t. τ is E ′. Therefore - as-
suming a priori (QCO) - if two topologies τ1, τ2 give rise to the same
dual space, then the conditions τ1-(LSC), τ2 -(LSC), are equivalent. This
simplifies the things up when dealing with nice spaces such as Lp spaces.

Remark 1.3. On the condition (USC)?

When G = σ(Ω) is the trivial sigma algebra, the map π is real valued and
(USC)? is equivalent to

{X ∈ LF | π(X)≥ Y} is closed for every Y ∈ R.

But in general this equivalence does not hold true: in fact
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{X∈LF |π(X)<Y}C={X∈LF |P(π(X)≥Y )>0}% {X ∈ LF |π(X)≥Y}

Anyway (USC)? implies that considering a net {Xα}, Xα

τ→ X then
limsupα π(Xα) ≤ π(X). For sake of simplicity suppose that π(X) < +∞:
let Y ∈ LG , π(X)<Y then X belongs to the open set V = {ξ ∈ LF | π(ξ )<
Y}. If Xα

τ→X then there will exists α0 such that for every Xβ ∈V for every
β ≥ α0. This means that π(Xβ )< Y for every β ≥ α0 and

limsup
α

π(Xα)≤ sup
β≥α0

π(Xβ )≤ Y ∀Y > π(X).

Conversely it is easy to check that Xα

τ→ X ⇒ limsupα π(Xα) ≤ π(X)
implies that the set {X ∈ LF | π(X)≥Y} is closed. We thus can conclude
that the condition (USC)? is a stronger condition than the one usually given
in the literature for upper semicontinuity. The reason why we choose this
one is that it will be preserved by the map πA.
Finally we are assuming that there exists at least one θ ∈ LF such π(θ)<
+∞: otherwise the set {X ∈ LF | π(X) < Y} is always empty (and then
open) for every Y ∈ LG ∩L0

G .

Definition 1.2. A vector space LF ⊆ L0
F satisfies the property (1F ) if

X ∈ LF and A ∈F =⇒ X1A ∈ LF . (1F )

Suppose that LF (resp. LG ) satisfies the property (1F ) (resp 1G ).
A map π : LF → LG is said to be

(REG) regular if for every X ,Y ∈ LF and A ∈ G

π(X1A +Y 1AC) = π(X)1A +π(Y )1AC .

or equivalently if π(X1A)1A = π(X)1A.

Remark 1.4. The assumption (REG) is actually weaker than the assump-
tion

π(X1A) = π(X)1A ∀A ∈ G . (1.1)
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As shown in [17], (1.1) always implies (REG), and they are equivalent if
and only if π(0) = 0.

It is well known that π(0) = 0 and conditional convexity implies (REG)
(a simple proof can be found in [17] Proposition 2). However, such impli-
cation does not hold true any more if convexity is replaced by quasiconvex-
ity. Obviously, (QCO) and (REG) does not imply conditional convexity, as
shown by the map

X → f−1 (E [ f (X)|G ]))

when f : R→ R is strictly increasing and convex on R.

1.2 The case of real valued maps when G = σ(Ω).

In this section we resume what has been already fully studied in the case
G is the trivial sigma algebra and then LG reduces to the extended real
line R. We report also the proofs which matches those given by Penot
and Volle, to help the understanding of the role played by Hahn Banach
Separation Theorem. In this way the reader will be helped to appreciate
the analogies between the following proofs and the generalizations to the
modules framework in Chapter 3.

Here LF = L can be every locally convex topological vector space and
L∗ denotes its topological dual space. Consider π : L→ R := R∪ {∞}
satisfying (QCO) and define: R : L∗×R→ R by

R(X∗, t) := sup{π(X) | X ∈ L such that X∗(X)≥ t} .

Theorem 1.1. Let π as before

(i) If π is (LSC) then: π(X) = sup
X ′∈L∗

R(X ′,X ′(X)).

(ii) If π is (USC)? then: π(X) = max
X ′∈L∗

R(X ′,X ′(X)),
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Proof. (i)By definition, for any X ′ ∈ L′, R(X ′(X),X ′) ≤ π(X) and there-
fore

sup
X ′∈L′

R(X ′(X),X ′)≤ π(X), X ∈ L.

Fix any X ∈ L and take ε ∈ R such that ε > 0. Then X does not belong to
the closed convex set {ξ ∈ L : π(ξ )≤ π(X)− ε} := Cε (if π(X) = +∞,
replace the set Cε with {ξ ∈ L : π(ξ )≤M} , for any M). By the Hahn
Banach theorem there exists a continuous linear functional that strongly
separates X and Cε , i.e. there exists α ∈ R and X ′ε ∈ L′ such that

X ′ε(X)> α > X ′ε(ξ ) for all ξ ∈ Cε . (1.2)

Hence:{
ξ ∈ L : X ′ε(ξ )≥ X ′ε(X)

}
⊆ (Cε)

C = {ξ ∈ L : π(ξ )> π(X)− ε} (1.3)

and

π(X) ≥ sup
X ′∈L′

R(X ′(X),X ′)≥ R(X ′ε(X),X ′ε)

= inf
{

π(ξ ) | ξ ∈ L such that X ′ε(ξ )≥ X ′ε(X)
}

≥ inf{π(ξ ) | ξ ∈ L satisfying π(ξ )> π(X)− ε} ≥ π(X)− ε.

(ii)For any fixed X ∈ L, the set {ξ ∈ L : π(ξ )< π(X)} := E is convex
open and X /∈ E . By the Hahn Banach theorem there exists a continuous
linear functional that properly separates X and E , i.e. there exists α ∈ R
and X∗ ∈ L∗ such that: X∗(X)> α ≥ X∗(ξ ) for all ξ ∈ E .
Hence: {ξ ∈ L : X∗(ξ )≥ X∗(X)} ⊆ (E )C = {ξ ∈ L : π(ξ )≥ π(X)} and

π(X) ≥ sup
Y ∗∈L∗

R(Y ∗,Y ∗(X))≥ R(X∗,X∗(X))

= inf{π(ξ ) | ξ ∈ L such that X∗(ξ )≥ X∗(X)}
≥ inf

{
π(ξ ) | ξ ∈ (E )C

}
≥ π(X).

Proposition 1.1. Suppose L is a lattice, L∗ = (L,≥)∗ is the order contin-
uous dual space satisfying L∗ ↪→ L1 and (L,σ(L,L∗)) is a locally convex
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TVS. If f : L→ R is quasiconvex, σ(L,L∗)-lsc (resp usc) and monotone
increasing then

π(X) = sup
Q∈L∗+|Q(1)=1

R(Q(X),Q),

resp. π(X) = max
Q∈L∗+|Q(1)=1

R(Q(X),Q).

Proof. We apply Theorem 1.1 to the locally convex TVS (L,σ(L,L∗)) and
deduce:

π(X) = sup
Z∈L∗⊆L1

R(Z(X),Z).

We now adopt the same notations of the proof of Theorem 1.1 and let
Z ∈ L, Z ≥ 0. Obviously if ξ ∈ Cε then ξ −nZ ∈ Cε for every n ∈ N and
from (1.2) we deduce:

X ′ε(ξ −nZ)< α < X ′ε(X) ⇒ X ′ε(Z)>
X ′ε(ξ −X)

n
, ∀n ∈ N

i.e. X ′ε ∈ L∗+ ⊆ L1 and X ′ε 6= 0. Hence X ′ε(1) = EP[X ′ε ] > 0 and we may
normalize X ′ε to X ′ε/X ′ε(1).

1.3 Dual representation for an arbitrary G

1.3.1 Topological assumptions

From now on G is any σ -algebra G ⊂F .

Definition 1.3. We say that π : LF → LG is

(CFB) continuous from below if

Xn ↑ X P a.s. ⇒ π(Xn) ↑ π(X) P a.s.
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In [8] it is proved the equivalence between: (CFB), order lsc and
σ(LF ,L∗F )-(LSC), for monotone convex real valued functions. In the next
proposition we show that this equivalence holds true for monotone qua-
siconvex conditional maps, under the same assumption on the topology
σ(LF ,L∗F ) adopted in [8].

Definition 1.4 ([8]). Let {Xα} ⊂ LF be a net. A linear topology τ on the
Riesz space LF has the C-property if Xα

τ→ X implies the existence of of
a sequence {Xαn}n and a convex combination Zn ∈ conv(Xαn , ...) such that
Zn

o→ X .

As explained in [8], the assumption that σ(LF ,L∗F ) has the C-property
is very weak and is satisfied in all cases of interest. When this is the case, in
Theorem 1.2 the σ(LF ,L∗F )-(LSC) condition can be replaced by (CFB),
which is often easy to check.

Proposition 1.2. Suppose that σ(LF ,L∗F ) satisfies the C-property and
that LF is order complete. Given π : LF → LG satisfying (MON) and
(QCO) we have:
(i) π is σ(LF ,L∗F )-(LSC) if and only if (ii) π is (CFB).

Proof. Recall that a sequence {Xn}⊆ LF order converge to X ∈ LF , Xn
o→

X , if there exists a sequence {Yn}⊆ LF satisfying Yn ↓ 0 and |X−Xn| ≤Yn.
(i)⇒ (ii): Consider Xn ↑ X . Since Xn ↑ X implies Xn

o→ X , then for ev-
ery order continuous Z ∈ L∗F the convergence Z(Xn)→ Z(X) holds. From
L∗F ↪→ L1

F
EP[ZXn]→ EP[ZX ] ∀Z ∈ L∗F

and we deduce that Xn
σ(LF ,L∗F )
−→ X .

(MON) implies π(Xn) ↑ and p := limn π(Xn)≤ π(X). The lower level set
Ap = {ξ ∈ LF | π(ξ ) ≤ p} is σ(LF ,L∗F ) closed and then X ∈ Ap, i.e.
π(X) = p.

(ii)⇒(i): First we prove that if Xn
o→ X then π(X) ≤ liminfn π(Xn).

Define Zn := (infk≥n Xk)∧X and note that X−Yn ≤ Xn ≤ X +Yn implies

X ≥ Zn =

(
inf
k≥n

Xk

)
∧X ≥

(
inf
k≥n

(−Yk)+X
)
∧X ↑ X
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i.e. Zn ↑ X . We actually have from (MON) Zn ≤ Xn implies π(Zn)≤ π(Xn)
and from (CFB) π(X) = limn π(Zn) ≤ liminfn π(Xn) which was our first
claim.
For Y ∈ LG consider AY = {ξ ∈ LF | π(ξ ) ≤ Y} and a net {Xα} ⊆ LF

such that Xα

σ(LF ,L∗F )
−→ X ∈ LF . Since LF satisfies the C-property, there

exists Yn ∈ Conv(Xαn,...) such Yn
o→ X . The property (QCO) implies that

AY is convex and then {Yn} ⊆AY . Applying the first step we get

π(X)≤ liminf
n

π(Yn)≤ Y i.e. X ∈AY

Standing assumptions on the spaces

(a) G ⊆F and the lattice LF (resp. LG ) satisfies the property (1F )
(resp 1G ). Both LG and LF contains the constants as a vector sub-
space.

(b) The order continuous dual of (LF ,≥), denoted by L∗F = (LF ,≥)∗,
is a lattice ( [2], Th. 8.28) that satisfies L∗F ↪→ L1

F and property (1F ).
(c) The space LF endowed with the weak topology σ(LF ,L∗F ) is a lo-

cally convex Riesz space.

The condition (c) requires that the order continuous dual L∗F is rich
enough to separate the points of LF , so that (LF ,σ(LF ,L∗F )) becomes a
locally convex TVS and Proposition 1.1 can be applied.

Remark 1.5. Many important classes of spaces satisfy these conditions,
such as
- The Lp-spaces, p ∈ [1,∞]: LF = Lp

F , L∗F = Lq
F ↪→ L1

F .

- The Orlicz spaces LΨ for any Young functionΨ : LF = LΨ
F , L∗F = LΨ∗

F ↪→
L1

F , where Ψ ∗ denotes the conjugate function of Ψ ;
- The Morse subspace MΨ of the Orlicz space LΨ , for any continuous
Young function Ψ : LF = MΨ

F , L∗F = LΨ∗
F ↪→ L1

F .
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1.3.2 Statements of the dual results

Set

P =:
{

dQ
dP
| Q << P and Q probability

}
=
{

ξ
′ ∈ L1

+ | EP[ξ
′] = 1

}
From now on we will write with a slight abuse of notation Q ∈ L∗F ∩P

instead of dQ
dP ∈ L∗F ∩P . Define K : LF × (L∗F ∩P)→ L̄0

G and R : L0
G ×

L∗F as

K(X ,Q) := inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]} (1.4)

R(Y,ξ ′) := inf
ξ∈LF

{
π(ξ ) | EP[ξ

′
ξ |G ]≥ Y

}
. (1.5)

K is well defined on LF ×(L∗F ∩P). On the other hand the actual domain
of R is not on the whole L0

G ×L∗F but we must restrict to

Σ = {(Y,ξ ′) ∈ L0
G ×L∗F |∃ξ ∈ LF s.t. EP[ξ

′
ξ |G ]≥ Y}. (1.6)

Obviously (EP[ξ
′X |G ],ξ ′) ∈ Σ for every X ∈ LF , ξ ′ ∈ L∗F . Notice that

K(X ,Q) depends on X only through EQ[X |G ]. Moreover R(EP[ξ
′X |G ],ξ ′)

= R(EP[λξ ′X |G ],λξ ′) for every λ > 0.
Thus we can consider R(EP[ξ

′X |G ],ξ ′), ξ ′ ≥ 0, ξ ′ 6= 0, always defined on
the normalized elements Q ∈ L∗F ∩P .
It is easy to check that

EP

[
dQ
dP

ξ | G
]
≥ EP

[
dQ
dP

X | G
]
⇐⇒ EQ[ξ |G ]≥Q EQ[X |G ],

and for Q ∈ L∗F ∩P we deduce

K(X ,Q) = R
(

EP

[
dQ
dP

X | G
]
,Q
)
.
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Remark 1.6. Since the order continuous functional on LF are contained
in L1, then Q(ξ ) := EQ[ξ ] is well defined and finite for every ξ ∈ LF

and Q ∈ L∗F ∩P . In particular this and (1F ) imply that EQ[ξ |G ] is well
defined. Moreover, since L∗F ↪→ L1

F satisfies property (1F ) then dQ
dP 1A ∈

L∗F whenever Q ∈ L∗F and A ∈F .

Theorem 1.2. Suppose that σ(LF ,L∗F ) satisfies the C-property and LF is
order complete If π : LF → LG is (MON), (QCO), (REG) and σ(LF ,L∗F )-
(LSC) then

π(X) = sup
Q∈L∗F∩P

K(X ,Q). (1.7)

Theorem 1.3. If π : LF → LG is (MON), (QCO), (REG) and τ-(USC)?

then
π(X) = sup

Q∈L∗F∩P
K(X ,Q). (1.8)

Notice that in (1.7), (1.8) the supremum is taken over the set L∗F ∩P .
In the following corollary, proved in Section 1.6.2, we show that we can
match the conditional convex dual representation, restricting our optimiza-
tion problem over the set

PG =:
{

dQ
dP
| Q ∈P and Q = P on G

}
.

Clearly, when Q ∈PG then L̄0(Ω ,G ,P) = L̄0(Ω ,G ,Q) and comparison
of G measurable random variables is understood to hold indifferently for
P or Q almost surely.

Corollary 1.1. Under the same hypothesis of Theorem 1.2 (resp. Theorem
1.3), suppose that for X ∈ LF there exists η ∈ LF and δ > 0 such that
P(π(η)+δ < π(X)) = 1. Then

π(X) = sup
Q∈L∗F∩PG

K(X ,Q).
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1.4 Possible applications

1.4.1 Examples of quasiconvex maps popping up from the
financial world

As a further motivation for our findings, we give some examples of quasi-
convex (quasiconcave) conditional maps arising in economics and finance.
The first one is studied in detail in the second chapter: as explained in the
introduction this was the main reason that moved us to this research and
the complexity of the theme deserves much space to be dedicated. The
analysis of Dynamic Risk Measures and Acceptability Indices was out of
the scope of this thesis and for this reason we limit ourselves to give some
simple concrete examples. For sure the questions arisen on the meaning of
diversification will play a central role in the Math Finance academic world
in the next few years.

Certainty Equivalent in dynamic settings

Consider a stochastic dynamic utility

u : R×[0,∞)×Ω → R

We introduce the Conditional Certainty Equivalent (CCE) of a random
variable X ∈ Lt , as the random variable π(X)∈ Ls solution of the equation:

u(π(X),s) = EP [u(X , t)|Fs] ,

where Lt and Ls are appropriate lattices of random variables. Thus the CCE
defines the valuation operator

π : Lt → Ls, π(X) = u−1 (EP [u(X , t)|Fs]) ,s).

The CCE, as a map π : Lt → Ls is monotone, quasi concave, regular.
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Dynamic Risk Measures

As already mentioned the dual representation of a conditional convex risk
measure can be found in [17]. The findings of the present paper show the
dual representation of conditional quasiconvex risk measures when cash
additivity does not hold true.
For a better understanding we give a concrete example: consider t ∈ [0,T ]
and a non empty convex set CT ∈ L∞(Ω ,FT ,P) such that CT +L∞

+ ⊆CT .
The set CT represents the future positions considered acceptable by the
supervising agency. For all m ∈R denote by vt(m,ω) the price at time t of
m euros at time T . The function vt(m, ·) will be in general Ft measurable
as in the case of stochastic discount factor where vt(m,ω) = Dt(ω)m. By
adapting the definitions in the static framework of [3] and [11] we set:

ρCT ,vt (X)(ω) = ess inf
Y∈L0

Ft

{vt(Y,ω) | X +Y ∈CT}.

When vt is linear, then ρC,vt is a convex monetary dynamic risk measure,
but the linearity of vt may fail when zero coupon bonds with maturity T are
illiquid. It seems anyway reasonable to assume that vt(·,ω) is increasing
and upper semicontinuous and vt(0,ω) = 0, for P almost every ω ∈Ω . In
this case

ρCT ,vt (X)(ω) = vt(ess inf
Y∈L0

Ft

{Y | X +Y ∈CT},ω) = vt(ρCT (X),ω),

where ρCT (X) is the convex monetary dynamic risk measure induced by
the set CT . Thus in general ρCT ,vt is neither convex nor cash additive, but it
is quasiconvex and eventually cash subadditive (under further assumptions
on vt ).

Acceptability Indices

As studied in [12] the index of acceptability is a map α from a space of
random variables L(Ω ,F ,P) to [0,+∞) which measures the performance
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or quality of the random X which may be the terminal cash flow from a
trading strategy. Associated with each level x of the index there is a col-
lection of terminal cash flows Ax = {X ∈ L|α(X)≥ x} that are acceptable
at this level . The authors in [12] suggest four axioms as the stronghold
for an acceptability index in the static case: quasiconcavity (i.e. the set Ax
is convex for every x ∈ [0,+∞)), monotonicity, scale invariance and the
Fatou property. It appears natural to generalize these kind of indices to the
conditional case and to this aim we propose a couple of basic examples:

i) Conditional Gain Loss Ratio: let G ⊆F

CGLR(X |G ) =
EP[X |G ]

EP[X−|G ]
1{EP[X |G ]>0}.

This measure is clearly monotone, scale invariant, and well defined on
L1(Ω ,F ,P). It can be proved that it is continuous from below and quasi-
concave.

ii) Conditional Coherent Risk-Adjusted Return on Capital: let G ∈
F and suppose a coherent conditional risk measure ρ : L(Ω ,F ,P)→
L0(Ω ,G ,P) is given with L(Ω ,F ,P)⊆ L1(Ω ,F ,P) is any vector space.
We define

CRARoC(X |G ) =
EP[X |G ]

ρ(X)
1{EP[X |G ]>0}.

We use the convention that CRARoC(X |G ) = +∞ on the G -measurable
set where ρ(X) ≤ 0. Again CRARoC(·|G ) is well defined on the space
L(Ω ,F ,P) and takes values in the space of extended random variables;
moreover is monotone, quasiconcave, scale invariant and continuous from
below whenever ρ is continuous from above.

1.4.2 Back to the representation of convex risk measures

In the following Lemma and Corollary, proved in Section 1.5.2, we show
that the (MON) property implies that the constraint EQ[ξ |G ]≥Q EQ[X |G ]
may be restricted to EQ[ξ |G ] =Q EQ[X |G ] and that we may recover the
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dual representation of a dynamic risk measure. When Q ∈ L∗F ∩PG the
previous inequality/equality may be equivalently intended Q-a.s. or P-a.s.
and so we do not need any more to emphasize this in the notations.

Lemma 1.1. Suppose that for every Q ∈ L∗F ∩PG and ξ ∈ LF we have
EQ[ξ |G ] ∈ LF . If Q ∈ L∗F ∩PG and if π : LF → LG is (MON) and (REG)
then

K(X ,Q) = inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ] = EQ[X |G ]} . (1.9)

Proof. Let us denote with r(X ,Q) the right hand side of equation (3.20)
and notice that K(X ,Q)≤ r(X ,Q). By contradiction, suppose that P(A)>
0 where A =: {K(X ,Q) < r(X ,Q)}. As shown in Lemma 1.4 iv), there
exists a r.v. ξ ∈ LF satisfying the following conditions

• EQ[ξ |G ]≥Q EQ[X |G ] and Q(EQ[ξ |G ]> EQ[X |G ])> 0.
• K(X ,Q)(ω) ≤ π(ξ )(ω) < r(X ,Q)(ω) for P-almost every ω ∈ B ⊆ A

and
P(B)> 0.

Set Z =Q EQ[ξ −X |G ]. By assumption, Z ∈ LF and it satisfies Z ≥Q 0
and, since Q ∈PG , Z ≥ 0. Then, thanks to (MON), π(ξ )≥ π(ξ −Z).
From EQ[ξ −Z|G ] =Q EQ[X |G ] we deduce:

K(X ,Q)(ω)≤ π(ξ )(ω)< r(X ,Q)(ω)≤ π(ξ −Z)(ω) for P-a.e. ω ∈ B,

which is a contradiction.

Definition 1.5. The conditional Fenchel convex conjugate π∗ of π is given,
for Q ∈ L∗F ∩PG , by the extended valued G−measurable random vari-
able:

π
∗(Q) = sup

ξ∈LF

{EQ[ξ |G ]−π(ξ )} .

A map π : LF → LG is said to be

(CAS) cash invariant if for all X ∈ LF and Λ ∈ LG

π(X +Λ) = π(X)+Λ .



1.4 Possible applications 27

In the literature [37], [17], [29] a map ρ : LF → LG that is monotone
(decreasing), convex, cash invariant and regular is called a convex condi-
tional (or dynamic) risk measure. As a corollary of our main theorem, we
deduce immediately the dual representation of a map ρ(·) =: π(−·) satis-
fying (CAS), in terms of the Fenchel conjugate π∗, in agreement with [17].
Of course, this is of no surprise since the (CAS) and (QCO) properties im-
ply convexity, but it supports the correctness of our dual representation.

Corollary 1.2. Suppose that for every Q ∈ L∗F ∩PG and ξ ∈ LF we have
EQ[ξ |G ] ∈ LF .
(i) If Q ∈ L∗F ∩PG and if π : LF → LG is (MON), (REG) and (CAS) then

K(X ,Q) = EQ[X |G ]−π
∗(Q). (1.10)

(ii) Under the same assumptions of Theorem 1.2 and if π satisfies in addi-
tion (CAS) then

π(X) = sup
Q∈L∗F∩PG

{EQ[X |G ]−π
∗(Q)} .

so that ρ(·) = π(−·) is a conditional convex risk measure and can be
represented as

ρ(X) = sup
Q∈L∗F∩PG

{EQ[−X |G ]−ρ
∗(−Q)} .

with ρ∗(−Q) given by

ρ
∗(−Q) = sup

ξ∈LF

{EQ[−ξ |G ]−ρ(ξ )} .

Proof. The (CAS) property implies that for every X ∈ LF and δ > 0,
P(π(X − 2δ )+ δ < π(X)) = 1. So the hypothesis of Corollary 1.1 holds
true and we only need to prove (3.23), since (ii) is a consequence of (i) and
Corollary 1.1. Let Q ∈ L∗F ∩PG . Applying Lemma 1.1 we deduce:
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K(X ,Q) = inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ] =Q EQ[X |G ]}

= EQ[X |G ]+ inf
ξ∈LF

{π(ξ )−EQ[X |G ] | EQ[ξ |G ] =Q EQ[X |G ]}

= EQ[X |G ]+ inf
ξ∈LF

{π(ξ )−EQ[ξ |G ] | EQ[ξ |G ] =Q EQ[X |G ]}

= EQ[X |G ]− sup
ξ∈LF

{EQ[ξ |G ]−π(ξ ) | EQ[ξ |G ] =Q EQ[X |G ]}

= EQ[X |G ]−π
∗(Q),

where the last equality follows from Q ∈PG and

π
∗(Q) = sup

ξ∈LF

{EQ[ξ +EQ[X−ξ |G ] | G ]−π(ξ +EQ[X−ξ |G ])}

= sup
η∈LF

{EQ[η |G ]−π(η) | η = ξ +EQ[X−ξ |G ]}

≤ sup
ξ∈LF

{EQ[ξ |G ]−π(ξ ) | EQ[ξ |G ] =Q EQ[X |G ]} ≤ π
∗(Q).

1.5 Preliminaries

In the sequel of this section it is always assumed that π : LF → LG satisfies
(REG).

1.5.1 Properties of R(Y,ξ ′)

We remind that Σ denotes the actual domain of R as given in (1.6). Given
an arbitrary (Y,ξ ′) ∈ Σ , we have R(Y,ξ ′) = infA (Y,ξ ′) where

A (Y,ξ ′) := {π(ξ ) |ξ ∈ LF , EP[ξ
′
ξ |G ]≥ Y}.

By convention R(Y,ξ ′) = +∞ for every (Y,ξ ′) ∈ (L0
G ×L∗F )\Σ
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Lemma 1.2. For every (Y,ξ ′) ∈ Σ the set A (Y,ξ ′) is downward di-
rected and therefore there exists a sequence {ηm}∞

m=1 ∈ LF such that
EP[ξ

′ηm|G ]≥ Y and as m ↑ ∞, π(ηm) ↓ R(Y,ξ ′).

Proof. We have to prove that for every π(ξ1),π(ξ2) ∈A (Y,ξ ′) there ex-
ists π(ξ ∗) ∈A (Y,ξ ′) such that π(ξ ∗)≤min{π(ξ1),π(ξ2)}. Consider the
G -measurable set G = {π(ξ1)≤ π(ξ2)} then

min{π(ξ1),π(ξ2)}= π(ξ1)1G +π(ξ2)1GC = π(ξ11G +ξ21GC) = π(ξ ∗),

where ξ ∗ = ξ11G +ξ21GC . Hence

EP[ξ
′
ξ
∗|G ] = EP[ξ

′
ξ1|G ]1G +EP[ξ

′
ξ2|G ]1GC ≥ Y

so that we can deduce π(ξ ∗) ∈A (Y,ξ ′).

Lemma 1.3. Properties of R(Y,ξ ′).
i) R(·,ξ ′) is monotone, for every ξ ′ ∈ L∗F .
ii) R(λY,λξ ′) = R(Y,ξ ′) for any λ > 0, Y ∈ L0

G and ξ ′ ∈ L∗F .
iii) For every A ∈ G , (Y,ξ ′) ∈ Σ

R(Y,ξ ′)1A = inf
ξ∈LF

{
π(ξ )1A | EP[ξ

′
ξ |G ]≥ Y

}
(1.11)

= inf
ξ∈LF

{
π(ξ )1A | EP[ξ

′
ξ 1A|G ]≥ Y 1A

}
= R(Y 1A,ξ

′)1A.

(1.12)

iv) R(Y,ξ ′) is jontly quasiconcave on L0
G ×L∗F .

v) infY∈L0
G

R(Y,ξ ′1) = infY∈L0
G

R(Y,ξ ′2) for every ξ ′1,ξ
′
2 ∈ L∗F .

vi) For every Y1,Y2 ∈ L0
G

(a) R(Y1,ξ
′)∧R(Y2,ξ

′) = R(Y1∧Y2,ξ
′)

(b) R(Y1,ξ
′)∨R(Y2,ξ

′) = R(Y1∨Y2,ξ
′)

vii) The map R(·,ξ ′) is quasi-affine in the sense that for every Y1,Y2,Λ ∈
L0

G and 0≤Λ ≤ 1, we have
R(ΛY1 +(1−Λ)Y2,ξ

′)≥ R(Y1,ξ
′)∧R(Y2,ξ

′) (quasiconcavity)
R(ΛY1 +(1−Λ)Y2,ξ

′)≤ R(Y1,ξ
′)∨R(Y2,ξ

′) (quasiconvexity).
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Proof. (i) and (ii) are trivial consequences of the definition.
(iii) By definition of the essential infimum one easily deduce (1.11). To
prove (1.12), for every ξ ∈ LF such that EP[ξ

′ξ 1A|G ] ≥ Y 1A we de-
fine the random variable η = ξ 1A + ζ 1AC where EP[ξ

′ζ |G ] ≥ Y . Then
EP[ξ

′η |G ]≥ Y and we can conclude{
η1A | η ∈ LF , EP[ξ

′
η |G ]≥ Y

}
=
{

ξ 1A | ξ ∈ LF , EP[ξ
′
ξ 1A|G ]≥ Y 1A

}
Hence from (1.11) and (REG):

1AR(Y,ξ ′) = inf
η∈LF

{
π(η1A)1A | EP[ξ

′
η |G ]≥ Y

}
= inf

ξ∈LF

{
π(ξ 1A)1A | EP[ξ

′
ξ 1A|G ]≥ Y 1A

}
= inf

ξ∈LF

{
π(ξ )1A | EP[ξ

′
ξ 1A|G ]≥ Y 1A

}
.

The second equality in (1.12) follows in a similar way since again{
η1A | η ∈ LF , EP[ξ

′
η |G ]≥ Y

}
=
{

ξ 1A | ξ ∈ LF , EP[ξ
′
ξ |G ]≥ Y 1A

}
(iv) Consider (Y1,ξ

′
1),(Y2,ξ

′
2) ∈ L0

G ×L∗F and λ ∈ (0,1). Define (Y,ξ ′) =
(λY1 +(1−λ )Y2,λξ ′1 +(1−λ )ξ ′2) and notice that for every A ∈ G the set
{ξ ∈ LF | E[ξ ′ξ 1A]≥ E[Y 1A]} is contained in

{ξ ∈ LF | E[ξ ′1ξ 1A]≥ E[Y11A]}∪{ξ ∈ LF | E[ξ ′2ξ 1A]≥ E[Y21A]}.

Taking the intersection over all A ∈ G we get that {ξ ∈ LF | E[ξ ′ξ |G ] ≥
Y} is included in

{ξ ∈ LF | E[ξ ′1ξ |G ]≥ Y1}∪{ξ ∈ LF | E[ξ ′2ξ |G ]≥ Y2},

which implies R(Y,ξ ′)≥ R(Y1,ξ
′
1)∧R(Y2,ξ

′
2).

(v) This is a generalization of Theorem 2 (H2) in [10]. In fact on one hand

R(Y,ξ ′)≥ inf
ξ∈LF

π(ξ ) ∀Y ∈ L0
F
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implies
inf

Y∈L0
G

R(Y,ξ ′)≥ inf
ξ∈LF

π(ξ ).

On the other

π(ξ )≥ R(EP[ξ ξ
′|G ],ξ ′)≥ inf

Y∈L0
G

R(Y,ξ ′) ∀ξ ∈ LF

implies
inf

Y∈L0
G

R(Y,ξ ′)≤ inf
ξ∈LF

π(ξ ).

vi) a): Since R(·,ξ ′) is monotone, the inequalities R(Y1,ξ
′)∧R(Y2,ξ

′) ≥
R(Y1∧Y2,ξ

′) and R(Y1,ξ
′)∨R(Y2,ξ

′)≤ R(Y1∨Y2,ξ
′) are always true.

To show the opposite inequalities, define the G -measurable sets: B :=
{R(Y1,ξ

′)≤ R(Y2,ξ
′)} and A := {Y1 ≤ Y2} so that

R(Y1,ξ
′)∧R(Y2,ξ

′)=R(Y1,ξ
′)1B+R(Y2,ξ

′)1BC ≤R(Y1,ξ
′)1A+R(Y2,ξ

′)1AC

(1.13)
R(Y1,ξ

′)∨R(Y2,ξ
′)=R(Y1,ξ

′)1BC +R(Y2,ξ
′)1B≥R(Y1,ξ

′)1AC +R(Y2,ξ
′)1A

Set: D(A,Y ) = {ξ 1A | ξ ∈ LF , EP[ξ
′ξ 1A|G ]≥ Y 1A} and check that

D(A,Y1)+D(AC,Y2) =
{

ξ ∈ LF | EP[ξ
′
ξ |G ]≥ Y11A +Y21AC

}
:= D

From (3.10) and using (1.12) we get:

R(Y1,ξ
′)∧R(Y2,ξ

′)≤ R(Y1,ξ
′)1A +R(Y2,ξ

′)1AC

= inf
ξ 1A∈D(A,Y1)

{π(ξ 1A)1A}+ inf
η1AC∈D(AC ,Y2)

{π(η1AC)1AC}

= inf
ξ 1A∈D(A,Y1)

η1AC∈D(AC ,Y2)

{π(ξ 1A)1A +π(η1AC)1AC}

= inf
(ξ 1A+η1AC )∈D(A,Y1)+D(AC ,Y2)

{π(ξ 1A +η1AC)}

= inf
ξ∈D
{π(ξ )}= R(Y11A +Y21AC ,ξ ′) = R(Y1∧Y2,ξ

′).
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Simile modo: vi) b).
(vii) Follows from point (vi) and (i).

1.5.2 Properties of K(X ,Q)

For ξ ′ ∈ L∗F ∩ (L1
F )+ and X ∈ LF

R(EP[ξ
′X |G ],ξ ′) = inf

ξ∈LF

{
π(ξ ) | EP[ξ

′
ξ |G ]≥ EP[ξ

′X |G ]
}
= K(X ,ξ ′).

Notice that K(X ,ξ ′) = K(X ,λξ ′) for every λ > 0 and thus we can con-
sider K(X ,ξ ′), ξ ′ 6= 0, always defined on the normalized elements Q ∈
L∗F ∩P .
Moreover, it is easy to check that:

EP

[
dQ
dP

ξ | G
]
≥ EP

[
dQ
dP

X | G
]
⇐⇒ EQ[ξ |G ]≥Q EQ[X |G ].

For Q ∈ L∗F ∩P we then set:

K(X ,Q):= inf
ξ∈LF

{π(ξ ) |EQ[ξ |G ]≥Q EQ[X |G ]}=R
(

EP

[
dQ
dP

X | G
]
,

dQ
dP

)
.

Lemma 1.4. Properties of K(X ,Q). Let Q ∈ L∗F ∩P and X ∈ LF .
i) K(·,Q) is monotone and quasi affine.
ii) K(X , ·) is scaling invariant: K(X ,ΛQ) =K(X ,Q) for every Λ ∈ (L0

G )+.
iii) K(X ,Q)1A = infξ∈LF

{π(ξ )1A | EQ[ξ 1A|G ]≥Q EQ[X1A|G ]} for all
A ∈ G .

iv) There exists a sequence
{

ξ
Q
m

}∞

m=1
∈ LF such that

EQ[ξ
Q
m |G ]≥Q EQ[X |G ] ∀m≥ 1, π(ξ Q

m ) ↓ K(X ,Q) as m ↑ ∞.



1.5 Preliminaries 33

v) The set K =
{

K(X ,Q) | Q ∈ L∗F ∩P
}

is upward directed, i.e. for
every K(X ,Q1), K(X ,Q2) ∈ K there exists K(X , Q̂) ∈ K such that
K(X , Q̂)≥ K(X ,Q1)∨K(X ,Q2).
vi) Let Q1 and Q2 be elements of L∗F ∩P and B ∈ G . If dQ1

dP 1B = dQ2
dP 1B

then K(X ,Q1)1B = K(X ,Q2)1B.

Proof. The monotonicity property in (i), (ii) and (iii) are trivial; from
Lemma 1.3 v) it follows that K(·,Q) is quasi affine; (iv) is an immedi-
ate consequence of Lemma 3.1.

(v) Define F = {K(X ,Q1) ≥ K(X ,Q2)} and let Q̂ given by dQ̂
dP :=

1F
dQ1
dP +1FC

dQ2
dP ; up to a normalization factor (from property (ii)) we may

suppose Q̂ ∈ L∗F ∩P . We need to show that

K(X , Q̂) = K(X ,Q1)∨K(X ,Q2) = K(X ,Q1)1F +K(X ,Q2)1FC .

From EQ̂[ξ |G ] =Q̂ EQ1 [ξ |G ]1F + EQ2 [ξ |G ]1FC we get EQ̂[ξ |G ]1F =Q1

EQ1 [ξ |G ]1F and EQ̂[ξ |G ]1FC =Q2 EQ2 [ξ |G ]1FC . In the second place, for
i = 1,2, consider the sets

Â = {ξ ∈ LF | EQ̂[ξ |G ]≥Q̂ EQ̂[X |G ]}

Ai = {ξ ∈ LF | EQi [ξ |G ]≥Qi EQi [X |G ]}.

For every ξ ∈ A1 define η = ξ 1F +X1FC

Q1 << P ⇒ η1F =Q1 ξ 1F ⇒ EQ̂[η |G ]1F ≥Q̂ EQ̂[X |G ]1F

Q2 << P ⇒ η1FC =Q2 X1FC ⇒ EQ̂[η |G ]1FC =Q̂ EQ̂[X |G ]1FC

Then η ∈ Â and π(ξ )1F = π(ξ 1F)− π(0)1FC = π(η1F)− π(0)1FC =
π(η)1F .
Viceversa, for every η ∈ Â define ξ = η1F +X1FC . Then ξ ∈ A1 and again
π(ξ )1F = π(η)1F . Hence

inf
ξ∈A1

π(ξ )1F = inf
η∈Â

π(η)1F .
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In a similar way: infξ∈A2
π(ξ )1FC = inf

η∈Â π(η)1FC and we can finally

deduce K(X ,Q1)∨K(X ,Q2) = K(X , Q̂).
(vi). By the same argument used in (v), it can be shown that

infξ∈A1
π(ξ )1B = infξ∈A2

π(ξ )1B and then the thesis follows.

1.5.3 Properties of H(X) and an uniform approximation

For X ∈ LF we set

H(X) := sup
Q∈L∗F∩P

K(X ,Q)= sup
Q∈L∗F∩P

inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]}

and notice that for all A ∈ G

H(X)1A = sup
Q∈L∗F∩P

inf
ξ∈LF

{π(ξ )1A | EQ[ξ |G ]≥Q EQ[X |G ]} .

In the following Lemma we show that H is a good candidate to reach
the dual representation.

Lemma 1.5. Properties of H(X). Let X ∈ LF .
i) H is (MON) and (QCO)
ii) H(X1A)1A = H(X)1A for any A ∈ G i.e. H is (REG) .
iii) There exist a sequence

{
Qk
}

k≥1 ∈ L∗F and, for each k ≥ 1, a se-

quence
{

ξ
Qk
m

}
m≥1
∈ LF satisfying EQk [ξ

Qk
m | G ]≥Qk EQk [X |G ] and

π(ξ Qk

m ) ↓ K(X ,Qk) as m ↑ ∞, K(X ,Qk) ↑ H(X) as k ↑ ∞, (1.14)

H(X) = lim
k→∞

lim
m→∞

π(ξ Qk

m ). (1.15)

Proof. i) (MON) and (QCO) follow from Lemma 1.4 (i); ii) follows ap-
plying the same argument used in equation (1.12); the other property is an
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immediate consequence of what proved in Lemma 1.4 and 3.1 regarding
the properties of being downward directed and upward directed.

The following Proposition is an uniform approximation result which
stands under stronger assumptions, that are satisfied, for example, by Lp

spaces, p ∈ [1,+∞]. We will not use this Proposition in the proof of The-
orem 1.2, even though it can be useful for understanding the heuristic out-
line of its proof, as sketched in Section 1.6.1.

Proposition 1.3. Suppose that L∗F ↪→ L1
F is a Banach Lattice with the

property: for any sequence {ηn}n ⊆ (L∗F)+, ηnηm = 0 for every n 6= m,
there exists a sequence {αk}k ⊂ (0,+∞) such that ∑n αnηn ∈ (L∗F)+. Then
for every ε > 0 there exists Qε ∈ L∗F ∩P such that

H(X)−K(X ,Qε)< ε (1.16)

on the set F∞ = {H(X)<+∞}.

Proof. From Lemma 1.5, eq. (1.14), we know that there exists a sequence
Qk ∈ L∗F ∩P such that:

K(X ,Qk) ↑ H(X), as k ↑ ∞.

Define for each k ≥ 1 the sets

Dk =: {ω ∈ F∞ | H(X)(ω)−K(X ,Qk)(ω)≤ ε}

and note that
P(F∞ \Dk) ↓ 0 as k ↑ ∞. (1.17)

Consider the disjoint family {Fk}k≥1 of G−measurable sets: F1 =D1, Fk =

Dk \Dk−1, k ≥ 2. By induction one easily shows that
n⋃

k=1
Fk = Dn for all

n ≥ 1. This and (1.17) imply that P
(

F∞ \
∞⋃

k=1
Fk

)
= 0. Consider the se-

quence
{

dQk
dP 1Fk

}
. From the assumption on L∗F we may find a sequence
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{αk}k ⊂ (0,+∞) such that dQ̃ε

dP =: ∑
∞
k=1 αk

dQk
dP 1Fk ∈ L∗F ↪→ L1

F . Hence,
Q̃ε ∈ (L∗F )+∩ (L1

F )+ and, since {Fk}k≥1 are disjoint,

dQ̃ε

dP
1Fk = αk

dQk

dP
1Fk , for any k ≥ 1.

Normalize Q̃ε and denote with Qε = λ Q̃ε ∈ L∗F ∩P the element satisfying
‖ dQε

dP ‖L1
F
= 1. Applying Lemma 1.4 (vi) we deduce that for any k ≥ 1

K(X ,Qε)1Fk = K(X , Q̃ε)1Fk = K(X ,αkQk)1Fk = K(X ,Qk)1Fk ,

and

H(X)1Fk −K(X ,Qε)1Fk = H(X)1Fk −K(X ,Qk)1Fk ≤ ε1Fk .

The condition (3.7) is then a consequence of equation (1.17).

1.5.4 On the map πA

Consider the following

Definition 1.6. Given π : LF → LG we define for every A ∈ G , the map

πA : LF → R by πA(X) := ess sup
ω∈A

π(X)(ω).

Proposition 1.4. Under the same assumptions of Theorem 1.2 (resp. The-
orem 1.3) and for any A ∈ G

πA(X) = sup
Q∈L∗F∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]} . (1.18)

Proof. Notice that the map πA inherits from π the properties (MON) and
(QCO).
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1) Under the assumptions of Theorem 1.2, applying Proposition 1.2 we
get that π is (CFB) and this obviously implies that πA is (CFB). Applying
to πA Proposition 1.2 , which holds also for real valued maps, we deduce
that πA is σ(LF ,L∗F )-(LSC).

2) Under the assumptions of Theorem 1.3 we prove that πA is τ-(USC)
by showing that Bc := {ξ ∈ LF |πA(ξ )< c} is τ open, for any fixed c∈R.
W.l.o.g. Bc 6= /0. If we fix an arbitrary η ∈Bc, we may find δ > 0 such
that πA(η)< c−δ . Define

B := {ξ ∈ LF | π(ξ )< (c−δ )1A +(π(η)+δ )1AC}.

Since (c−δ )1A +(π(η)+δ )1AC ∈ LG and π is (USC) we deduce that B
is τ open. Moreover πA(ξ ) ≤ c− δ for every ξ ∈B, i.e. B ⊆Bc, and
η ∈B since π(η)< c−δ on A and π(η)< π(η)+δ on AC.

We can apply Proposition 1.1 and get the representation of πA both in
the (LSC) and (USC) case. Only notice that in case πA is (USC) the sup
can be replaced by a max. Moreover

πA(X) = sup
Q∈L∗F∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ ]≥ EQ[X ]}

≤ sup
Q∈L∗F∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]} ≤ πA(X).

1.6 Proofs of the main results

We remind that a partition Γ =
{

AΓ
}

is a collection of measurable sets
such that P(AΓ1 ∩AΓ2) = 0 and P(∪AΓ∈Γ AΓ ) = 1. Notations: in the follow-
ing, we will only consider finite partitions Γ =

{
AΓ
}

of G measurable sets
AΓ ∈ Γ and we set
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π
Γ (X) : = ∑

AΓ∈Γ

πAΓ (X)1AΓ ,

KΓ (X ,Q) : = inf
ξ∈LF

{
π

Γ (ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]
}

HΓ (X) : = sup
Q∈L∗F∩P

KΓ (X ,Q)

1.6.1 Outline of the proof

We anticipate an heuristic sketch of the proof of Theorem 1.2, pointing out
the essential arguments involved in it and we defer to the following section
the details and the rigorous statements.

The proof relies on the equivalence of the following conditions:

1. π(X) = H(X).
2. ∀ε > 0, ∃Qε ∈ L∗F ∩P such that π(X)−K(X ,Qε)< ε .
3. ∀ε > 0, ∃Qε ∈ L∗F ∩P such that

{ξ ∈ LF | EQε
[ξ |G ]≥Qε

EQε
[X |G ]} ⊆ {ξ ∈ LF | π(ξ )> π(X)− ε}.

(1.19)

Indeed, 1.⇒ 2. is a consequence of Proposition 1.3 (when it holds true);
2.⇒ 3. follows from the observation that π(X) < K(X ,Qε)+ ε implies
π(X)< π(ξ )+ ε for every ξ satisfying EQε

[ξ |G ]≥Qε
EQε

[X |G ]; 3.⇒ 1.
is implied by the inequalities:

π(X)− ε ≤ inf{π(ξ ) | π(ξ )> π(X)− ε}
≤ inf

ξ∈LF

{π(ξ ) | EQε
[ξ |G ]≥Qε

EQε
[X |G ]} ≤ H(X)≤ π(X).

Unfortunately, we cannot prove Item 3. directly, relying on Hahn-Banach
Theorem, as it happened in the real case (see the proof of Theorem 1.1,
equation (1.3), in Appendix). Indeed, the complement of the set in the
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RHS of (1.19) is not any more a convex set - unless π is real valued -
regardless of the continuity assumption made on π .

Also the method applied in the conditional convex case [17] can not be
used here, since the map X→ EP[π(X)] there adopted preserves convexity
but not quasiconvexity.

The idea is then to apply an approximation argument and the choice of
approximating π(·) by πΓ (·), is forced by the need to preserve quasicon-
vexity.

I The first step is to prove (see Proposition 1.5) that: HΓ (X) = πΓ (X).
This is based on the representation of the real valued quasiconvex
map πA in Proposition 1.4. Therefore, the assumptions (LSC), (MON),
(REG) and (QCO) on π are here all needed.

II Then it is a simple matter to deduce π(X) = infΓ πΓ (X) = infΓ HΓ (X),
where the inf is taken with respect to all finite partitions.

III As anticipated in (C.3), the last step, i.e. proving that infΓ HΓ (X) =
H(X), is more delicate. It can be shown easily that is possible to ap-
proximate H(X) with K(X ,Qε) on a set Aε of probability arbitrarily
close to 1. However, we need the following uniform approximation:
For anyε > 0 there exists Qε ∈ L∗F ∩P such that for any finite parti-
tion Γ we have HΓ (X)−KΓ (X ,Qε) < ε on the same set Aε . This key
approximation result, based on Lemma 1.8, shows that the element Qε

does not depend on the partition and allows us (see equation (1.26)) to
conclude the proof .

1.6.2 Details

The following two lemmas are applications of measure theory

Lemma 1.6. For every Y ∈ L0
G there exists a sequence Γ (n) of finite par-

titions such that ∑Γ (n)
(
supAΓ (n) Y

)
1AΓ (n) converges in probability, and P-

a.s., to Y .
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Proof. Fix ε,δ > 0 and consider the partitions Γ (n)= {An
0,A

n
1, ...A

n
n2n+1+1}

where

An
0 = {Y ∈ (−∞,−n]}

An
j =

{
Y ∈

(
−n+

j−1
2n ,−n+

j
2n

]}
∀ j = 1, ...,n2n+1

An
n2n+1+1 = {Y ∈ (n,+∞)}

Since P(An
0 ∪An

n2n+1+1)→ 0 as n→ ∞, we consider N such that P(AN
0 ∪

AN
N2N+1) ≤ 1− ε . Moreover we may find M such that 1

2M < δ , and hence
for Γ = Γ (M∨N) we have:

P

{
ω ∈Ω | ∑

AΓ∈Γ

(
sup
AΓ

Y
)
1AΓ (ω)−Y (ω)< δ

}
> 1− ε. (1.20)

Lemma 1.7. For each X ∈ LF and Q ∈ L∗F ∩P

inf
Γ

KΓ (X ,Q) = K(X ,Q)

where the infimum is taken with respect to all finite partitions Γ .

Proof.

inf
Γ

KΓ (X ,Q) = inf
Γ

inf
ξ∈LF

{
π

Γ (ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]
}

= inf
ξ∈LF

{
inf
Γ

π
Γ (ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]

}
= inf

ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]}= K(X ,Q).

(1.21)

where the first equality in (1.21) follows from the convergence shown in
Lemma 1.6.
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The following already mentioned key result is proved in the Appendix,
for it needs a pretty long argument.

Lemma 1.8. Let X ∈ LF and let P and Q be arbitrary elements of L∗F ∩
P . Suppose that there exists B∈ G satisfying: K(X ,P)1B >−∞, πB(X)<
+∞ and

K(X ,Q)1B ≤ K(X ,P)1B + ε1B,

for some ε ≥ 0. Then for every partition Γ = {BC,Γ̃ }, where Γ̃ is a parti-
tion of B, we have

KΓ (X ,Q)1B ≤ KΓ (X ,P)1B + ε1B.

Since πΓ assumes only a finite number of values, we may apply Propo-
sition 1.4 and deduce the dual representation of πΓ .

Proposition 1.5. Suppose that the assumptions of Theorem 1.2 (resp. The-
orem 1.3) hold true and Γ is a finite partition. Then:

HΓ (X) = π
Γ (X)≥ π(X) (1.22)

and therefore
inf
Γ

HΓ (X) = π(X).

Proof. First notice that KΓ (X ,Q) ≤ HΓ (X) ≤ πΓ (X) for all Q ∈ L∗F ∩
P . Consider the sigma algebra G Γ := σ(Γ )⊆ G , generated by the finite
partition Γ . Hence from Proposition 1.4 we have for every AΓ ∈ Γ

πAΓ (X) = sup
Q∈L∗F∩P

inf
ξ∈LF

{πAΓ (ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]} . (1.23)

Moreover HΓ (X) is constant on AΓ since it is G Γ -measurable as well.
Using the fact that πΓ (·) is constant on each AΓ , for every AΓ ∈ Γ we
then have:
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HΓ (X)1AΓ = sup
Q∈L∗F∩P

inf
ξ∈LF

{
π

Γ (ξ )1AΓ | EQ[ξ |G ]≥Q EQ[X |G ]
}

= sup
Q∈L∗F∩P

inf
ξ∈LF

{πAΓ (ξ )1AΓ | EQ[ξ |G ]≥Q EQ[X |G ]}

= πAΓ (X)1AΓ = π
Γ (X)1AΓ (1.24)

where the first equality in (1.24) follows from (1.23). The remaining state-
ment is a consequence of (1.22) and Lemma 1.6

Proof (Proofs of Theorems 1.2 and 1.3). Obviously π(X) ≥ H(X), since
X satisfies the constraints in the definition of H(X).

Step 1. First we assume that π is uniformly bounded, i.e. there exists
c > 0 such that for all X ∈ LF |π(X)| ≤ c. Then H(X)>−∞.

From Lemma 1.5, eq. (1.14), we know that there exists a sequence Qk ∈
L∗F ∩P such that:

K(X ,Qk) ↑ H(X), as k ↑ ∞.

Therefore, for any ε > 0 we may find Qε ∈ L∗F ∩P and Aε ∈ G , P(Aε)>
1− ε such that

H(X)1Aε
−K(X ,Qε)1Aε

≤ ε1Aε
.

Since H(X)≥ K(X ,Q) ∀Q ∈ L∗F ∩P ,

(K(X ,Qε)+ ε)1Aε
≥ K(X ,Q)1Aε

∀Q ∈ L∗F ∩P.

This is the basic inequality that enable us to apply Lemma 1.8, replac-
ing there P with Qε and B with Aε . Only notice that supΩ π(X) ≤ c and
K(X ,Q)>−∞ for every Q ∈ L∗F ∩P . This Lemma assures that for every
partition Γ of Ω

(KΓ (X ,Qε)+ ε)1Aε
≥ KΓ (X ,Q)1Aε

∀Q ∈ L∗F ∩P . (1.25)

From the definition of essential supremum of a class of r.v. equation (1.25)
implies that for every Γ
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(KΓ (X ,Qε)+ ε)1Aε
≥ sup

Q∈L∗F∩P
KΓ (X ,Q)1Aε

= HΓ (X)1Aε
. (1.26)

Since πΓ ≤ c, applying Proposition 1.5, equation (1.22), we get

(KΓ (X ,Qε)+ ε)1Aε
≥ π(X)1Aε

.

Taking the infimum over all possible partitions, as in Lemma 1.7, we de-
duce:

(K(X ,Qε)+ ε)1Aε
≥ π(X)1Aε

. (1.27)

Hence, for any ε > 0

(K(X ,Qε)+ ε)1Aε
≥ π(X)1Aε

≥ H(X)1Aε
≥ K(X ,Qε)1Aε

which implies π(X) = H(X), since P(Aε)→ 1 as ε → 0.
Step 2. Now we consider the case when π is not necessarily bounded.

We define the new map ψ(·) := arctan(π(·)) and notice that ψ(X) is a G -
measurable r.v. satisfying |ψ(X)| ≤ Π

2 for every X ∈ LF . Moreover ψ is
(MON), (QCO) and ψ(X1G)1G = ψ(X)1G for every G ∈ G . In addition,
ψ inherits the (LSC) (resp. the (USC)∗) property from π . The first is a
simple consequence of (CFB) of π . For the second we may apply Lemma
1.9 below.

ψ is surely uniformly bounded and by the above argument we may con-
clude

ψ(X) = Hψ(X) := sup
Q∈L∗F∩P

Kψ(X ,Q)

where
Kψ(X ,Q) := inf

ξ∈LF

{ψ(ξ ) | EQ[ξ |G ]≥Q EQ[X |G ]} .

Applying again Lemma 1.5, equation (1.14), there exists Qk ∈ L∗F such
that

Hψ(X) = lim
k

Kψ(X ,Qk).

We will show below that
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Kψ(X ,Qk) = arctanK(X ,Qk). (1.28)

Admitting this, we have for P-almost every ω ∈Ω

arctan(π(X)(ω)) = ψ(X)(ω) = Hψ(X)(ω) = lim
k

Kψ(X ,Qk)(ω)

= lim
k

arctanK(X ,Qk)(ω)) = arctan(lim
k

K(X ,Qk)(ω)),

where we used the continuity of the function arctan. This implies π(X) =
limk K(X ,Qk) and we conclude:

π(X) = lim
k

K(X ,Qk)≤ H(X)≤ π(X).

It only remains to show (1.28). We prove that for every fixed Q ∈ L∗F ∩P

Kψ(X ,Q) = arctan(K(X ,Q)) .

Since π and ψ are regular, from Lemma 1.4 iv), there exist ξ
Q
h ∈ LF and

η
Q
h ∈ LF such that

EQ[ξ
Q
h |G ]≥Q EQ[X |G ], EQ[η

Q
h |G ]≥Q EQ[X |G ], ∀h≥ 1, (1.29)

ψ(ξ Q
h ) ↓ Kψ(X ,Q) and π(ηQ

h ) ↓ K(X ,Q), as h ↑ ∞. From (1.29) and the
definitions of K(X ,Q), Kψ(X ,Q) and by the continuity and monotonicity
of arctan we get:

Kψ(X ,Q) ≤ lim
h

ψ(ηQ
h ) = lim

h
arctanπ(ηQ

h ) = arctan lim
h

π(ηQ
h )

= arctanK(X ,Q)≤ arctan lim
h

π(ξ Q
h ) = lim

h
ψ(ξ Q

h ) = Kψ(X ,Q).

and this ends the proof of both Theorem 1.2 and 1.3.

Remark 1.7. Let D ∈F . If U is a neighborhood of ξ ∈ LF then also the
set

U1D +U1DC =: {Z = X1D +Y 1Dc | X ∈U,Y ∈U}
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is a neighborhood of ξ . Indeed, since U is a neighborhood of ξ , there
exists an open set V such that ξ ∈ V ⊆ U. Since U ⊆ U1D +U1DC , we
deduce that ξ ∈ V ⊆ U1D +U1DC and therefore ξ is in the interior of
U1D +U1DC .

Let Y be G -measurable and define:

A := {ξ ∈ LF | π(ξ )< tan(Y )} B := {ξ ∈ LF | arctan(π(ξ ))< Y} ,

where

tan(x) =


−∞ x≤−Π

2
tan(x) −Π

2 < x < Π

2
+∞ x≥ Π

2

Notice that A =
{

ξ ∈ B | π(ξ )< ∞ on
{

Y > π

2

}}
⊂ B but the reverse

inclusion does not hold true in general: in fact every ξ0 ∈ A satisfies
π(ξ0)<+∞ on the set {Y > Π

2 } but it may happen that a ξ0 ∈ B brings to
π(ξ0) = +∞ on {Y > Π

2 }.

Lemma 1.9. Suppose that π is regular and there exists θ ∈ LF such that
π(θ) < +∞. For any G -measurable random variable Y, if A is open then
also B is open.
As a consequence if the map π is (USC)? so it is the map arctanπ .

Proof. We may assume Y ≥ −π

2 , otherwise B = /0. Let ξ ∈ B, θ ∈ LF

such that π(θ) < +∞. Define ξ0 := ξ 1{Y≤ π
2 }+ θ1{Y> π

2 }. Then ξ0 ∈ A

(since π is regular and π(θ) < tg(Y )). Since A is open, we may find a
neighborhood U of 0 such that:

ξ0 +U ⊆ A.

Define:

V := (ξ0 +U)1{Y≤ π
2 }+(ξ +U)1{Y> π

2 } = ξ +U1{Y≤ π
2 }+U1{Y> π

2 }.

Then ξ ∈V and, by the previous remark, U1{Y≤ π
2 }+U1{Y> π

2 } is a neigh-

borhood of 0. Hence V is a neighborhood of ξ . To show that B is open it
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is then sufficient to show that V ⊆ B. Let η ∈V . Then

η = η11{Y≤ π
2 }+η21{Y> π

2 }, η1 ∈ (ξ0 +U), η2 ∈ (ξ +U).

Since ξ0 +U ⊆ A, η1 ∈ A; therefore: π(η1) < tg(Y ). Since π is regular
and

{
Y ≤ π

2

}
is G measurable, π(η) = π(η1) on the set

{
Y ≤ π

2

}
, which

implies: π(η)< tg(Y ) on
{

Y ≤ π

2

}
and η ∈ B.

Remark 1.8. Consider Q ∈P such that Q ∼ P on G and define the new
probability

Q̃(F) := EQ

[
dP
dQ

G

1F

]
where

dP
dQ

G

=: EQ

[
dP
dQ

∣∣G ] , F ∈F .

Then Q̃(G) = P(G) for all G ∈ G , and so Q̃ ∈PG . Moreover, it is easy
to check that for all X ∈ LF and Q ∈ L∗F ∩P such that Q ∼ P on G we
have:

EQ̃[X |G ] = EQ[X |G ] (1.30)

which implies K(X , Q̃) = K(X ,Q). To get (1.30) consider any A ∈ G

EP[EQ̃[X |G ]1A] = EQ̃[EQ̃[X |G ]1A] = EQ̃[X1A]

= EQ

[
X

dP
dQ

G

1A

]
= EQ

[
EQ

[
X

dP
dQ

G

1A
∣∣G]]

= EQ

[
EQ [X |G ]

dP
dQ

G

1A

]
= EQ̃ [EQ [X |G ]1A]

= EP [EQ [X |G ]1A]

Proof (Proof of Corollary 1.1). Consider the probability Qε ∈ L∗F ∩P
built up in Theorem 1.2, equation (1.27). We claim that Qε is equivalent to
P on Aε . By contradiction there exists B ∈ G , B⊆ Aε , such that P(B)> 0
but Qε(B)= 0. Consider η ∈ LF , δ > 0 such that P(π(η)+δ < π(X))= 1
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and define ξ = X1BC +η1B so that EQε
[ξ |G ]≥Qε

EQε
[X |G ]. By regularity

π(ξ ) = π(X)1BC +π(η)1B which implies for P-a.e. ω ∈ B

π(ξ )(ω)+δ=π(η)(ω)+δ<π(X)(ω)≤K(X ,Qε)(ω)+ε≤π(ξ )(ω)+ε

which is impossible for ε ≤ δ . So Qε ∼ P on Aε for all small ε ≤ δ .
Consider Q̂ε such that dQ̂ε

dP = dQε

dP 1Aε
+ dP

dP1(Aε )C
. Up to a normalization

factor Q̂ε ∈ L∗F ∩P and is equivalent to P. Moreover from Lemma 1.4
(vi), K(X , Q̂ε)1Aε

= K(X ,Qε)1Aε
and from Remark 1.8 we may define

Q̃ε ∈PG such that K(X , Q̃ε)1Aε
= K(X , Q̂ε)1Aε

= K(X ,Qε)1Aε
. From

(1.27) we finally deduce: K(X , Q̃ε)1Aε
+ ε1Aε

≥ π(X)1Aε
, and the thesis

then follows from Q̃ε ∈PG .

1.6.3 Proof of the key approximation Lemma 1.8

We will adopt the following notations: If Γ1 and Γ2 are two finite partitions
of G -measurable sets then Γ1∩Γ2 := {A1∩A2 | Ai ∈ Γi, i = 1,2} is a finite
partition finer than each Γ1 and Γ2.

Lemma 1.10 is the natural generalization of Lemma 3.1 to the approx-
imated problem.

Lemma 1.10. For every partition Γ , X ∈ LF and Q ∈ L∗F ∩P , the set

A Γ
Q (X)$ {πΓ (ξ ) |ξ ∈ LF and EQ[ξ |G ]≥Q EQ[X |G ]}

is downward directed. This implies that there exists exists a sequence{
η

Q
m

}∞

m=1
∈ LF such that

EQ[η
Q
m |G ]≥Q EQ[X |G ] ∀m≥ 1 , π

Γ (ηQ
m ) ↓ KΓ (X ,Q) as m ↑ ∞.

Proof. To show that the set A Γ
Q (X) is downward directed we use the no-

tations and the results in the proof of Lemma 3.1 and check that
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π
Γ (ξ ∗) = π

Γ (ξ11G +ξ21GC)≤min
{

π
Γ (ξ1),π

Γ (ξ2)
}
.

Now we show that for any given sequence of partition there exists one
sequence that works for all.

Lemma 1.11. For any fixed, at most countable, family of partitions

{Γ (h)}h≥1

and Q ∈ L∗F ∩P, there exists a sequence
{

ξ
Q
m

}∞

m=1
∈ LF such that

EQ[ξ
Q
m |G ] ≥Q EQ[X |G ] for all m≥ 1

π(ξ Q
m ) ↓ K(X ,Q) as m ↑ ∞

and for all h π
Γ (h)(ξ Q

m ) ↓ KΓ (h)(X ,Q) as m ↑ ∞.

Proof. Apply Lemma 3.1 and Lemma 1.10 and find {ϕ0
m}m,{ϕ1

m}m, ...,
{ϕh

m}m, ... such that for every i and m we have EQ[ϕ
i
m | G ] ≥Q EQ[X |G ]

and

π(ϕ0
m) ↓ K(X ,Q) as m ↑ ∞

and for all h π
Γ (h)(ϕh

m) ↓ KΓ (h)(X ,Q) as m ↑ ∞.

For each m≥ 1 consider
∧m

i=0 π(ϕ i
m): then there will exists a (non unique)

finite partition of Ω , {F i
m}m

i=1 such that

m∧
i=0

π(ϕ i
m) =

m

∑
i=0

π(ϕ i
m)1F i

m
.

Denote ξ
Q
m =: ∑

m
i=0 ϕ i

m1F i
m

and notice that ∑
m
i=0 π(ϕ i

m)1F i
m

(REG)
= π

(
ξ

Q
m

)
and EQ[ξ

Q
m |G ] ≥Q EQ[X |G ] for every m. Moreover π(ξ Q

m ) is decreasing
and π(ξ Q

m )≤ π(ϕ0
m) implies π(ξ Q

m ) ↓ K(X ,Q).
For every fixed h we have π(ξ Q

m )≤ π(ϕh
m) for all h≤ m and hence:
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π
Γ (h)(ξ Q

m )≤ π
Γ (h)(ϕh

m) implies π
Γ (h)(ξ Q

m ) ↓ KΓ (h)(X ,Q) as m ↑ ∞.

Finally, we state the basic step used in the proof of Lemma 1.8.

Lemma 1.12. Let X ∈ LF and let P and Q be arbitrary elements of L∗F ∩
P . Suppose that there exists B∈ G satisfying: K(X ,P)1B >−∞, πB(X)<
+∞ and

K(X ,Q)1B ≤ K(X ,P)1B + ε1B,

for some ε ≥ 0. Then for any δ > 0 and any partition Γ0 there exists Γ ⊇Γ0
for which

KΓ (X ,Q)1B ≤ KΓ (X ,P)1B + ε1B +δ1B

Proof. By our assumptions we have: −∞ < K(X ,P)1B ≤ πB(X) < +∞

and K(X ,Q)1B ≤ πB(X) < +∞. Fix δ > 0 and the partition Γ0. Suppose
by contradiction that for any Γ ⊇ Γ0 we have P(C)> 0 where

C = {ω ∈ B | KΓ (X ,Q)(ω)> KΓ (X ,P)(ω)+ ε +δ}. (1.31)

Notice that C is the union of a finite number of elements in the partition
Γ .

Consider that Lemma 1.4 guarantees the existence of
{

ξ
Q
h

}∞

h=1
∈ LF

satisfying:

π(ξ Q
h ) ↓ K(X ,Q), as h ↑ ∞, , EQ[ξ

Q
h |G ]≥Q EQ[X |G ] ∀h≥ 1.(1.32)

Moreover, for each partition Γ and h≥ 1 define:

DΓ
h :=

{
ω ∈Ω | πΓ (ξ Q

h )(ω)−π(ξ Q
h )(ω)<

δ

4

}
∈ G ,

and observe that πΓ (ξ Q
h ) decreases if we pass to finer partitions. From

Lemma 1.6 equation (1.20), we deduce that for each h ≥ 1 there exists

a partition Γ̃ (h) such that P
(

DΓ̃ (h)
h

)
≥ 1− 1

2h . For every h ≥ 1 define
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the new partition Γ (h) =

(
h⋂

j=1
Γ̃ (h)

)
∩Γ0 so that for all h ≥ 1 we have:

Γ (h+1)⊇ Γ (h)⊇ Γ0, P
(

DΓ (h)
h

)
≥ 1− 1

2h and(
π(ξ Q

h )+
δ

4

)
1

DΓ (h)
h
≥
(

π
Γ (h)(ξ Q

h )
)

1
DΓ (h)

h
, ∀h≥ 1. (1.33)

Lemma 1.11 guarantees that for the fixed sequence of partitions {Γ (h)}h≥1,
there exists a sequence

{
ξ P

m
}∞

m=1 ∈ LF , which does not depend on h, sat-
isfying

EP[ξ
P
m |G ] ≥P EP[X |G ] ∀m≥ 1, (1.34)

π
Γ (h)(ξ P

m) ↓ KΓ (h)(X ,P), as m ↑ ∞, ∀h≥ 1. (1.35)

For each m≥ 1 and Γ (h) define:

CΓ (h)
m :=

{
ω ∈C | πΓ (h)(ξ P

m)(ω)−KΓ (h)(X ,P)(ω)≤ δ

4

}
∈ G .

Since the expressions in the definition of CΓ (h)
m assume only a finite num-

ber of values, from (1.35) and from our assumptions, which imply that
KΓ (h)(X ,P) ≥ K(X ,P) > −∞ on B, we deduce that for each Γ (h) there
exists an index m(Γ (h)) such that: P

(
C \CΓ (h)

m(Γ (h))

)
= 0 and

KΓ (h)(X ,P)1
CΓ (h)

m(Γ (h))
≥
(

π
Γ (h)(ξ P

m(Γ (h)))−
δ

4

)
1

CΓ (h)
m(Γ (h))

, ∀h≥ 1. (1.36)

Set Eh = DΓ (h)
h ∩CΓ (h)

m(Γ (h)) ∈ G and observe that

1Eh → 1C P− a.s. (1.37)

From (1.33) and (1.36) we then deduce:
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π(ξ Q

h )+
δ

4

)
1Eh ≥

(
π

Γ (h)(ξ Q
h )
)

1Eh , ∀h≥ 1, (1.38)

KΓ (h)(X ,P)1Eh ≥
(

π
Γ (h)(ξ P

m(Γ (h)))−
δ

4

)
1Eh , ∀h≥ 1. (1.39)

We then have for any h≥ 1

π(ξ Q
h )1Eh +

δ

4
1Eh ≥

(
π

Γ (h)(ξ Q
h )
)

1Eh (1.40)

≥ KΓ (h)(X ,Q)1Eh (1.41)

≥
(

KΓ (h)(X ,P)+ ε +δ

)
1Eh (1.42)

≥
(

π
Γ (h)(ξ P

m(Γ (h)))−
δ

4
+ ε +δ

)
1Eh (1.43)

≥
(

π(ξ P
m(Γ (h)))+ ε +

3
4

δ

)
1Eh . (1.44)

(in the above chain of inequalities, (1.40) follows from (1.38); (1.41) fol-
lows from (1.32) and the definition of KΓ (h)(X ,Q); (1.42) follows from
(1.31); (1.43) follows from (1.39); (1.44) follows from the definition of
the maps πAΓ (h)).
Recalling (1.34) we then get, for each h≥ 1,

π(ξ Q
h )1Eh ≥

(
π(ξ P

m(Γ (h)))+ ε +
δ

2

)
1Eh ≥

(
K(X ,P)+ ε +

δ

2

)
1Eh >−∞.

(1.45)
From equation (1.32) and (1.37) we have π(ξ Q

h )1Eh → K(X ,Q)1C P-a.s.
as h ↑ ∞ and so from (1.45)

1CK(X ,Q) = lim
h

π(ξ Q
h )1Eh ≥ lim

h
1Eh

(
K(X ,P)+ ε +

δ

2

)
= 1C

(
K(X ,P)+ ε +

δ

2

)
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which contradicts the assumption of the Lemma, since C ⊆ B and P(C)>
0.

Proof (Proof of Lemma 1.8). First notice that the assumptions of this
Lemma are those of Lemma 1.12. Assume by contradiction that there ex-
ists Γ0 = {BC,Γ̃0}, where Γ̃0 is a partition of B, such that

P(ω ∈ B | KΓ0(X ,Q)(ω)> KΓ0(X ,P)(ω)+ ε)> 0. (1.46)

By our assumptions we have KΓ0(X ,P)1B ≥ K(X ,P)1B >−∞ and
KΓ0(X ,Q)1B ≤ πB(X)1B < +∞. Since KΓ0 is constant on every element
AΓ0 ∈ Γ0, we denote with KAΓ0 (X ,Q) the value that the random variable
KΓ0(X ,Q) assumes on AΓ0 . From (1.46) we deduce that there exists ÂΓ0 ⊆
B , ÂΓ0 ∈ Γ0, such that

+∞ > KÂΓ0
(X ,Q)> KÂΓ0

(X ,P)+ ε >−∞.

Let then d > 0 be defined by

d =: KÂΓ0
(X ,Q)−KÂΓ0

(X ,P)− ε. (1.47)

Apply Lemma 1.12 with δ = d
3 : then there exists Γ ⊇ Γ0 (w.l.o.g. Γ =

{BC,Γ̃ } where Γ̃ ⊇ Γ̃0) such that

KΓ (X ,Q)1B ≤
(
KΓ (X ,P)+ ε +δ

)
1B. (1.48)

Considering only the two partitions Γ and Γ0, we may apply Lemma 1.11
and conclude that there exist two sequences {ξ P

h }∞
h=1 ∈ LF and {ξ Q

h }
∞
h=1 ∈

LF satisfying as h ↑ ∞:

EP[ξ
P
h |G ]≥P EP[X |G ], πΓ0(ξ P

h ) ↓ KΓ0(X ,P), π
Γ (ξ P

h ) ↓ KΓ (X ,P)(1.49)

EQ[ξ
Q
h |G ]≥Q EQ[X |G ], πΓ0(ξ Q

h ) ↓ KΓ0(X ,Q), π
Γ (ξ Q

h ) ↓ KΓ (X ,Q)(1.50)
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Since KΓ0(X ,P) is constant and finite on ÂΓ0 , from (1.49) we may find
h1 ≥ 1 such that

πÂΓ0 (ξ
P
h )−KÂΓ0

(X ,P)<
d
2
,∀h≥ h1. (1.51)

From equation (1.47) and (3.3) we deduce that

πÂΓ0 (ξ
P
h )< KÂΓ0

(X ,P)+
d
2
= KÂΓ0

(X ,Q)− ε−d +
d
2
, ∀h≥ h1,

and therefore, knowing from (1.50) that KÂΓ0 (X ,Q)≤ πÂΓ0 (ξ
Q
h ),

πÂΓ0 (ξ
P
h )+

d
2
< πÂΓ0 (ξ

Q
h )− ε ∀h≥ h1. (1.52)

We now take into account all the sets AΓ ⊆ ÂΓ0 ⊆ B. For the conver-
gence of πAΓ (ξ

Q
h ) we distinguish two cases. On those sets AΓ for which

KAΓ

(X ,Q)>−∞ we may find, from (1.50), h≥ 1 such that

πAΓ (ξ
Q
h )−KAΓ

(X ,Q)<
δ

2
∀h≥ h.

Then using (1.48) and (1.49) we have

πAΓ (ξ
Q
h )<KAΓ

(X ,Q)+
δ

2
≤KAΓ

(X ,P)+ε+δ +
δ

2
≤ πAΓ (ξ P

h )+ε+δ+
δ

2

so that

πAΓ (ξ
Q
h )< πAΓ (ξ P

h )+ ε +
3δ

2
∀h≥ h.

On the other hand, on those sets AΓ for which KAΓ

(X ,Q) = −∞ the con-
vergence (1.50) guarantees the existence of ĥ ≥ 1 for which we obtain
again:

πAΓ (ξ
Q
h )< πAΓ (ξ P

h )+ ε +
3δ

2
∀h≥ ĥ (1.53)
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(notice that KΓ (X ,P) ≥ K(X ,P)1B > −∞ and (1.49) imply that πAΓ (ξ P
h )

converges to a finite value, for AΓ ⊆ B).
Since the partition Γ is finite there exists h2 ≥ 1 such that equation

(1.53) stands for every AΓ ⊆ ÂΓ0 and for every h ≥ h2 and for our choice
of δ = d

3 (1.53) becomes

πAΓ (ξ
Q
h )< πAΓ (ξ P

h )+ ε +
d
2
∀h≥ h2 ∀AΓ ⊆ ÂΓ0 . (1.54)

Fix h∗ > max{h1,h2} and consider the value πÂΓ0 (ξ
Q
h∗). Then among all

AΓ ⊆ ÂΓ0 we may find BΓ ⊆ ÂΓ0 such that πBΓ (ξ
Q
h∗) = πÂΓ0 (ξ

Q
h∗). Thus:

πÂΓ0 (ξ
Q
h∗) = πBΓ (ξ

Q
h∗)

(1.54)
< πBΓ (ξ P

h∗)+ ε +
d
2

≤ πÂΓ0 (ξ
P
h∗)+ ε +

d
2

(1.52)
< πÂΓ0 (ξ

Q
h∗).

which is a contradiction.

1.7 A complete characterization of the map π

In this section we show that any conditional map π can be characterized
via the dual representation (see Proposition 1.6): we introduce the class
Rc f b of maps S : Σ → L̄0

G such that S(·,ξ ′) is (MON), (CFB) and (REG)
(i.e. S(Y 1A,Q)1A = S(Y,Q)1A ∀A ∈ G ).

Remark 1.9. S : Σ → L̄0
G such that S(·,ξ ′) is (MON) and (REG) is auto-

matically (QCO) in the first component: let Y1,Y2,Λ ∈ L0
G , 0≤Λ ≤ 1 and

define B = {Y1 ≤ Y2}, S(·,Q) = S(·).
S(Y11B) ≤ S(Y21B) and S(Y21BC) ≤ S(Y11BC) so that from (MON) and
(REG)
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S(ΛY1 +(1−Λ)Y2) ≤ S(Y21B +Y11BC)
(REG)
= S(Y2)1B +S(Y1)1BC

≤ S(Y1)∨S(Y2).

Notice that the class Rc f b is non-empty: for instance consider the map
R+(·,ξ ′) defined by

R+(Y,ξ ′) = ess sup
Y ′<Y

R(Y ′,ξ ′) (1.55)

As shown in the next Lemma, R+ inherits from R (MON), (REG) and is
automatically (CFB). This function plays an important role in the proof of
Proposition 1.7.
Proposition 1.6 is in the spirit of [10]: as a consequence of the dual rep-
resentation the map π induces on R (resp. R+) its characteristic properties
and so does R (resp. R+) on π .

Lemma 1.13. If π : LF → LG is (REG) and (MON) then R+ ∈R.

Proof. Clearly R+(·,Q) inherits from R(·,Q) the properties (REG) and
(MON). From Remark 1.9 we then know that R+(·,Q) is (QCO). We show
that it is also (CFB). Let Yn ↑ Y . It is easy to check that (MON) of R(·,ξ ′)
implies that the set {R(η ,ξ ′)|η < Y} is upward directed. Then for every
ε,δ > 0 we can find ηε < Y such that

P(R+(Y,ξ ′)−R(ηε ,ξ
′)< ε)> 1−δ (1.56)

There exists an nε such that P(Yn > ηε) > 1− δ for every n > nε . De-
note by An = {Yn > ηε} so that from (REG) we have R+(Yn,ξ

′)1An ≥
R(ηε ,ξ

′)1An . This last inequality together with equation (1.56) implies

P(R+(Y,ξ ′)−R+(Yn,ξ
′)< ε)> 1−2δ ∀n > nε

i.e. R+(Yn,Q)
P→R+(Y,Q). Since R+(Yn,Q) ↑we conclude that R+(Yn,Q) ↑

R+(Y,Q) P-almost surely.

Proposition 1.6. Consider a map S : Σ → LG .
(a) Let χ ⊆ L∗F , X ∈ LF and
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π(X) = sup
ξ ′∈χ

S(E[Xξ
′|G ],ξ ′).

(Recall that (E[ξ ′X |G ],ξ ′) ∈ Σ for every X ∈ LF , ξ ′ ∈ L∗F ).
Then for every A ∈ G , (Y,ξ ′) ∈ Σ , Λ ∈ LG ∩LF and X ∈ LF

i) S(Y 1A,ξ
′)1A = S(Y,ξ ′)1A =⇒ π (REG);

ii) Y 7→ S(Y,ξ ′) (MON) =⇒ π (MON);
iii) Y 7→ S(Y,ξ ′) is conditionally convex =⇒ π is conditionally convex;
iv) Y 7→ S(Y,ξ ′) (QCO) =⇒ π (QCO);
v) S(λY,ξ ′) = λS(Y,ξ ′) =⇒ π(λX) = λπ(X), (λ > 0);
vi) S(λY,ξ ′) = S(Y,ξ ′) =⇒ π(λX) = π(X), (λ > 0);
vii) Y 7→ S(Y,ξ ′) (CFB) =⇒ π (CFB).
viii) S(E[(X +Λ)ξ ′|G ],ξ ′) = S(E[Xξ ′|G ],ξ ′) +Λ =⇒ π(X +Λ) =

π(X)+Λ .
ix) S(E[(X + Λ)ξ ′|G ],ξ ′) ≥ S(E[Xξ ′|G ],ξ ′) + Λ =⇒ π(X + Λ) ≥

π(X)+Λ .

(b) When the map S is replaced by R defined in (1.5), all the above items -
except (vii) - hold true replacing “=⇒” by “⇐⇒”.

(c) When the map S is replaced by R+ defined in (1.55), all the above items
- except (iii) - hold true replacing “=⇒” by “⇐⇒”.

Proof. (a) Items from (i) to (ix) are trivial. To make an example we show
(iv): for every G -measurable Λ , 0 ≤ Λ ≤ 1, and X1,X2 ∈ LF , we have
EP[(ΛX1 +(1−Λ)X2)ξ

′|G ] = ΛEP[X1ξ ′|G ]+ (1−Λ)EP[X2ξ ′|G ]. Thus

S(ΛEP[X1ξ
′|G ]+ (1−Λ)EP[X2ξ

′|G ],ξ ′)

≤ max
{

S(EP[X1ξ
′|G ],ξ ′),S(EP[X2ξ

′|G ],ξ ′)
}

≤ max

{
sup
ξ ′∈χ

S(EP[X1ξ
′|G ],ξ ′), sup

ξ ′∈χ

S(EP[X2ξ
′|G ],ξ ′)

}

thus
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π(ΛX1 +(1−Λ)X2) = sup
Q∈P

S
(
ΛEQ[X |G ]+ (1−Λ)EQ[Y |G ],Q

)
≤ max

{
sup

Q∈P
S(EQ[X |G ],Q), sup

Q∈P
S(EQ[Y |G ],Q)

}
= π(X1)∨π(X2).

(b): The ‘only if’ in (i) and (ii) follow from Lemma 1.3. Now we prove the
remaining ‘only if’ conditions.

(iii): let Y1,Y2,Λ ∈ L0
G , 0≤Λ ≤ 1 then

R(ΛY1 +(1−Λ)Y2,ξ
′) =

= inf
ξ∈LF

{π(ξ ) | E[ξ ξ
′|G ]≥ΛY1 +(1−Λ)Y2}

= inf
η1,η2∈LF

{π(Λη1 +(1−Λ)η2) | E[(Λη1 +(1−Λ)η2)ξ
′|G ]≥ ...}

≤ inf
η1,η2∈LF

{π(Λη1 +(1−Λ)η2) | E[η1ξ
′|G ]≥ Y1∩E[η2ξ

′|G ]≥ Y2}

≤ ΛR(Y1,ξ
′)+(1−Λ)R(Y2,ξ

′)

(iv): follows from Remark 1.9 since R is (MON) and (REG).
(v):

R(λY,ξ ′) = inf
ξ∈LF

{π(ξ ) | E[λ−1
ξ ξ
′|G ]≥ Y}

= inf
λη∈LF

{π(λη) | E[ηξ
′|G ]≥ Y}= λR(Y,ξ ′)

(vi): similar to (v).
(viii):

R(E[(X +Λ)ξ ′|G ],ξ ′)

= inf
ξ∈LF

{
π(ξ ) | E

[
(ξ −Λ)ξ ′|G

]
≥ E[Xξ

′|G ]
}

= inf
η+Λ∈LF

{
π(η +Λ) | E

[
ηξ
′|G
]
≥ E[Xξ

′|G ]
}
= R(E[Xξ

′|G ],Q)+Λ



58 1 On the dual representation on vector spaces

(ix): similar to (viii).
(c): by definition R+ inherits from R (MON) and (REG) so that we can
also conclude by Remark 1.9 that the ‘only if ’in (i), (ii) and (iv) holds
true.

(v): we know that π(λ ·) = λπ(·) implies R(λ ·,ξ ′) = λR(·,ξ ′). By def-
inition

R+(Y,ξ ′) = sup
Y ′<Y

R(Y ′,ξ ′) = sup
Y ′<Y

1
λ

R(λY ′,ξ ′)

=
1
λ

sup
Y ′<λY

R(Y ′,ξ ′) =
1
λ

R+(λY,ξ ′).

(vi), (vii) and (ix) follows as in (v).
(vii): is proved in Lemma 3.10.

Proposition 1.7. Suppose that σ(LF ,L∗F ) satisfies the C-property and LF

is order complete. π : LF → LG is (MON), (QCO), (REG) and σ(LF ,L∗F )-
(LSC) if and only if there exists S ∈Rc f b such that

π(X) = sup
Q∈L∗F∩P

S
(

E
[

dQ
dP

X |G
]
,Q
)
. (1.57)

Proof. The ‘if ’follows from Proposition (1.6). For the ‘only if ’we already
know from Theorem 1.2 that

π(X) = sup
Q∈L∗F∩P

R
(

E
[

dQ
dP

X |G
]
,Q
)
.

where R is defined in (1.5). For every Q∈ L∗F ∩P we consider R+(·,Q)≤
R(·,Q) and denote XQ = E

[
dQ
dP X |G

]
. We observe that
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π(X) ≥ sup
Q∈L∗F∩P

R+(XQ,Q) = sup
Q∈L∗F∩P

sup
Y ′<XQ

R(Y ′,Q)

δ>0
≥ sup

Q∈L∗F∩P
sup

XQ−δ<XQ
R(XQ−δ ,Q)

= sup
δ>0

sup
Q∈L∗F∩P

R(E[(X−δ ) ·dQ/dP|G ],Q) = sup
δ>0

π(X−δ )

(CFB)
= π(X)

and so for R+ ∈Rc f b
Q we have the representation

π(X) = sup
Q∈L∗F∩P

R+(EQ[X |G ],Q).

1.7.1 A hint for further research: on the uniqueness of the
representation

In [10] the authors provide a complete duality for real valued quasiconvex
functionals when the space LF is an M-space (such as L∞): the idea is to
reach a one to one relationship between quasiconvex monotone functionals
π and the function R of the dual representation. Obviously R will be unique
only in an opportune class of maps satisfying certain properties. A similar
result is obtained in [11] for the Lp spaces with p ∈ [1,+∞), which are not
M-spaces.
Other later results can be found in the recent preprint by Drapeau and
Kupper [19] where a slightly different duality is reached, gaining on the
generality of the spaces.

Uniqueness is surely a more involving task to be proved for the condi-
tional case and a complete proof need further investigation in the vector
space case. Fortunately we are able in Chapter 3 to succeed it for the class
of L0-modules of Lp type, which is the counterpart of the findings pre-
sented in [11].
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For what concerns vector spaces, we provide only a partial - not much
rigorous - result when G is countably generated. For sake of simplicity we
restrict our discussion to the space LF = L∞

F in order to exploit directly
the uniqueness results in [10] section 5. The following argument can be
adapted to the case of Lp, p ∈ [1,+∞), combining the results in [11] and
[10].

Consider the following conditions

H1 S(·,Q) is increasing for every Q ∈ L∗F ∩P;
H2 infY∈L0

G
S(Y,Q1) = infY∈L0

G
S(Y,Q2) for every Q1,Q2 ∈ L∗F ∩P;

H3 S(Y,Q)1A = S(Y 1A,Q)1A = S(Y 1A,Q1A)1A;
H4 for every n, S(·,Q)1An = SAn(·,Q)1An , where SAn(·,Q) is jointly ♦-

evenly quasiconcave on R×Q ∈ L∗F ∩P;
H5 for every X ∈ LF

sup
Q∈L∗F∩P

S(E[XdQ/dP|G ],ξ ′) = sup
Q∈L∗F∩P

S+(E[XdQ/dP|G ],ξ ′)

with S+ as in (1.55).

Claim: let G = σ({An}n∈N) where {An}n∈N is a partition of Ω and π

satisfying the assumptions of Theorem 1.2. The function R is the unique
in the class M 0

qcx of functions S satisfying H1, H2, H3, H4 and H5.
Idea of the proof. Surely from Lemma 1.3 R ∈M 0

qcx (the last item is
explained in the second part of the proof). By contradiction suppose that
there exists S ∈M 0

qcx such that

π(X) = sup
Q∈L∗F∩P

S
(

E
[

dQ
dP

X |G
]
,Q
)
. (1.58)

and P(S(Y,Q) 6= R(Y,Q)) > 0 for some (Y,Q) ∈ L0
G × (L∗F ∩P). Hence

we can find A = An for some n such that R1A 6= S1A.
As previously mentioned π induces on πA the properties (MON), (QCO),
(CFB). The space L∞

F 1A = {ξ 1A|ξ ∈ L∞
F } is an M-space so we may apply

Theorem 5 in [10] on the map πA : L∞
F 1A → R. Clearly the order dual

(L∞
F 1A)

∗ = L1
F 1A and then we get
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πA(X)= sup
Q∈L1

F∩P
RA
(

E
[

dQ
dP

X1A

]
,Q1A

)
= sup

Q∈L1
F∩P

RA
+

(
E
[

dQ
dP

X1A

]
,Q1A

)
(1.59)

RA : R× (L∗F ∩P)→ R is given by

RA(y,Q1A) = inf
ξ∈LF

{
πA(ξ ) | E

[
dQ
dP

ξ 1A

]
≥ y
}

and RA
+(t,Q1A) = supt ′<t RA(t ′,Q1A). RA is unique in the class M 0

qcx(A)
of functions SA : R× (L1

F ∩P)→ R such that SA is increasing in the
first argument in the first component, jointly ♦-evenly quasiconcave,
inft∈R SA(t,Q11A) = inft∈R SA(t,Q21A) for every Q1,Q2 ∈ L∗F ∩P and
the second equality in (1.59) holds true.
Now notice that RA1A = R1A and from (1.58)

πA(X)1A = sup
Q∈L1

F∩P
S
(

E
[

dQ
dP

X1A

]
,Q1A

)
1A

hence from uniqueness S1A = RA1A = R1A which is absurd.





Chapter 2
An application to Finance and Economics:
the Conditional Certainty Equivalent

2.1 An intuitive flavour of the problem

A non-atomic probability space (Ω ,F ,P) and a right continuous filtra-
tion {Ft}t≥0 are fixed throughout this chapter. All the other notations are
conformed to those in Chapter 1.

It is well known in Mathematical Finance literature that under op-
portune No-Arbitrage assumptions we can guarantee the existence of an
equivalent probability measure Q ∼ P such that the price processes are
martingales. Let us consider a replicable claim C, with time T maturity
(i.e. FT measurable). The Black and Scholes time-t value, is given by the
formula

Vt(H) = πt,T (C) =
1
βt

EQ[βTC |Ft ] t < T (2.1)

where VT (H) =C, H is the replication strategy and β the discount stochas-
tic factor.

In order to introduce the main purpose of this chapter we want to look
to this formula from an utility point of view. Suppose that an investor’s
preferences are described by the stochastic field
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u(x, t,ω) = xβt(ω)
dQt

dP
(ω)

where dQt
dP = EP[

dQ
dP |Ft ]. If one consider a Ft -measurable random vari-

able X , then the solution Ys of the equation

u(Ys,s,ω) = EP[u(X , t) |Fs]

gives the the time-s equivalent random endowment of X with respect to
the preferences induced by u. It is well known that a process Y turns out
to be a Q martingale if and only if EP[Yt

dQt
dP |Fs] = Ys

dQs
dP ; applying this

result to the equation

βsYs
dQs

dP
= EP

[
βtX

dQt

dP
|Fs

]
(2.2)

we get that the process {βsYs}0≤s≤t is a Q-martingale. Then

βsYs = EQ[βtX |Fs]

i.e. whenever X is replicable Ys is exactly the price πs,t(X) given by (2.1).
From this point of view Black and Scholes theory appears as a particu-
lar case of a general theory involving dynamic stochastic preferences, in
which the linearity of the utility functions implies the complete absence of
the investor’s risk aversion.

Moreover the formula (2.2) highlights another troublesome feature
arising when we work with stochastic fields: it concerns with the P-
integrability of βtX dQt

dP , namely

EP

[
βt |X |

dQt

dP

]
< ∞ (2.3)

One may overcome it assuming that β is deterministic or satisfies some
boundary conditions. Another approach could be introducing the right
space of random variables for which condition (2.3) is naturally satisfied,
without any further assumption on β . As we will show later Musielak-
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Orlicz spaces seem to fit perfectly to our aim: for each time t the utility
u(x, t,ω) induces a generalized Young function ût which defines a space
Mût (Ω ,Ft ,P). Thus we are dealing with a time-indexed class of spaces
for which the pricing functional πs,t is compatible with time consistency.

2.2 Definitions and first properties

Definition 2.1. A stochastic dynamic utility (SDU)

u : R×[0,∞)×Ω → R∪{−∞}

satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈Ft
such that P(At) = 1 and

(a) the effective domain, D(t) := {x ∈ R : u(x, t,ω)>−∞} and the range
R(t) := {u(x, t,ω) | x ∈D(t)} do not depend on ω ∈ At ; moreover 0 ∈
intD(t), EP[u(0, t)]<+∞ and R(t)⊆R(s);

(b) for all ω ∈ At and t ∈ [0,+∞) the function x → u(x, t,ω) is strictly
increasing on D(t) and increasing, concave and upper semicontinuous
on R.

(c) ω → u(x, t, ·) is Ft−measurable for all (x, t) ∈D(t)×[0,+∞)

The following assumption may turn out to be relevant in the sequel of
the paper, even if not necessary for the definition of SDU.

(d) For any fixed x ∈D(t), u(x, t, ·)≤ u(x,s, ·) for every s≤ t.

Remark 2.1. We identify two SDU, u∼ ũ, if for every t ∈ [0,+∞), the two
domains are equal (D(t) = D̃(t)) and there exists an Ft -measurable set Bt
such that P(Bt) = 1 and u(x, t,ω) = ũ(x, t,ω) for every (x,ω)∈D(t)×Bt .
In the sequel, we denote u(x, t, ·) simply by u(x, t), unless confusion may
arise.
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In order to define the conditional certainty equivalent we introduce the
set

U (t) = {X ∈ L0(Ω ,Ft ,P) |u(X , t) ∈ L1(Ω ,F ,P)}.

Lemma 2.1. Let u be a SDU.

i) (Inverse) Let t ∈ [0,∞) and At ∈ Ft as in Definition 2.1: the inverse
function u−1 : R(t)×[0,∞)×At →D(t)

u−1(u(x, t,ω), t,ω) = x (2.4)

is well defined. For each ω ∈ At , the function u−1(·, t,ω) is continuous
and strictly increasing on R(t) and u−1(y, t, ·) is Ft− measurable for
all y ∈R(t).

ii) (Comparison) Fix any t ∈ [0,∞); if X ,Y ∈ U (t) then u(X , t) ≤ u(Y, t)
if and only if X ≤ Y. The same holds if the inequalities are replaced by
equalities.

iii) (Jensen) If X ∈ L1
Ft

and u(X ,s) is integrable, then, for all s≤ t,

EP [u(X ,s)|Fs]≤ u(EP[X |Fs],s).

iv) (Extended Jensen) Suppose u(x,s) is integrable for every x ∈D(s). Let
X ∈ L0

Ft
, such that u(X ,s)− is integrable. Then

EP [u(X ,s)|Fs]≤ u(EP[X |Fs],s). (2.5)

where the conditional expectation is meant in an extended way.

Proof. i) Since both assumptions (a) and (b) hold on At , the existence of
a continuous, increasing inverse function follows straightforwardly. From
assumption (c) we can deduce that u−1(y, t, ·) is Ft -measurable for all
y ∈R(t).
ii) Is also immediate since u is strictly increasing as a function of x.
iii) This property follows from the Theorem p.79 in [60].
iv) First we suppose that u(0,s)= 0. This implies that u(X ,s)1A = u(X1A,s)
for every A ∈ Ft . Recall that if Y ∈ L0

Ft
and Y ≥ 0 then EP[Y |Fs] :=

limn EP[Y 1Y≤n|Fs] is well defined.
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First we show that u(X ,s)− integrable implies EP[X1{X<0}|Fs] > −∞

and therefore both terms in (2.5) are well defined. From the equality
−u(X ,s)1{X<0} = u(X ,s)− we get that u(X ,s)1{X<0} is integrable. From
iii) we have that u(0,s)≥ u(X1{0>X≥−n},s)≥ u(−n,s) implies:

EP[u(X1{0>X≥−n},s)|Fs]≤ u(EP[X1{0>X≥−n}|Fs],s). (2.6)

By monotone convergence, from (2.6) we then get our claim:

−∞ < EP[u(X1{X<0},s)|Fs]≤ u(EP[X1{X<0}|Fs],s).

Applying iii) in the second inequality below we get:

EP[u(X ,s)|Fs] = lim
n

EP[u(X ,s)1{0≤u(X ,s)≤n}|Fs] (2.7)

+ EP[u(X ,s)1{u(X ,s)<0}|Fs] (2.8)
≤ lim

n
EP[u(X ,s)1{0≤X≤n}|Fs]

= lim
n

EP[u(X1{0≤X≤n},s)|Fs]

≤ lim
n

u(EP[X1{0≤X≤n}|Fs],s)=u(EP[X+|Fs],s)(2.9)

Notice that on the Fs-measurable set G∞ := {EP[X |Fs] = +∞} the equa-
tion (2.5) is trivial. Since EP[−X−|Fs]>−∞, it is clear that EP[|X ||Fs] =
+∞ on a set A ∈F iff EP[X |Fs] = +∞ on the same set A. Therefore, by
defining Gn := {ω ∈Ω \G∞ |EP[|X | |Fs](ω)≤ n}, we have: Gn ↑Ω \G∞.
Since each Gn is Fs-measurable, the inequality (2.8)-(2.9) guarantees that

−EP[u(X1Gn ,s)
−|Fs] ≤ EP[u(X1Gn ,s)|Fs]≤ u(EP[X+1Gn |Fs],s)

≤ u(EP[|X ||Fs],s)1Gn ≤ u(n,s)

and therefore u(X1Gn ,s) is integrable. Obviously, X1Gn is also integrable
and we may apply iii) (replacing X with X1Gn ) and deduce

EP[u(X ,s)|Fs]1Gn = EP[u(X1Gn ,s)|Fs]

≤ u(EP[X1Gn |Fs],s) = u(EP[X |Fs],s)1Gn .
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The thesis follows immediately by taking the limit as n→ ∞, since Gn ↑
Ω \G∞.

For a general u(x,s), apply the above argument to v(x,s) =: u(x,s)−
u(0,s).

A SDU allows us to define the backward conditional certainty equiva-
lent, that represents the time-s-value of the time-t-claim X , for 0≤ s≤ t <
∞.

Definition 2.2. (Conditional Certainty Equivalent) Let u be a SDU. The
backward Conditional Certainty Equivalent Cs,t(X) of the random variable
X ∈U (t), is the random variable in U (s) solution of the equation:

u(Cs,t(X),s) = EP [u(X , t)|Fs] . (2.10)

Thus the CCE defines the valuation operator

Cs,t : U (t)→U (s), Cs,t(X) = u−1 (EP [u(X , t)|Fs]) ,s). (2.11)

Observe that EP [u(Cs,t(X),s)] = EP[u(X , t)] and so indeedCs,t(X) ∈
U (s).

The definition is well posed

1. For any given X ∈U (t), EP [u(X , t)|Fs] ∈ L1(Ω ,Fs,P).
2. Choose two arbitrary versions of the conditional expectation and of

the SDU at time s, namely ẼP [u(X , t)|Fs], ÊP [u(X , t)|Fs] and ũ(x,s),
û(x,s).

3. For all ω ∈ At , ẼP [u(X , t)|Fs] (ω) ∈ R(t) ⊆ R(s). We find a unique
solution of ũ(C̃s,t(X),s) = ẼP [u(X , t)|Fs] defined as

C̃s,t(X)(ω) = ũ−1(ẼP [u(X , t)|Fs] (ω),s,ω) ∀ω ∈ At .

4. Repeat the previous argument for the second version and find Ĉs,t(X)

which differs from C̃s,t(X) only on a P-null set.
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We could equivalently reformulate the definition of the CCE as follows:

Definition 2.3. The conditional certainty equivalent process is the only
process {Ys}0≤s≤t such that Yt ≡ X and the process {u(Ys,s)}0≤s≤t is a
martingale.

In the following proposition we show some elementary properties of
the CCE, which have however very convenient interpretations. In i) we
show the semigroup property of the valuation operator; iii) show the time
consistency of the CCE: if the time-v-values of two time t claims are equal,
then the two values should be equal at any previous time; iv) and v) are the
key properties to obtain a dual representation of the map Cs,t as shown in
Chapter 1; property vi) shows that the expectation of the valuation operator
is increasing, as a function of the valuation time s and the second issue
expresses the risk aversion of the economic agent.

Proposition 2.1. Let u be a SDU, 0≤ s≤ v≤ t < ∞ and X ,Y ∈U (t).

i) Cs,t(X) =Cs,v(Cv,t(X)).
ii) Ct,t(X) = X .

iii) If Cv,t(X) ≤ Cv,t(Y ) then for all 0 ≤ s ≤ v we have: Cs,t(X) ≤ Cs,t(Y ).
Therefore, X ≤ Y implies that for all 0 ≤ s ≤ t we have: Cs,t(X) ≤
Cs,t(Y ). The same holds if the inequalities are replaced by equalities.

iv) Regularity: for every A ∈ Fs we have

Cs,t(X1A +Y 1AC) =Cs,t(X)1A +Cs,t(Y )1AC

and then Cs,t(X)1A =Cs,t(X1A)1A.
v) Quasiconcavity: the upper level set {X ∈ Ut | Cs,t(X) ≥ Y} is condi-

tionally convex for every Y ∈ L0
Fs

.
vi) Suppose u satisfies (d) and for every t ∈ [0,+∞), u(x, t) is integrable

for every x ∈ D(t). Then Cs,t(X) ≤ EP [Cv,t(X)|Fs] and EP [Cs,t(X)] ≤
EP [Cv,t(X)]. Moreover Cs,t(X)≤EP[X |Fs] and therefore EP [Cs,t(X)]≤
EP[X ].

Proof. By definition:
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u(Cv,t(X),v)
(·)
= EP [u(X , t)|Fv] , X ∈U (t)

u(Cs,t(X),s)
(+)
= EP [u(X , t)|Fs] , X ∈U (t)

u(Cs,v(Z),s)
(×)
= EP [u(Z,v)|Fs] , Z ∈U (v)

i) Let Z =Cv,t(X) and compute:

u(Cs,v(Cv,t(X)),s) = u(Cs,v(Z),s)
(×)
= EP [u(Z,v)|Fs]

(·)
= EP [EP [u(X , t)|Fv] |Fs] = EP [u(X , t)|Fs]

(+)
= u(Cs,t(X),s)

ii) Obvious, since u(Ct,t(X), t)
(·)
= EP [u(X , t)|Ft ]

(c)
= u(X , t).

iii)

u(Cs,t(X),s)
(+)
= EP [u(X , t)|Fs] = EP [EP [u(X , t)|Fv] |Fs]

(·)
= EP [u(Cv,t(X),v)|Fs]≤ EP [u(Cv,t(Y ),v)|Fs]

(·)
= EP [EP [u(Y, t)|Fv] |Fs]

(+)
= u(Cs,t(Y ),s).

If X ≤ Y then Ct,t(X) ≤ Ct,t(Y ) and the statement follows from what we
just proved. The same for equalities.
iv) Consider every A ∈Fs and notice that

Cs,t(X1A +Y 1AC) = u−1 (EP[u(X , t)1A +u(Y, t)1AC |Fs],s)

= u−1(EP[u(X , t) |Fs]1A,s)+u−1(EP[u(Y, t) |Fs]1AC ,s)

= Cs,t(X)1A +Cs,t(Y )1AC

v) Fix an arbitrary Y ∈ L0
Fs

and consider the set Y = {X ∈Ut |Cs,t(X)≥
Y}. Take X1,X2 ∈ Y and Λ ∈ L0

Fs
, 0≤Λ ≤ 1:

EP[u(ΛX1 +(1−Λ)X2, t)|Fs] ≥
ΛEP[u(X1, t)|Fs]+ (1−Λ)EP[u(X2, t)|Fs] ≥ u(Y,s)
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hence we get the thesis composing both sides with u−1(·,s) .
vi)

u(Cs,t(X),s)
(+)
= EP [u(X , t)|Fs] = EP [EP [u(X , t)|Fv] |Fs]

(·)
= EP [u(Cv,t(X),v)|Fs]

(d)
≤ EP [u(Cv,t(X),s)|Fs]

≤ u(EP [Cv,t(X)|Fs] ,s).

We applied in the last inequality the extended Jensen inequality, since
(u(Cv,t(X),s))− is integrable. The second property follows by taking v = t
and observing that Ct,t(X) = X .

Remark 2.2. Comparing the definition of SDU with the existing literature
about forward performances ([6],[63],[64]), we may notice that the CCE
does not rely on the existence of a market: this allows a higher level of
generality and freedom in the choice of the preferences of the agent. We
recall that an adapted process U(x, t) is said to be a forward utility if

1. it is increasing and concave as a function of x for each t.
2. U(x,0) = u0(x) ∈ R
3. for all T ≥ t and each self-financing strategy represented by π , the as-

sociated discounted wealth Xπ (see Section 2.3 for the rigorous defini-
tions) satisfies

EP[U(Xπ
T ,T ) |Ft ]≤U(Xπ

t , t)

4. for all T ≥ t there exists a self-financing strategy π∗ such that Xπ∗ sat-
isfies

EP[U(Xπ∗
T ,T ) |Ft ] =U(Xπ∗

t , t)

Surely if one take into account this stronger definition and tries to ap-
ply it for the computation of the CCE of these self-financing discounted
portfolios Xπ then only for the optimal strategy π∗t we have that

Cs,t

(
Xπ∗

t

)
= Xπ∗

s

whereas in general
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Cs,t (Xπ
t )≤ Xπ

s

This points out an economic interpretation of the CCE: given the final
outcome of some risky position we backwardly build up a process which
takes into account the agent’s random risk-aversion. For replicable con-
tingent claims it means that Xπ

s −Cs,t(Xπ
t ) measures the gap between the

real value of the claim at time s, and the smallest amount for which the
decision maker would willingly sell the claim if he had it. The gap will be
deleted whenever we move through an optimal strategy.

The previous remark suggests the following

Definition 2.4. Let 0 ≤ s ≤ t < ∞ and let u be a SDU. The conditional
risk premium of the random variable X ∈ U (t) is the random variable
ρs,t(X) ∈ L0(Ω ,Fs,P;D) defined by:

ρs,t(X) := EP[X |Fs]−Cs,t(X).

We now consider some properties of the dynamic stochastic utility u
when it is computed on stochastic processes.

Proposition 2.2. Let {St}t≥0 be an {Ft}t≥0− adapted process such that
St ∈U (t) and consider the process {Vt}t≥0 defined by Vt = u(St , t).

i) {Vt}t≥0 is a ({Ft}t≥0,P)−supermartingale (resp. submartingale, resp
martingale) if and only if Cs,t(St)≤ Ss (resp. Cs,t(St)≥ Ss, resp Cs,t(St)=
Ss) for all 0≤ s≤ t < ∞.

Moreover if in addition u satisfies (d) and for every t ∈ [0,+∞), u(x, t) is
integrable for every x ∈D(t) then

ii) If {St}t≥0 is a ({Ft}t≥0,P)−supermartingale, then the process {Vt}t≥0
defined by Vt = u(St , t) is a ({Ft}t≥0,P)−supermartingale and thus
Cs,t(St)≤ Ss for all 0≤ s≤ t < ∞.

iii) If Cs,t(St)= Ss for all 0≤ s≤ t <∞ then {St}t≥0 is a ({Ft}t≥0,P)−sub-
martingale.

Proof. i) If u(St , t) is a supermartingale, then
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u(Cs,t(St),s)
(2.10)
= EP [u(St , t)|Fs]≤ u(Ss,s) for all 0≤ s≤ t

and therefore Cs,t(St)≤ Ss. Conversely if Cs,t(St)≤ Ss then

EP [u(St , t)|Fs]
(2.10)
= u(Cs,t(St),s)≤ u(Ss,s)

and u(St , t) is a supermartingale. Similarly, for the other cases.
ii) From extended Jensen we get:

EP [u(St , t)|Fs]
(d)
≤ EP [u(St ,s)|Fs]≤ u(EP [St |Fs] ,s)≤ u(Ss,s) .

iii) From Proposition 2.1 vi) we deduce: Ss =Cs,t(St)≤ EP [St |Fs] .

Remark 2.3. When u satisfies (d) and for every t ∈ [0,+∞), u(x, t) is inte-
grable for every x ∈D(t) and {St}t≥0 is a ({Ft}t≥0,P)−martingale, then
{Vt}t≥0 is a ({Ft}t≥0,P)− supermartingale, not necessarily a martingale.

2.3 A local formulation of the CCE

Let (Ω ,F ,{Ft}t≥0,P) be a filtered probability space where the filtra-
tion {Ft}t≥0 is generated by a d-dimensional brownian motion W =
{(W 1

t , ...,W
d

t )
†}t≥0, where † indicates the transposed of a matrix. For

i = 1, ...,k, the price of the ith risky asset and the bond are described re-
spectively by

dSi
t = Si

t
(
µ

i
t dt +σ

i
t ·dWt

)
, dBt = rtBtdt

with Si
0 > 0, B0 = 1; σt = (σ j,i

t ) is the d× k volatility matrix and · the
usual vector product, which will be often omitted. Following Musiela and
Zariphopoulou, we assume µt − rt1 ∈ Lin(σ†

t ), i.e. the linear space gener-
ated by the columns of σ

†
t . Denote by (σ†

t )
+ the Moore-Penrose pseudo-

inverse of the matrix σ
†
t and define λt = (σ†

t )
+(µt − 1rt), which is the

solution of the equation σ
†
t x = µt −1rt . The present value of the amounts
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invested in Bt ,Si
t are denoted by π0

t ,π
i
t , respectively. The present value of

investment is then given by Xπ
t = ∑

k
i=0 π i

t and satisfies the SDE

dXπ
t = σtπt(λtdt +dWt)

where πt = (π1
t , ...,π

k
t )

†.
Let U(x, t) be a dynamic stochastic utility of the form

U(x, t) =U(x,0)+
m

∑
j=1

∫ t

0
u j(x,s)dζ

j
s =U(x,0)+

∫ t

0
u(x,s) ·dζs

dζ
j

t = a j(ζt , t)dt +
d

∑
i=1

bi, j(ζt , t)dW i
t = a j(ζt , t)dt +b j(ζt , t) ·dWt

where every u j(x, t) belongs to C2,1(R× [0,T ]) and is a strictly increasing
concave function of x. We denote by bs the d×m-matrix (bi, j(ζs,s)).

Proposition 2.3. Suppose that for every t > 0,∫ t

0
EP
[
(bsu(Xπ

s ,s))
2]ds <+∞ and

∫ t

0
EP
[
(Ux(Xπ

s ,s)σsπs)
2]ds <+∞

The conditional certainty equivalent can be approximated as

Ct,T (Xπ
T ) = EP[Xπ

T |Ft ]−
1
2

α(Xπ
t , t)(σtπt)

2(T − t)−β (Xπ
t , t)(T − t)

+ o(T − t)

where we have denoted respectively the coefficient of absolute risk aver-
sion and the impatience factor by

α(x, t) := −Uxx (x, t)
Ux (x, t)

β (x, t) := −u(x, t) ·a(ζt , t)+btux(x, t) ·σtπt

Ux(x, t)

As a consequence the risk premium is given by
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ρt,T (Xπ
T ) = +

1
2

α(Xπ
t , t)(σtπt)

2(T − t)+β (Xπ
t , t)(T − t)+o(T − t)

Proof. For simplicity we denote Xπ
t by Xt . We apply the generalized Itô’s

formula (see [53], Chapter 2), so for every v ∈ [t,T ]

U(Xv,v) = U(Xt , t)+
∫ v

t
u(Xs,s) ·dζs +

∫ v

t
Ux(Xs,s)dXs

+
1
2

∫ v

t
Uxx(Xs,s)(σsπs)

2ds+ 〈
∫ v

t
Ux(Xs,ds),Xv〉

Notice that in this case

〈
∫ v

t
Ux(Xs,ds),Xv〉= 〈

∫ v

t
ux(Xs,s) ·dζs,Xv〉=

m

∑
j=1

∫ v

t
u j

x(Xs,s)

(
d

∑
i=1

bi, j(ζs,s)(σsπs)
k

)
ds

and then we have

U(Xv,v) = U(Xt , t)

+
∫ v

t
(u(Xs,s) ·a(ζs,s)+σsπsλsUx(Xs,s)

+
1
2

Uxx(Xs,s)(σsπs)
2 +bsux(Xs,s)σsπs)ds

+
∫ v

t
(bsu(Xs,s)+Ux(Xs,s)σsπs)dWs

From the assumptions, It =
∫ t

0 (u(Xs,s) ·bs +Ux(Xs,s)σsπs)dWs is a mar-
tingale: so the conditional expectation is given by

EP[U(Xv,v)|Ft ] = U(Xt , t) (2.12)

+
∫ v

t
EP

[
ua+σπλUx +

1
2

Uxx(σπ)2 +buxσπ
∣∣Ft

]
ds
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From the definition of CCE we have

U(Ct,v(Xv), t) = EP[U(Xv,v)|Ft ]

If we denote {Zv}v∈[t,T ] the stochastic process defined by Zv =: EP[U(Xv,v)|Ft ]
then the stochastic differential

dCt,v(Xv) = dU−1(Zv, t) =

(
∂ (U(x, t))

∂y
∣∣x=U−1(Zv,t)

)−1

dZv

=
1

Ux(Ct,v(Xv), t)
EP

[
ua+σπλUx +

1
2

Uxx(σπ)2 +buxσπ
∣∣Ft

]
dv

Hence, since U−1(Zt , t) = Xt

Ct,T (XT ) = Xt +
∫ T

t
EP [(?) |Ft ]ds

where

(?)=
u(Xs,s)a(ζs,s)+σsπsλsUx(Xs,s)+ 1

2Uxx(Xs,s)(σsπs)
2+bsux(Xs,s)σsπs

Ux(Ct,s(Xs), t)

Notice that

EP[XT |Ft ] = Xt +EP

[∫ T

t
σsπsλsds |Ft

]
= Xt +σtπtλt(T − t)+o(T − t)

Ct,T (X) = Xt +σtπtλt(T − t)+
1
2

Uxx(Xt , t)
Ux(Xt , t)

(σtπt)
2(T − t)

+
u(Xt , t)a(ζt , t)+btux(Xt , t)σtπt

Ux(Xt , t)
(T − t)+o(T − t)

= EP[XT |Ft ]−
1
2

α(Xt , t)(σtπt)
2(T − t)−β (Xt , t)(T − t)+o(T − t)
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Remark 2.4. If the utility U(x, t) is deterministic (i.e. the matrix bt ≡ 0 for
every t ≥ 0) we deduce that

β (x, t) =−u(x, t)a(ζt , t)
Ux(x, t)

=−Ut(x, t)
Ux(x, t)

which is the usual definition of impatience factor.

2.4 The right framework for the CCE

Until now we have considered Cs,t as a map defined on the set of random
variables U (t) which is not in general a vector space. In order to show the
dual representation of the CCE it is convenient to define it on a Banach
lattice.

Orlicz spaces have become an important tool whenever we approach to
the utility-maximization framework and we are dealing with unbounded
random variables (see for instance [7] and [8]).
The question which naturally arise is: what happens if we consider a utility
functions which has some explicit dependence on the randomness? May
we actually define a class of “stochastic” Orlicz spaces?
Therefore we now introduce the general class of Musielak-Orlicz spaces
induced by the stochastic dynamic utility taken into account.

2.4.1 Generalities on Musielak-Orlicz Spaces

Given a non-atomic probability space (Ω ,F ,P) and a function Ψ : R×
Ω →R∪{+∞}, with D = {x ∈R |Ψ(x,ω)<+∞} 6= /0, we say that Ψ is
a (generalized) Young function if Ψ(x, ·) is F -measurable and for P a.e.
ω ∈Ω

1. Ψ(·,ω) is even and convex;
2. the effective domain D does not depend on ω and 0 ∈ int(D);
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3. Ψ(∞,ω) = +∞, Ψ(0,ω) = 0.

Note that Ψ may jump to +∞ outside of a bounded neighborhood of 0. In
case Ψ is finite valued however, it is also continuous w.r.t. x by convexity.
Whenever possible, we will suppress the explicit dependence of Ψ from
ω.

The Musielak-Orlicz space LΨ , on (Ω ,F ,P) is then defined as

LΨ =
{

X ∈ L0 | ∃α > 0EP[Ψ(αX)]<+∞
}
.

endowed with the Luxemburg norm

NΨ (X) = inf
{

c > 0 | EP
[
Ψ
(
X · c−1)]≤ 1

}
.

Although there are no particular differences with Musielak work (see
[68]), here we are dropping the hypothesis on Ψ to be finite (and so con-
tinuous). But since the domain D does not depend on ω we have that non
continuous Ψs always induce the space L∞(Ω ,F ,P) and the Luxemburg
norm is equivalent to the supremum norm.

It is known that (LΨ ,NΨ ) is a Banach space (Theorem 7.7 in [68]), and
with the usual pointwise lattice operations, LΨ is a Banach lattice.

There is an important linear subspace of LΨ , which is also a Banach
lattice

MΨ =
{

X ∈ L0 | EP [Ψ(αX)]<+∞ ∀α > 0
}
.

In general, MΨ $ LΨ and this can be easily seen when Ψ is non continuous
since in this case MΨ = {0}, but there are also non trivial examples of the
strict containment with finite-valued, continuous Young functions, that we
will consider soon.

Other convenient assumptions on Ψ that we will use in the forthcoming
discussion are

(int) EP[Ψ(x)] is finite for every x ∈D ;
(sub) there exists a Young function g : R → R ∪ {+∞} such that g(x) ≤

Ψ(x,ω) for P-a.e. ω ∈Ω

(∆2) There exists K ∈ R, h ∈ L1 and x0 ∈ R such that



2.4 The right framework for the CCE 79

Ψ(2x, ·)≤ KΨ(x, ·)+h(·) for all x > x0, P−a.s.

When Ψ satisfies (int) and the (∆2) condition (and it is henceforth
finite-valued and continuous) the two spaces MΨ ,LΨ coincide and LΨ can
simply be written as {X ∈ L0 | EP[Ψ(X)]<+∞} (see [68], Theorem 8.14).
This is the case of the Lp spaces when Ψ does not depend on ω .

In [68] (Theorem 7.6) it is also shown that when Ψ is (int) and con-
tinuous on R, then MΨ = L∞

Ψ with closure taken in the Luxemburg
norm. When Ψ is continuous but grows too quickly, it may happen that
MΨ = L∞

Ψ $ LΨ . As a consequence, simple functions are not necessarily
dense in LΨ .

If both (int) and (sub) hold, it is not difficult to prove that

L∞ ↪→MΨ ↪→ LΨ ↪→ Lg ↪→ L1

with linear lattice embeddings (the inclusions).
As usual, the convex conjugate function Ψ ∗ of Ψ is defined as

Ψ
∗(y,ω) =: sup

x∈R
{xy−Ψ(x,ω)}

and it is also a Young function. The function Ψ ∗ in general does not satisfy
(int), but a sufficient condition for it is thatΨ is (sub). The Musielak-Orlicz
space LΨ∗ will be endowed with the Orlicz (or dual) norm

‖X‖Ψ∗ = sup{EP[ |X f | ] | f ∈ LΨ : EP[Ψ( f )]≤ 1},

which is equivalent to the Luxemburg norm.

2.4.2 The Musielak-Orlicz space Lû induced by an SDU

In the spirit of [7], we now build the time-dependent stochastic Orlicz
space induced by the SDU u(x, t,ω). The even function û : R× [0,+∞)×
Ω → R∪{+∞} defined by
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û(x, t,ω) = u(0, t)−u(−|x|, t,ω)

is a Young function and the induced Orlicz spaces are

Lût = {X ∈ L0
Ft
| ∃α > 0EP[û(αX , t)]<+∞}

Mût = {X ∈ L0
Ft
| EP[û(αX , t)]<+∞ ∀α > 0}

endowed with the Luxemburg norm Nût (·).
Notice the following important fact:

Mût ⊆U (t).

Indeed, for any given λ > 0 and X ∈ L0
Ft

such that EP[û(λX , t)]<+∞ we
have: EP[u(λX , t)] ≥ EP[u(−λ |X |, t)] > −∞. On the other hand u(x, t)−
u(0, t)≤ û(x, t) so that EP[u(λX , t)]≤ EP[û(λX , t)+u(0, t)]<+∞ and the
claim follows. In particular this means that (int) implies u(x, t) is integrable
for every x ∈D(t).

This argument highlights one relevant feature: every X ∈Mût belongs
to the set U (t) so that the CCE is well defined on Mût . In the following
examples also Cs,t(X) ∈ Mûs holds true, so that Cs,t : Mût → Mûs and it
make sense to study the time consistency of Cs,t .

2.4.3 Examples

Exponential random utilities

Let us consider u : R×[0,∞)×Ω → R defined by

u(x, t,ω) =−e−αt (ω)x+βt (ω)

where αt > 0 and βt are adapted stochastic processes.
In this example the CCE may be simply computed inverting the function
u(·, t,ω):
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Cs,t(X) =− 1
αs

ln
{

EP[e−αt X+βt |Fs]
}
+

βs

αs
(2.13)

Notice the measurability requirement on the risk aversion process αt ,
which is different from what can be found in some examples in the lit-
erature related to dynamic risk measures, as e.g. in [1], where the αt in
(2.13) is replaced by αs.

Assumptions: We suppose that βt belongs to L∞(Ft) for any t > 0 and
that eαt x ∈ L1

Ft
for every x ∈ R.

These assumptions guarantee that (int) holds. In particular if αt(ω) ≡
α ∈ R and βt ≡ 0 then Cs,t(X) = −ρs,t(X), where ρs,t is the dynamic
entropic risk measure induced by the exponential utility. Unfortunately
when the risk aversion coefficient is stochastic we have no chance that Cs,t
has any monetary property. On the other hand monotonicity and concavity
keep standing. The first is due to Proposition 2.1, whereas the second is a
straightforward application of Holder-conditional inequality. This means
that in general ρs,t(X) =: −Cs,t(X) satisfies all the usual assumptions of
dynamic risk measures, only failing the cash additive property. We now
show a sufficient condition by which ρs,t(X) is at least cash subadditive,
i.e. ρs,t(X +Y )≥ ρs,t(X)−Y where Y ∈ L∞

Fs
and Y ≥ 0.

Proposition 2.4. Under the previous assumptions, the functional

ρs,t(X) =
1
αs

ln
{

EP[e−αt X+βt |Fs]
}
+

βs

αs

is cash subadditive if the process {αt}t≥0 is almost surely decreasing.

Proof. For every Y ∈ L∞
Fs

and Y ≥ 0:

ρs,t(X +Y ) =
1
αs

ln
{

EP[e
− αt

αs αsY e−αt X+βt |Fs]
}
− βs

αs

≥ 1
αs

ln
{

EP[e−αsY e−αt X+βt |Fs]
}
− βs

αs
= ρs,t(X)−Y.
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Proposition 2.5. Under the previous assumptions

Mût
i
↪→ Lût

j
↪→ Lp(Ω ,F ,P) p≥ 2

where i, j are isometric embeddings given by the set inclusions.

Proof. The first inclusion is trivial since the two spaces are endowed with
the same norm. Moreover Mût is a closed subspace of Lût .
For the second inclusion we simply observe that since

d(u(x, t))
dx |x=0

= αteAt > 0

for almost every ω ∈Ω then for every p≥ 2 and λ > 0

|x|p ≤ û(λx, t,ω) ∀x ∈ R, for P− a.e. ω ∈Ω

which implies
||X ||p ≤ kNût (X) (2.14)

Proposition 2.6. Under the the previous assumptions

Cs,t : Mût →Mûs

Proof. Let λ ≥ 1, and since no confusion arises we denote by ut(x) $
u(x, t). Define A = {lnEP[e−αt X+βt |Fs]≤ βs} and notice that

ûs(λCs,t(X))−us(0) = −us

(
− λ

αs

∣∣∣− lnEP[e−αt X+βt |Fs]+βs

∣∣∣)
= eβs exp(λ |− lnEP[e−αt X+βt |Fs]+βs|)
= eβs exp(λ (βs− lnEP[e−αt X+βt |Fs]))1A

+ eβs exp(λ (lnEP[e−αt X+βt |Fs]−βs))1AC

= eβs(1+λ )EP[e−αt X+βt |Fs]
−λ 1A

+ eβs(1−λ )EP[e−αt X+βt |Fs]
λ 1AC
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Since on A we have EP[e−αt X+βt |Fs] ≤ eβs and in general eβs(1−λ ) ≤ a ∈
R+ then

E
[
ûs(λCs,t(X))

]
≤ E[eβs(1+λ−λ )1A]+aE{E[e−αt X+βt |Fs]

λ 1AC}+E[us(0)]

≤ −E[us(0)]+aE
[
eλ (−αt X+βt )

]
+E[us(0)]

≤ +a‖(e(λ−1)βt )‖∞E
[
ût(λX)+ eβt

]
≤ KE [ût(λX)]

Notice that the second step is a simple application of Jensen’s inequality, in
fact: EP[Y |G ]λ ≤ EP[Y λ |G ] ∀λ ≥ 1. Moreover we have that for 0 < λ < 1
EP
[
ûs(λCs,t(X))

]
≤ EP

[
ûs(Cs,t(X))

]
< ∞ and then Cs,t(X) ∈Mûs .

Random-power utilities

Consider the utility function given by

u(x, t,ω) =−γt(ω)|x|pt (ω)1(−∞,0)

where γt , pt are adapted stochastic processes satisfying γt > 0 and pt > 1.
We have û(x, t) = γt |x|pt . Here assumption (int) is troublesome but not
needed for what follows. On the other hand the utility fails to be strictly
increasing so that we won’t have uniqueness of the solution for the equa-
tion defining the CCE, namely

−γs|Cs,t(X)|ps1{Cs,t (X)<0} = EP
[
−γt |X |pt 1{X<0}|Fs

]
(2.15)

Notice that Cs,t(X) = Cs,t(X−+K1X≥0) where K is any positive Ft r.v.;
moreover if G := {EP[γt |X |pt 1{X<0}|Fs]> 0} then P(G\{Cs,t(X)< 0})=
0. If we decompose X as X+−X− we can conclude that

Cs,t(X) =− 1
γs

(
EP[γt(X−)pt |Fs]

) 1
ps +K1GC
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it’s the class of solutions of (2.15) where K ∈ L0
Fs

and K > 0. This is a
natural consequence of the choice of a preference system in which the
agent is indifferent among all the positive variables. If in particular K ∈
Mûs then it is easy to check that Cs,t : Mût −→Mûs .

Stochastic transformations of static utilities

One may wonder what happens for an arbitrary SDU. Clearly the fact that
Cs,t is a map between the the two corresponding Orlicz spaces at time t and
s is a key feature for the time-consistency. We take into account a particular
class of SDU, which are a stochastic transformation of a standard utility
function.

Let V : R→ R a concave, strictly increasing function: take an adapted
stochastic process, {αt}t≥0, such that for every t ≥ 0, αt > 0. Then
u(x, t,ω) =V (αt(ω)x) is a SDU and

Cs,t(X) =
1
αs

V−1 (EP[V (αtX) |Fs])

Proposition 2.7. Let Θt = {X ∈ Lût |EP[u(−X−, t)]>−∞} ⊇Mût . Then

Cs,t : Θt →Θs

Moreover if û(x,s) satisfies the (∆2) condition, then

Cs,t : Mût →Mûs .

Proof. Denote ût(x) = û(x, t); from Jensen inequality we have

1
αs

V−1 (EP[V (αtX) |Fs])≤
1
αs

EP[αtX |Fs] (2.16)

Define the Fs measurable sets

F = {EP[V (αtX) |Fs]≥V (0)} , G = {EP[αtX |Fs]≥ 0}



2.5 Dual representation of CCE 85

and deduce from equation (2.16) that

0≤Cs,t(X)+ =
1
αs

V−1 (EP[V (αtX) |Fs])1F ≤
1
αs

EP[(αtX)1G |Fs]

For every X ∈ Lût we may find a λ > 0 such that EP[ût(λX1G)]<+∞:

EP

[
ûs

(
λ

αs
V−1 (EP[V (αtX) |Fs])1F

)]
≤ EP

[
ûs

(
λ

αs
EP[(αtX)1G |Fs]

)]
= EP[V (0)−V (−EP[(λαtX)1G |Fs])] ≤ EP[V (0)−V (−λαtX1G)]

≤ EP[ût(λX1G)].

Hence X ∈ Lût implies Cs,t(X)+ ∈ Lûs .
Now let’s consider a r.v. X ∈Θt :−Cs,t(X)−= 1

αs
V−1 (EP[V (αtX) |Fs])1FC .

We can conclude that

0≤ EP[ûs(−Cs,t(X)−)] = EP
[
−V ◦V−1 (EP[V (αtX)1FC |Fs])+V (0)

]
=

= EP[−V (αtX)1FC +V (0)]<+∞

where the last inequality follows from X ∈Θt , {X ≥ 0} ⊆ F and

V (αtX)1FC =
(
V (αtX+)1{X≥0}+V (−αtX−)1{X<0}

)
1FC

=V (−αtX−)1{X<0}∩FC

This shows that surely Cs,t(X) ∈Θs, if X ∈Θt .

2.5 Dual representation of CCE

In this section we prove a dual formula for the CCE, which is similar to
the general result that can be found in [33]: due to the particular structure
of the CCE the proof is simpler and more readable.

Consider the condition:
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there exists X∗ ∈ (Lût )∗ s.t. EP[ f ∗(X∗, t)]<+∞ (2.17)

where f ∗(x, t,ω) = supy∈R {xy+u(y, t,ω)}.
As a consequence of Theorem 1 [76], we may deduce that if (2.17)

holds, if û(x, t) is (int) and X ∈ Lût then EP[u(λX , t)] < +∞ for every
λ > 0.

Remark 2.5. The condition (2.17) is quite weak: it is satisfied, for example,
if u(x, t,ω)≤ ax+b with a,b ∈ R since

f ∗(−a, t,ω)≤ sup
y∈R
{(−a+a)y+b}= b.

We now take into account (LΨ )∗, the norm dual of LΨ and consider the
following three cases which cover a pretty large class of possible Young
functions.

1. Ψ(·,ω) is (int) and discontinuous, i.e. D $R.
In this case, LΨ = L∞ and from the Yosida-Hewitt decomposition for
elements of ba(Ω ,F ,P) we have

ba = (L∞)∗ = L1⊕A d ,

where A d consists of pure charges, i.e. purely finitely additive mea-
sures (which are not order continuous).

2. Ψ(·,ω) is continuous, Ψ and Ψ ∗ are (int) and satisfy:

Ψ(x,ω)

x
→+∞ P−a.s, as x→ ∞.

These conditions are not restrictive and hold as soon as Ψ is (int) and
(sub) with limx→∞

g(x)
x →+∞. For such Young functions it can be easily

deduced from Theorem 13.17 in [68] that (MΨ )∗ = LΨ∗ : µr ∈ (MΨ )∗

can be identified with its density dµr
dP ∈ LΨ∗ so that we will write its

action on X ∈ LΨ as µr(X) = EP[µrX ]. Moreover (MΨ )∗ is a band in
the dual space (LΨ )∗ (see [2] Section 8) so that we may decompose
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(LΨ )∗ = (MΨ )∗⊕ (MΨ )⊥

i.e. every X∗ ∈ (LΨ )∗ can be uniquely represented as X∗ = µr + µs
where µs belongs to the annihilator of MΨ (µs(X) = 0 for every
X ∈MΨ ) and µr ∈ (MΨ )∗= LΨ∗ . Notice that every element µr ∈ (MΨ )∗

is clearly order continuous. Moreover it can be shown, applying an ar-
gument similar to the one used in Lemma 10 [7], that every µs ∈ (MΨ )⊥

is not order continuous.
3. Ψ(·,ω) is continuous and

0 < a = ess inf
ω∈Ω

lim
x→∞

Ψ(x,ω)

x
≤ ess sup

ω∈Ω

lim
x→∞

Ψ(x,ω)

x
= b <+∞

Here (int) automatically holds for both Ψ and Ψ ∗. It follows that
LΨ = L1 and the L1-norm is equivalent to the Luxemburg norm, so
that (LΨ )∗ = LΨ∗ = L∞.

Assumptions for the dual result

In this section u(x, t,ω) is a SDU, such that:

1. For all t ≥ 0, the induced Young function û(x, t,ω) belongs to one of
the three classes mentioned above

2. The condition (2.17) holds true.

As shown above, under the assumption (1) the order dual space of Lût is
known and is contained in L1. This will also allow us to apply Proposition
1.1. The second assumption implies that EP[u(·, t)] : Lût → [−∞,+∞) is a
well defined convex functional ([76]).
Thus we have u(X+, t) ∈ L1

Ft
, but in general we do not have integrability

for u(−X−, t). This means that if X /∈ Θt = {X ∈ Lût |EP[u(−X−, t)] >
−∞} we are forced to consider the generalized conditional expectation

EP[u(X , t) |Fs] :=EP[u(X , t)+ |Fs]−lim
n

EP[u(X , t)−1{−n≤−u(X ,s)−<0} |Fs],
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which can be equivalently written as:

EP[u(X , t) |Fs] = EP[u(X+, t)1{X≥0} |Fs]

+ lim
n

EP[u(−X−, t)1{−n≤X<0} |Fs].

Therefore, EP[u(X , t) |Fs] ∈ L̄0
Fs

and Cs,t(·) is defined on the entire space
Lût . We fix throughout this section 0 < s≤ t and define

PFt = {X
∗ ∈ (Lû∗t )+ | EP[X∗] = 1} ⊆ {Q << P | Q probability}

U : Lût → L̄0
Fs

given by U(X) := EP[u(X , t) |Fs]

The map U is concave and increasing and admits the dual representation
stated in Lemma 2.2. From equation (2.19) we deduce the dual represen-
tation of Cs,t(·) = u−1(U(·),s) as follows.

Theorem 2.1. Fix s≤ t. For every X ∈ Lût

Cs,t(X) = inf
Q∈PFt

G(EQ[X |Fs],Q) (2.18)

where for every Y ∈ L0
Fs

,

G(Y,Q) = sup
ξ∈Lût

{Cs,t(ξ ) | EQ[ξ |Fs] =Q Y} .

Moreover if X ∈ Mût then the essential infimum in (2.18) is actually a
minimum.

The proof is based on the following Lemma.

Lemma 2.2. Let s≤ t. For every X ∈ Lût

U(X) = inf
Q∈PFt

S(EQ[X |Fs],Q) (2.19)
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where S(Y,Q) = sup
ξ∈Lût {U(ξ ) | EQ[ξ |Fs] =Q Y} for any Y ∈ L0

Fs
.

Moreover if X ∈ Mût then the essential infimum in (2.19) is actually a
minimum.

Proof. Obviously ∀Q ∈PFt

EP[u(X , t) |Fs]≤ sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]}

and then

EP[u(X , t) |Fs]≤ inf
Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]} . (2.20)

Important remark: we have that E(U(X)) = E(u(X , t)); this means that

E(U(·)) : Lût → [−∞,+∞)

is a concave functional. From the monotone convergence theorem and
Jensen inequality the functional E(u(X , t)) is continuous from above (i.e.
Xn ↓ X ⇒ E(u(Xn, t)) ↓ E(u(X , t))). Applying Lemma 15 in [8], E(U(X))
is order u.s.c. and thus σ(Lût ,Lû∗t )-u.s.c. (Proposition 24 [8]).
From Proposition 1.1 in Section 1.2:

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{EP[U(ξ )] | EQ[ξ ] = EQ[X ]}

≥ inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X |Fs]} ≥ E(U(X))

i.e.

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X |Fs]} (2.21)

Surely the map U is regular (i.e. for every A ∈ Fs, U(X1A +Y 1AC) =
U(X)1A+U(Y )1AC ) and then the set A = {U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]}
is upward directed. In fact given ξ1,ξ2 ∈A we have
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U(ξ1)∨U(ξ2) =U(ξ1)1F +U(ξ2)1FC =U(ξ11F +ξ21FC)

where F = {U(ξ1)≥U(ξ2)} and EQ[ξ11F +ξ21FC |Fs] =Q EQ[X |Fs]. By
this last property and the monotone convergence theorem we deduce

EP[S(EQ[X |Fs],Q)] = sup
ξ∈Lût

{EP[U(ξ )] | EQ[ξ |Fs] =Q EQ[X |Fs]}

Hence

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X |Fs]}

= inf
Q∈PFt

E

(
sup

ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]}
)

≥ E

(
inf

Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]}
)

This last chain of inequalities together with inequality (2.20) gives

U(X) = inf
Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]} ∀X ∈ Lût

(2.22)
Moreover from generalized Namioka-Klee theorem, the functional E(u(·)) :
Lût is norm continuous on int(Θu) ⊇ Mût (see [8] Lemma 32) and then
E(U(X)) as well since E(U(X)) = E(u(X)).
Again from Proposition 1.1 we have that:

E(U(X)) = min
Q∈PFt

sup
ξ∈Mût

{E(U(ξ )) | EQ[ξ ] = EQ[X ]}

= sup
ξ∈Mût

{EP[U(ξ )] | EQmin [ξ ] = EQmin [X ]}

≥ sup
ξ∈Mût

{
EP[U(ξ )] | EQmin [ξ |Fs] =Qmin EQmin [X |Fs]

}
≥ EP[(U(X))
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The remaining proof matches the previous case and then we get

U(X) = min
Q∈PFt

sup
ξ∈Mût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X |Fs]} ∀X ∈Mût

(2.23)
where the minimizer is exactly Qmin.

Proof (of Theorem 2.1). Since s, t are fixed throughout this proof we re-
define Cs,t(·) = C(·), u(x, t) = u(x) and u(x,s) = v(x). We show that for
every fixed Q ∈PFt , v−1S(EQ[X |Fs],Q) = G(EQ[X |Fs],Q).

Since C,U are regular, for every fixed Q ∈PF the sets

{C(ξ ) | ξ ∈ Lût , EQ[ξ |Fs]=Q EQ[X |Fs]},

{U(ξ ) | ξ ∈ Lût , EQ[ξ |Fs]=Q EQ[X |Fs]}

are upward directed and then there exist ξ
Q
h ,ηQ

h such that EQ[ξ
Q
h |Fs] =Q

EQ[X |Fs], EQ[η
Q
h |Fs] =Q EQ[X |Fs], for every h > 0, and

C(ξ Q
h ) ↑ G(EQ[X |Fs],Q) , U(ηQ

h ) ↑ S(EQ[X |Fs],Q) P− a.s.

Thus since v−1 is continuous in the interior of its domain:

G(EQ[X |Fs],Q) ≥ lim
h

C(ηQ
h ) = v−1 lim

h
U(ηQ

h ) = v−1S(EQ[X |Fs],Q)

≥ v−1 lim
h

U(ξ Q
h ) = lim

h
C(ξ Q

h ) = G(EQ[X |Fs],Q)

and this ends the first claim.
It’s not hard to prove that the infimum is actually a limit (using the

property of downward directness of the set as has been shown in Chapter
1 Lemma 1.4 (v)): therefore we deduce from the continuity of v−1 that

C(X) = v−1 inf
Q∈PFt

S(EQ[X |Fs],Q) = inf
Q∈PFt

v−1S(EQ[X |Fs],Q)

= inf
Q∈PFt

G(EQ[X |Fs],Q)





Chapter 3
Conditional quasiconvex maps: a
L0-module approach

This last Chapter -compared to Chapter 1- is not a mere generalization to
a different framework. Our desire is to motivate future researchers to this
new tool that shows huge potentiality in the financial and economic appli-
cations. Convex/quasiconvex conditional maps (see also [27]) is only one
of these numerous applications. It was our surprise and pleasure to dis-
cover how L0(G )-modules naturally fitted to our purposes and simplified
most of the proofs.
Anyway there is a drawback that still urges to be answered: is there a way
to combine modules with a time continuous financial problem? Is there a
notion of time consistency in agreement with modules?

3.1 A short review on L0 modules

The probability space (Ω ,F ,P) is fixed throughout this chapter and
G ⊆F is any sigma algebra contained in F . We denote with L0(Ω ,F ,P)=
L0(F ) (resp. L0(G ) ) the space of F (resp. G ) measurable random vari-
ables that are P a.s. finite, whereas by L̄0(F ) the space of extended ran-
dom variables which may take values in R∪ {∞}; this differs from the
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previous chapters, but this choice is needed not to mess the things up with
the notations linked to the presence of modules. In general since (Ω ,P)
are fixed we will always omit them. We define L0

+(F ) = {Y ∈ L0(F ) |
Y ≥ 0} and L0

++(F ) = {Y ∈ L0(F ) | Y > 0}. We remind that all equal-
ities/inequalities among random variables are meant to hold P-a.s.. Since
in this chapter the expected value EP[·] of random variables is mostly com-
puted w.r.t. the reference probability P, we will often omit P in the nota-
tion.
Moreover the essential (P almost surely) supremum esssupλ (Xλ ) of an
arbitrary family of random variables Xλ ∈ L0(Ω ,F ,P) will be simply de-
noted by supλ (Xλ ), and similarly for the essential infimum. ∨ (resp. ∧)
denotes the essential (P almost surely) maximum (resp. the essential min-
imum) between two random variables, which are the usual lattice opera-
tions.

We choose the framework introduced by Filipovic et al. and just recall
here some definitions. To help the reader in finding further details we use
the same notations as in [28] and [54].

L0(G ) equipped with the order of the almost sure dominance is a lattice
ordered ring: define for every ε ∈ L0

++(G ) the ball Bε = {Y ∈ L0G | |Y | ≤
ε} centered in 0 ∈ L0(G ), which gives the neighborhood basis of 0. A set
V ⊂ L0(G ) is a neighborhood of Y ∈ L0(G ) if there exists ε ∈ L0

++(G )
such that Y +Bε ⊂V . A set V is open if it is a neighborhood of all Y ∈V .
(L0(G ), | · |) stands for L0(G ) endowed with this topology: in this case the
space looses the property of being a topological vector space. It is easy

to see that a net converges in this topology, namely YN
|·|→ Y if for every

ε ∈ L0
++(G ) there exists N̄ such that |Y −YN |< ε for every N > N̄.

From now on we suppose that E ⊆ L0(F ).

Definition 3.1. A topological L0(G )-module (E,τ) is an algebraic mod-
ule E on the ring L0(G ), endowed with a topology τ such that the opera-
tions

(i) (E,τ)× (E,τ)→ (E,τ), (X1,X2) 7→ X1 +X2,
(ii) (L0(G ), | · |)× (E,τ)→ (E,τ), (Γ ,X2) 7→ Γ X2

are continuous w.r.t. the corresponding product topology.
A set C is said to be L0

G -convex if for every X1,X2 ∈ C and Λ ∈ L(G ),
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0≤Λ ≤ 1, we have ΛX1 +(1−Λ)X2 ∈ C .
A topology τ on E is locally L0(G )-convex if (E,τ) is a topological
L0(G )-module and there is a neighborhood base U of 0 ∈ E for which
each U ∈ U is L0(G )-convex, L0(G )-absorbent and L0(G )-balanced. In
this case (E,τ) is a locally L0(G )-convex module.

Definition 3.2. A function ‖ ·‖ : E→ L0
+(G ) is a L0(G )-seminorm on E if

(i) ‖Γ X‖= |Γ |‖X‖ for all Γ ∈ L0(G ) and X ∈ E,
(ii) ‖X1 +X2‖ ≤ ‖X1‖+‖X2‖ for all X1,X2 ∈ E.

‖ · ‖ becomes a L0(G )-norm if in addition
(iii) ‖X‖= 0 implies X = 0.

Any family Z of L0(G )-seminorms on E induces a topology in the
following way. For any finite S ⊂Z and ε ∈ L0

++(G ) we define

US ,ε :=
{

X ∈ E | sup
‖·‖∈S

‖X‖ ≤ ε
}

U := {US ,ε |S ⊂Z finite and ε ∈ L0
++(G )}.

U gives the neighborhood base of 0 and then we induce a topology as
for L0(G ) obtaining a locally L0(G )-convex module. In fact Filipovic et
al. proved (Theorem 2.4 [28]) that a topological L0(G )-convex module
(E,τ) is locally L0(G )-convex if and only if τ is induced by a family of
L0(G )-seminorms. When ‖ · ‖ is a norm we will always endow E with the
topology induced by ‖ · ‖.

Definition 3.3 (Definition 2.7 [28]). A topological L0(G )-module has the
countable concatenation property if for every countable collection {Un}n
of neighborhoods of 0 ∈ E and for every countable partition {An}n ⊆ G
the set ∑n 1AnUn is again a neighborhood of 0 ∈ E.

This property is satisfied by L0(G )-normed modules.

From now on we suppose that (E,τ) is a locally L0(G )-convex module
and we denote by L (E,L0(G )) the L0(G )-module of continuous L0(G )-
linear maps.
Recall that µ : E→ L0(G ) is L0(G )-linear if
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µ(αX1 +βX2) = αµ(X1)+β µ(X2) ∀α,β ∈ L0(G ) and X1,X2 ∈ E.

In particular this implies µ(X11A +X21AC) = µ(X1)1A +µ(X2)1AC which
corresponds to the property (REG) in Chapter 1. On the other hand µ : E→
L0(G ) is continuous if the counterimage of any open set (in the topology
of almost sure dominance provided on L0(G )) is an open set in τ .

Definition 3.4. A set C is said to be evenly L0(G )-convex if for every
X ∈ E such that 1B{X}∩ 1BC = /0 for every B ∈ G with P(B) > 0, there
exists a L0(G )-linear continuous functional µ : E→ L0(G ) such that

µ(X)> µ(ξ ) ∀ξ ∈ C

Example 3.1. We now give an important class of L0(G )-normed modules
which plays a key role in the financial applications and is studied in detail
in [54] Section 4.2.
The classical conditional expectation can be generalized to E[·|G ] : L0

+(F )→
L̄0
+(G ) by

E[X |G ] =: lim
n→+∞

E[X ∧n|G ]. (3.1)

The basic properties of conditional expectation still hold true: for every
X ,X1,X2 ∈ L0

+(F ) and Y ∈ L0(G )

• Y E[X |G ] = E[Y X |G ];
• E[X1 +X2|G ] = E[X1|G ]+E[X2|G ];
• E[X ] = E[E[X |G ]].

For every p≥ 1 we introduce the algebraic L0-module defined as

Lp
G (F ) =: {X ∈ L0(Ω ,F ,P) | ‖X |G ‖p ∈ L0(Ω ,G ,P)} (3.2)

where ‖ · |G ‖p is a L0(G )-norm given by

‖X |G ‖p =:

{
E[|X |p|G ]

1
p if p <+∞

inf{Y ∈ L̄0(G ) | Y ≥ |X |} if p =+∞
(3.3)
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We denote by τp the L0-module topology induced by (3.3). We remind that
Lp

G (F ) has the product structure i.e.

Lp
G (F ) = L0(G )Lp(F ) = {Y X | Y ∈ L0(G ), X ∈ Lp(F )}

This last property allows the conditional expectation to be well defined for
every X̃ ∈ Lp

G (F ): since X̃ = Y X with Y ∈ L0(G ) and X ∈ Lp(F ) then
E[X̃ |G ] = Y E[X |G ] is a finite valued random variable.
For p ∈ [1,+∞), any L0(G )-linear continuous functional µ : Lp

G (F )→
L0(G ) can be identified with a random variable Z ∈ Lq

G (F ) as µ(·) =
E[Z · |G ] where 1

p +
1
q = 1.

3.2 Quasiconvex duality on general L0 modules

Definition 3.5. A map π : E→ L̄0(G ) is said to be

(MON) monotone: for every X ,Y ∈ E, X ≤ Y we have π(X)≤ π(Y );
(QCO) quasiconvex: for every X ,Y ∈ E, Λ ∈ L0(G ) and 0≤Λ ≤ 1

π(ΛX +(1−Λ)Y )≤ π(X)∨π(Y ),

(or equivalently if the lower level sets {ξ ∈ Lp
G (F )|π(ξ )≤ η} are L0

G -
convex for every η ∈ L0

G .)
(REG) regular if for every X ,Y ∈ E and A ∈ G ,

π(X1A +Y 1AC) = π(X)1A +π(Y )1AC ;

(EVQ) evenly quasiconvex if the lower level sets {ξ ∈ E|π(ξ )≤ η} are
evenly L0

G -convex for every η ∈ L0
G .

Finally the following optional assumptions will be important in the dual
result

(PRO) there is at least a couple X1,X2 ∈ E such that π(X1) < π(X2) <
+∞.
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(TEC) if for some Y ∈ L0(G ) {ξ ∈ Lp
G (F ) | π(ξ )<Y}= /0 then π(ξ )≥

Y for every ξ ∈ Lp
G (F ).

Remark 3.1. Remarks on the assumptions.

• Notice that surely an evenly L0(G )-convex set is also L0(G )-convex
and then (EVQ) implies (QCO).

• (PRO) assure that the map π is in some sense a proper map. In fact
we want to avoid that the map π is constant on some set A ∈ G i.e.
π(ξ1)1A = π(ξ2)1A for every ξ1,ξ2 ∈ E. If this is the case, it appears
reasonable to split the measure space Ω in the two parts A,AC and threat
them separately, since on A the representation turns out to be trivial.
This is anyway a pretty weak assumption.

• (TEC) is obviously satisfied if {ξ ∈ E | π(ξ ) < Y} 6= /0 for every Y ∈
L0(G ), and in general by maps like f (E[u(·)|G ]) where f ,u are real
function.

• As shown in Chapter 1 the dual representation is linked to the conti-
nuity properties of the map: it can be shown (see for instance Proof of
Corollary 3.1 and 3.2) that (EVQ) is implied by (QCO) together with
either

(LSC) lower semicontinuity i.e. the lower level sets {ξ ∈ E | π(ξ )≤
Y} are closed for every Y ∈ L0(G ))

or

(USC)? strong upper semicontinuity i.e. the strict lower level sets
{ξ ∈ E | π(ξ )< Y} are open for every Y ∈ L0(G ).

This is basically consequence of Hahn Banach Separation Theorems
for modules (see [28] Theorems 2.7/2.8).

3.2.1 Statements of the main results

This first Theorem matches the representation obtained by Maccheroni et
al. in [10] for general topological spaces. Respect to the first chapter, the
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interesting feature here, is that in the module framework we are able to
have a dual representation for evenly quasiconvex maps: as shown in the
corollaries above this is a weaker condition that (QCO) plus (LSC) (resp.
(USC)?) and is an important starting point to obtain a complete quasicon-
vex duality as in [10]. From now on we suppose that F ⊆ L̄0(G ) is a lattice
of extended random variable, which represents the codomain of the map
π .

Theorem 3.1. Let E be a locally L0(G )-convex module. If π : E → F is
(REG), (EVQ) and (TEC) then

π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ), (3.4)

where
R(Y,µ) := inf

ξ∈E
{π(ξ ) | µ(ξ )≥ Y}

If in addition E satisfies the countable concatenation property then (TEC)
can be replaced by (PRO).

Corollary 3.1. Let E be a locally L0(G )-convex module satisfying the
countable concatenation property. If π : E → F is (QCO), (REG), (TEC)
and τ-(LSC) then

π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ). (3.5)

In alternative, since the concatenation property holds true (TEC) can be
switched into (PRO).

Corollary 3.2. Let E be a locally L0(G )-convex module. If π : E → F is
(QCO), (REG), (TEC) and τ-(USC)? then

π(X) = max
µ∈L (E,L0(G ))

R(µ(X),µ). (3.6)

If in addition E satisfies the countable concatenation property then (TEC)
can be replaced by (PRO).
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In Theorem 3.1, π can be represented as a supremum but not as a
maximum. The following Corollary shows that nevertheless we can find
a R(µ(X),µ) arbitrary close to π(X).

Corollary 3.3. Under the same assumption of Theorem 3.1 or Corollary
3.1, for every ε > 0 there exists µε ∈L (E,L0(G )) such that

π(X)−R(µε(X),µε)< ε on the set {π(X)<+∞} (3.7)

3.2.2 General properties of R(Y,µ)

In this section π : E → F ⊆ L̄0(G ) always satisfies (REG). Following
the path traced in the first Chapter, we state and adapt the proofs to
the module framework, of the foremost properties holding for the func-
tion R(Y,µ). Notice that R is not defined on the whole product space
L0(G )×L (E,L0(G )) but its actual domain is given by

Σ = {(Y,µ) ∈ L0
G ×L (E,L0(G ))|∃ξ ∈ E s.t. µ(ξ )≥ Y}. (3.8)

Lemma 3.1. Let µ ∈L (E,L0(G )) and X ∈ E.
i) R(·,µ) is monotone non decreasing.
ii) R(Λ µ(X),Λ µ) = R(µ(X),µ) for every Λ ∈ L0(G ).
iii) For every Y ∈ L0(G ) and µ ∈L (E,L0(G )), the set

Aµ(Y )$ {π(ξ ) |ξ ∈ E, µ(ξ )≥ Y}

is downward directed in the sense that for every π(X1),π(X2) ∈ Aµ(Y )
there exists π(X∗) ∈Aµ(Y ) such that π(X∗) ≤ min{π(X1),π(X2)}. Thus
there exists a sequence

{
ξ

µ
m
}∞

m=1 ∈ E such that

µ(ξ µ
m )≥ Y ∀m≥ 1, π(ξ µ

m ) ↓ R(Y,µ) as m ↑ ∞.

In particular if for α ∈ L0(G ), R(Y,µ) < α then there exists ξ such that
µ(ξ )≥ Y and π(ξ )< α .
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iv) For every A ∈ G , (Y,µ) ∈ Σ

R(Y,µ)1A = inf
ξ∈E
{π(ξ )1A | Y 1A ≥ µ(X1A)}= R(Y 1A,µ)1A (3.9)

v) For every X1,X2 ∈ E
(a) R(µ(X1),µ)∧R(µ(X2),µ) = R(µ(X1)∧µ(X2),µ)
(b) R(µ(X1),µ)∨R(µ(X2),µ) = R(µ(X1)∨µ(X2),µ)

vi) The map R(µ(X),µ) is quasi-affine with respect to X in the sense that
for every X1,X2 ∈ E, Λ ∈ L0(G ) and 0≤Λ ≤ 1, we have

R(µ(ΛX1 +(1−Λ)X2),µ)≥ R(µ(X1),µ)∧R(µ(X2),µ)
R(µ(ΛX1 +(1−Λ)X2),µ)≤ R(µ(X1),µ)∨R(µ(X2),µ).

vii) infY∈L0(G ) R(Y,µ1)= infY∈L0(G ) R(Y,µ2) for every µ1,µ2 ∈L (E,L0(G )).

Proof. i) and ii) follow trivially from the definition. Most of the leftover
items are proved in similar way than the properties in Lemma 1.3. We
report here all of them for sake of completeness.
iii) Consider the G -measurable set G = {π(X1)≤ π(X2)} then

min{π(X1),π(X2)}= π(X1)1G +π(X2)1GC
REG
= π(X11G +X21GC)

Since µ(X11G+X21C
G)= µ(X1)1G+µ(X2)1GC ≥Y then π(X11G+X21C

G)∈
Aµ(Y ). The existence of the sequence

{
ξ

µ
m
}∞

m=1 ∈ E such that π(ξ
µ
m ) ↓

R(Y,µ) for µ(ξ
µ
m ) ≥ Y is a well known consequence for downward di-

rected sets. Now let R(Y,µ) < α: consider the sets Fm = {π(ξ µ
m ) < α}

and the partition of Ω given by G1 = F1 and Gm = Fm \Gm−1. We have
from the properties of the module E and (REG) that

ξ =
∞

∑
m=1

ξ
µ
m 1Gm ∈ E, µ(ξ )≥ Y and π(ξ )< α

iv) To prove the first equality in (1.12): for every ξ ∈E such that µ(ξ 1A)≥
Y 1A we define the random variable η = ξ 1A+ζ 1AC with µ(ζ 1AC)≥Y 1AC ,
which satisfies µ(η)≥ Y . Therefore

{η1A | η ∈ E, µ(η)≥ Y}= {ξ 1A | ξ ∈ E, µ(ξ 1A)≥ Y 1A}
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Hence from from the properties of the essinf and (REG):

1AR(Y,µ) = inf
η∈E
{π(η1A)1A | µ(η)≥ Y}

= inf
ξ∈E
{π(ξ 1A)1A | µ(ξ 1A)≥ Y 1A}

= inf
ξ∈E
{π(ξ )1A | µ(ξ 1A)≥ Y 1A}

and (1.12) follows. Similarly for the second equality.
v) a): Since R(·,µ) is monotone, the inequalities R(µ(X1),µ)∧R(µ(X2),µ)≥
R(µ(X1)∧µ(X2),µ) and R(µ(X1),µ)∨R(µ(X2),µ)≤R(µ(X1)∨µ(X2),µ)
are always true.
To show the opposite inequalities, define the G -measurable sets: B :=
{R(µ(X1),µ)≤ R(µ(X2),µ)} and A := {µ(X1)≤ µ(X2)} so that

R(µ(X1),µ)∧R(µ(X2),µ) = R(µ(X1),µ)1B +R(µ(X2),µ)1BC

≤ R(µ(X)1,µ)1A +R(µ(X2),µ)1AC(3.10)
R(µ(X1),µ)∨R(µ(X2),µ) = R(µ(X)1,µ)1BC +R(µ(X2),µ)1B

≥ R(µ(X)1,µ)1AC +R(µ(X2),µ)1A

Set: D(A,X) = {ξ 1A | ξ ∈ E, µ(ξ 1A)≥ µ(X1A)} and check that

D(A,X1)+D(AC,X2) = {ξ ∈ E | µ(ξ )≥ µ(X11A +X21AC)} := D

From (3.10) and using (1.12) we get:
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R(µ(X1),µ)∧R(µ(X2),µ)≤
≤ R(µ(X1),µ)1A +R(µ(X2),µ)1AC

= inf
ξ 1A∈D(A,X1)

{π(ξ 1A)}+ inf
η1AC∈D(AC ,X2)

{π(η1AC)}

= inf
ξ 1A∈D(A,X1)

η1AC∈D(AC ,X2)

{π(ξ 1A)+π(η1AC)}

= inf
(ξ 1A+η1AC )∈D(A,X1)+D(AC ,X2)

{π(ξ 1A +η1AC)}

= inf
ξ∈D
{π(ξ )}= R(µ(X1)1A +µ(X2)1AC ,µ)

= R(µ(X1)∧µ(X2),µ).

Simile modo: v) b).
vi) From the monotonicity of R(·,µ), R(µ(X1)∧µ(X2),µ)≤ R(µ(ΛX1 +
(1−Λ)X2),µ) (resp. R(µ(X1)∨µ(X2),µ)≥ R(µ(ΛX1 +(1−Λ)X2),µ))
and then the thesis follows from iv).
(vii) Notice that

R(Y,µ)≥ inf
ξ∈E

π(ξ ) ∀Y ∈ L0
F

implies
inf

Y∈L0(G )
R(Y,µ)≥ inf

ξ∈E
π(ξ ).

On the other hand

π(ξ )≥ R(µ(ξ ),µ)≥ inf
Y∈L0(G )

R(Y,µ) ∀ξ ∈ E

implies
inf

Y∈L0(G )
R(Y,µ)≤ inf

ξ∈E
π(ξ ).
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3.2.3 Bridging the gap between convex and non convex
maps

In this short section we would like to analyze how the Fenchel conjugate
is related to the function R in the quasiconvex representation. The above
simple result can be used in order to obtain a risk/economic interpretation
of the role acted by R (see later Remark 3.3).

Consider π : E→ F and µ ∈ E◦+ where

E◦+ =: {µ ∈L (E,L0(G )) | µ(X)≥ 0, for every X ≥ 0}.

We define for X ∈ E and µ ∈ E◦+

r(X ,µ) := inf
ξ∈E
{π(ξ ) | µ(ξ ) = µ(X)}

r?(µ) := sup
ξ∈E
{µ(ξ )− r(ξ ,µ)}

R?(µ) := sup
ξ∈E
{µ(ξ )−R(µ(ξ ),µ)}

π
∗(µ) := sup

ξ∈E
{µ(ξ )−π(ξ )}

Proposition 3.1. For an arbitrary π we have the following properties

1. r(X ,µ)≥ R(µ(X),µ)≥ µ(X)−π∗(µ);
2. r?(µ) = R?(Z) = π∗(µ).

Proof. 1. For all ξ ∈E we have π∗(µ)= supξ∈E{µ(ξ )−π(ξ )}≥ µ(ξ )−
π(ξ ). Hence: µ(X)−π∗(µ)≤ µ(X)−µ(ξ )+π(ξ )≤ π(ξ ) for all ξ ∈
E s.t. µ(ξ )≥ µ(X). Therefore

µ(X)−π
∗(µ)≤ inf

ξ∈E
{π(ξ ) | µ(ξ )≥ µ(X)}= R(µ(X),µ)≤ r(X ,µ)

2. From 1. we have µ(ξ )−R(µ(ξ ),µ)≤ π∗(µ) and
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r?(µ) = sup
ξ∈E
{µ(ξ )− r(ξ ,µ)} ≤ sup

ξ∈E
{µ(ξ )−R(µ(ξ ),µ)} ≤ π

∗(µ)

(3.11)
since r(ξ ,µ)≤ π(ξ ) we have

µ(ξ )− r(ξ ,µ)≥ µ(ξ )−π(ξ ) ⇒ r?(µ)≥ π
∗(µ)

and together with equation (3.11) we deduce

r?(µ)≥ π
∗(µ)≥ R?(µ)≥ r?(µ).

3.2.4 Proofs

Proof (Proof of Theorem 3.1). Fix X ∈ E and denote G = {π(X)<+∞};
for every ε ∈ L0

++(G ) consider the evenly convex set

Cε =: {ξ ∈ E | π(ξ )≤ (π(X)− ε)1G + ε1GC}.

Step 1. If Cε = /0 then by assumption (TEC) we have π(ξ ) ≥ (π(X)−
ε)1G + ε1GC for every ξ ∈ E. In particular it follows that R(µ(X),µ) ≥
(π(X)− ε)1G + ε1GC for every µ ∈L (E,L0(G )) and thus

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ (π(X)− ε)1G + ε1GC (3.12)

Step 2. Now suppose that Cε 6= /0. For every B ∈ G , P(B)> 0 we have
1B{X}∩1BCε = /0: in fact if ξ 1B = X1B then by (REG) we get π(ξ )1B =
π(ξ 1B)1B = π(X1B)1B = π(X)1B. Since Cε is evenly L0-convex then we
can find µε ∈L (E,L0(G )) such that

µε(X)> µε(ξ ) ∀ξ ∈ Cε . (3.13)

Let now A ∈ G be an arbitrary element such that P(A)> 0 and define
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C A
ε =: {ξ ∈ E|π(ξ )1A ≤ (π(X)− ε)1A∩G + ε1A∩GC}.

We want to show that µε(X)> µε(ξ ) on A for every ξ ∈ C A
ε . Let ξ ∈ C A

ε ,
η ∈ Cε and define ξ̄ = ξ 1A+η1AC which surely will belong to Cε . Hence
µε(X) > µε(ξ̄ ) so that µε(X1A) = µε(X)1A ≥ µε(ξ̄ )1A = µε(ξ 1A) and
µε(X)> µε(ξ ) on A. We then deduce that C A

ε ⊆DA
ε =: {ξ ∈ E|µε(X)>

µε(ξ ) on A} for every A ∈ G which means that⋂
A∈G

(
DA

ε

)C ⊆ ⋂
A∈G

(
C A

ε

)C
By definition(

C A
ε

)C
= {ξ ∈ E | ∃B⊆ A, P(B)> 0 and [? ]}

where

[? ]←→

π(ξ )(ω)> π(X)(ω)− ε(ω) for a.e. ω ∈ B∩G
or

π(ξ )(ω)> ε(ω) for a.e. ω ∈ B∩GC

so that⋂
A∈G

(
C A

ε

)C
= {ξ ∈ E | ∀A ∈ G , ∃B⊆ A, P(B)> 0 and [? ]}

= {ξ ∈ E | π(ξ )> (π(X)− ε)1G + ε1GC}.

Indeed if ξ ∈E such that π(ξ )> (π(X)−ε)1G+ε1GC then ξ ∈
⋂

A∈G
(
C A

ε

)C.

Viceversa let ξ ∈
⋂

A∈G
(
C A

ε

)C: suppose that there exists a D ∈ G , P(D)>

0 and π(ξ )≤ (π(X)− ε)1G + ε1GC on D. By definition of (C D
ε )C we can

find B⊆ D such that π(ξ )> π(X)− ε on G∩D or π(ξ )>+ε on D∩GC

and this is clearly a contradiction. Hence
⋂

A∈G
(
C A

ε

)C
= {ξ ∈ E|π(ξ ) >

(π(X)−ε)1G+ε1GC}. Matching the previous argument we can prove that⋂
A∈G

(
DA

ε

)C
= {ξ ∈ E|µε(X)≤ µε(ξ )}.

We finally deduce that
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π(X) ≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ R(µε(X),µε)

= inf
ξ∈E
{π(ξ ) | µε(X)≤ µε(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )> (π(X)− ε)1G + ε1GC} ≥ (π(X)− ε)1G + ε1GC .

By equation (3.12) and this last sequence of inequalities we can assure
that for every ε ∈ L0

++(G ) π(X)≥ supµ∈L (E,L0(G )) R(µ(X),µ)≥ (π(X)−
ε)1G+ε1GC . The thesis follows taking ε arbitrary small on G and arbitrary
big on GC.

Step 3. Now we pass to that the second part of the Theorem and assume
that E have the concatenation property. We follow the notations of the
first part of the proof and introduce the G measurable random variable
Yε =: (π(X)− ε)1G + ε1GC and the set

A = {A ∈ G | ∃ξ ∈ E s.t. π(ξ )≤ Yε on A}

For every A,B ∈ A we have that A∪B. Consider the set {1A|A ∈ A }:
the set is upward directed since 1A1 ∨1A2 = 1A1∪A2 for every A1,A2 ∈A .
Hence we can find a sequence 1An ↑ sup{1A|A∈A }= 1Amax where Amax =
∪nAn ∈ G .
By definition for every An we can find ξn such that π(ξn)≤Yε on An. Now
redefine the sequence of set Bn = An \Bn−1, so that η = ∑n ξn1Bn has the
property that π(η)≤ Yε on Amax i.e. Amax ∈A .

As a consequence of the definition of A and since Amax is the maximal
element in A we deduce that π(ξ )> Yε on (Amax)C for every ξ ∈ E.
In particular it follows that R(µ(X),µ) ≥ Yε on (Amax)C for every µ ∈
L (E,L0(G )) and thus

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ (π(X)− ε)1G + ε1GC on (Amax)C

(3.14)
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We know by (PRO) that there exists a ζ1,ζ2 ∈ E such that π(ζ1) <
π(ζ2) ∈ L0(G ). Introduce the evenly convex set

C 1
ε =: {ξ ∈ E | π(ξ )≤ Yε 1Amax +π(ζ1)1(Amax)C} 6= /0.

Surely X̃ = X1Amax + ζ21(Amax)C has the property that 1B{X̃}∩ 1BC 1
ε = /0

for every B ∈ G so that we can find µε ∈L (E,L0(G )) such that

µε(X̃)> µε(ξ ) ∀ξ ∈ C 1
ε . (3.15)

Repeating the argument of Step 2 we get

π(X̃) ≥ sup
µ∈L (E,L0(G ))

R(µ(X̃),µ)≥ R(µε(X̃),µε)

= inf
ξ∈E
{π(ξ ) | µε(X̃)≤ µε(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )> Yε 1Amax +π(ζ1)1(Amax)C}

≥ Yε 1Amax +π(ζ1)1(Amax)C .

Restricting to the set Amax we deduce

π(X1Amax)1Amax ≥ sup
µ∈L (E,L0(G ))

R(µ(X1Amax),µ)1Amax ≥ Yε 1Amax .

This last inequality together with equation (3.14) gives by (REG)

π(X)≥ R(µε(X),µε)≥ (π(X)− ε)1G + ε1GC (3.16)

and the thesis follows taking again ε arbitrary small on G and arbitrary big
on GC.

Proof (Proof of Corollary 3.1). Assuming (TEC). We only have to show
that the set Cε - which is now closed - defined in the previous proof can be
separated as in (3.13). For every B ∈ G , P(B)> 0 we have already shown
that 1B{X}∩ 1BCε = /0. We thus can apply the generalized Hahn Banach
Separation Theorem (see [28] Theorem 2.8) and find µε ∈L (E,L0(G ))
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and δ ∈ L0
++(G ) so that

µε(X)> µε(ξ )+δ ∀ξ ∈ Cε . (3.17)

Similarly when we assume (PRO).

Proof (Proof of Corollary 3.2). In order to obtain the representation in
terms of a maximum we prove the claim directly. Fix X ∈ E and consider
the open convex set C =: {ξ ∈ E | π(ξ )< π(X)}.
If C = /0 then by assumption (TEC) we have π(ξ ) ≥ π(X) for every
ξ ∈ E. In particular it follows that R(µ(X),µ) ≥ π(X) for every µ ∈
L (E,L0(G )) and thus the thesis follows since

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ π(X) (3.18)

Now suppose C 6= /0: notice that 1B{X}∩1BC = /0. We thus can apply the
generalized Hahn Banach Separation Theorem (see [28] Theorem 2.7) and
find µmax ∈L (E,L0(G )) so that

µmax(X)> µmax(ξ ) ∀ξ ∈ C .

Let now A ∈ G be an arbitrary element such that P(A) > 0: repeat the
argument of the previous proof considering

C A =: {ξ ∈ E|π(ξ )< π(X) on A}.

DA =: {ξ ∈ E|µmax(X1A)> µmax(ξ 1A) on A}

and find that

{ξ ∈ E|µmax(X)≤ µmax(ξ )} ⊆ {ξ ∈ E|π(ξ )≥ π(X)}

Again the thesis follows from the inequalities
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π(X) ≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ inf
ξ∈E
{π(ξ ) | µmax(X)≤ µmax(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )≥ π(X)} ≥ π(X)

When we assume (PRO) instead of (TEC) we just have to repeat the
argument in the proof of Theorem 3.1.

Proof (Proof of Corollary 3.3). Follows directly from the last three lines
of Step 2 (or Step 3) in the proof of Theorem 3.1.

3.3 Application to Risk Measures

In Section 1.4 we briefly discussed the application of quasiconvex analysis
to the theory of Risk Measures. Now we would like to better detail this
powerful tool in the module environment. It’s important to notice that at
the actual status of the research on this subject, not all of the following
results can be adapted to the vector space case. Hopefully this will be
developed in the future.
First of all we specify the definition of risk measure.

Definition 3.6. A quasiconvex (conditional) risk measure is a map ρ :
Lp

G (F )→ L̄0(G ) satisfying
(MON)′ monotonicity: for every X ,Y ∈ Lp

G (F ), X ≤ Y we have ρ(X) ≥
ρ(Y );
(QCO) quasiconvexity: for every X ,Y ∈ Lp

G (F ), Λ ∈ L0(G ) and 0≤Λ ≤ 1

ρ(ΛX +(1−Λ)Y )≤ ρ(X)∨ρ(Y ),

(REG) regular if for every X ,Y ∈ Lp
G (F ) and A ∈ G ,

ρ(X1A +Y 1AC) = ρ(X)1A +ρ(Y )1AC ;

Recall that the principle of diversification states that ‘diversification should
not increase the risk ’, i.e. the diversified position ΛX +(1−Λ)Y is less
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risky than both the positions X and Y . Under cash additivity axiom con-
vexity and quasiconvexity are equivalent, so that they both give the right
interpretation of this principle. As already mentioned with an example in
Section 1.4 (and vividly discussed by El Karoui and Ravanelli [25]) the
lack of liquidity of the zero coupon bonds is the primary reason of the fail-
ure of cash additivity. Thus it is unavoidable to relax the convexity axiom
to quasiconvexity in order to regain the best modeling of diversification.

3.3.1 A characterization via the risk acceptance family

In this subsection we assume for sake of simplicity that ρ(0) ∈ L0(G ): in
this way we do not loose any generality imposing ρ(0) = 0 (if not just
define ρ̃(·) = ρ(·)−ρ(0)). We remind that if ρ(0) = 0 then (REG) turns
out to be ρ(X1A) = ρ(X)1A.
Given a risk measure one can always define for every Y ∈ L0(G ) the risk
acceptance set of level Y as

A Y
ρ = {X ∈ Lp

G (F ) | ρ(X)≤ Y}.

This set represents the collection of financial positions whose risk is
smaller of the fixed level Y and are strictly related to the Acceptability
Indices [12]. Given a risk measure we can associate a family of risk ac-
ceptance sets, namely {A Y

ρ |Y ∈ L0(G )}which are called Risk Acceptance
Family of the risk measure ρ as suggested in [19]. In general

Definition 3.7. A family A= {A Y |Y ∈ L0(G )} of subsets A Y ⊂ Lp
G (F )

is called risk acceptance family if
(i) convex: A Y is L0(G )-convex for every Y ∈ L0(G );
(ii) monotone:

• X1 ∈A Y and X2 ∈ Lp
G (F ), X2 ≥ X1 implies X2 ∈A Y ;

• for any Y ′ ≤ Y we have A Y ′ ⊆A Y ;

(iii) regular: X ∈A Y then for every G ∈ G we have
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inf{Y 1G ∈ L0(G ) | X ∈A Y}= inf{Y ∈ L0(G ) | X1G ∈A Y}

(iv) right continuous: A Y =
⋂

Y ′>Y A Y ′ for every Y ∈ L0(G ).

These four properties allows to induce a one to one relationship be-
tween quasiconvex risk measures and risk acceptance families as we prove
in the following

Proposition 3.2. For any quasiconvex risk measure ρ : Lp
G (F )→ L̄0(G )

the family
Aρ = {A Y

ρ |Y ∈ L0(G )}

with A Y
ρ = {X ∈ Lp

G (F ) | ρ(X)≤ Y} is a risk acceptance family.
Viceversa for every risk acceptance family A the map

ρA(X) = inf{Y ∈ L0(G ) | X ∈A Y}

is a well defined quasiconvex risk measure ρA : Lp
G (F )→ L̄0(G ) such that

ρA(0) = 0.
Moreover ρAρ

= ρ and AρA = A.

Proof. (MON)′ and (QCO) of ρ imply that A Y
ρ is convex and monotone.

Also notice that

inf{Y ∈ L0(G ) | X1G ∈A Y
ρ }= inf{Y ∈ L0(G ) | ρ(X1G)≤ Y}= ρ(X1G)

= ρ(X)1G = inf{Y 1G ∈ L0(G ) | ρ(X)≤ Y}= inf{Y ∈ L0(G ) | X1G ∈A Y
ρ },

i.e. A Y
ρ is regular.

Obviously A Y
ρ ⊂

⋂
Y ′>Y A Y ′ for any Y ∈ L0(G ). If X ∈

⋂
Y ′>Y A Y ′ then

ρ(X)≤ Y ′ for every Y ′ > Y and hence ρ(X)≤ Y i.e. A Y
ρ ⊃

⋂
Y ′>Y A Y ′ .

Viceversa: we first prove that ρA is (REG). For every G ∈ G

ρA(X1G) = inf{Y ∈ L0(G ) | X1G ∈A Y}=

(iii)
= inf{Y 1G ∈ L0(G ) | X ∈A Y}= ρA(X)1G
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Now consider X1,X2 ∈ Lp
G (F ), X1 ≤ X2. Let GC = {ρA(X1) = +∞} so

that ρA(X11GC) ≥ ρA(X21GC). Otherwise consider the collection of Y s
such that X11G ∈ A Y . Since A Y is monotone we have that X21G ∈ A Y

if X11G ∈A Y and this implies that

ρA(X1)1G = inf{Y 1G ∈ L0(G ) | X1 ∈A Y}= inf{Y ∈ L0(G ) | X11G ∈A Y}
≥ inf{Y ∈ L0(G ) | X21G ∈A Y}= inf{Y 1G ∈ L0(G ) | X2 ∈A Y}
= ρ(X2)1G,

i.e. ρA(X11G)≥ ρA(X21G). And this shows that ρA(·) is (MON)′.
Let X1,X2 ∈ Lp

G (F ) and take any Λ ∈ L0(G ), 0 ≤ Λ ≤ 1. Define the set
B =: {ρA(X1) ≤ ρA(X2)}. If X11BC +X21B ∈ A Y ′ for some Y ′ ∈ L0(G )
then for sure Y ′ ≥ ρA(X1) ∨ ρA(X2) ≥ ρ(Xi) for i = 1,2. Hence also
ρ(Xi)∈A Y ′ for i = 1,2 and by convexity we have that ΛX1+(1−Λ)X2 ∈
A Y ′ . Then ρA(ΛX1 +(1−Λ)X2)≤ ρA(X1)∨ρA(X2).
If X11BC +X21B /∈ A Y ′ for every Y ′ ∈ L0(G ) then from property (iii) we
deduce that ρA(X1) = ρA(X2) = +∞ and the thesis is trivial.

Now consider B = {ρ(X) = +∞}: ρAρ
(X) = ρ(X) follows from

ρAρ
(X)1B = inf{Y 1B ∈ L0(G ) | ρ(X)≤ Y}=+∞1B

ρAρ
(X)1BC = inf{Y 1BC ∈ L0(G ) | ρ(X)≤ Y}

= inf{Y ∈ L0(G ) | ρ(X)1BC ≤ Y}= ρ(X)1BC

For the second claim notice that if X ∈A Y then ρA(X)≤ Y which means
that X ∈A Y

ρA
. Conversely if X ∈A Y

ρA
then ρA(X)≤Y and by monotonicity

this implies that X ∈A Y ′ for every Y ′ > Y . From the right continuity we
take the intersection and get that X ∈A Y .
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3.3.2 Complete duality

This last Section is devoted to one of the most interesting result of this
thesis: a complete quasiconvex duality between the risk measure ρ and the
dual map R. We restrict the discussion to the particular case of L0(G )-
modules of Lp

G (F ) type for one main reason: actually it is the only
class of modules for which there is a full knowledge of the dual mod-
ule L (E,L0(G )). When analytical results will be available on modules of
the Orlicz type (see [54] for the exact definition) or others the following
proof will be easily adapted.

We transpose the definitions of Section 3.2, with some little differences
of signs.

R(Y,Z) := inf
ξ∈Lp

G (F )
{ρ(ξ ) | E [−ξ Z|G ]≥ Y} (3.19)

is well defined on the domain

Σ = {(Y,Z) ∈ L0
G ×Lq

G (F )|∃ξ ∈ Lp
G (F ) s.t. E[−Zξ |G ]≥ Y}.

Let also introduce the following notations:

Pq =: {Z ∈ Lq
G (F ) | Z ≥ 0, E[Z|G ] = 1}

=

{
dQ
dP
∈ Lq

G (F ) | Q probability, E
[

dQ
dP
|G
]
= 1
}

and the class M (L0(G )×Pq) composed by maps K : L0(G )×Pq →
L̄0(G ) s.t.

• K is increasing in the first component.
• K(Y 1A,Q)1A = K(Y,Q)1A for every A ∈ G and (Y, dQ

dP ) ∈ Σ .
• infY∈L0(G ) K(Y,Q) = infY∈L0(G ) K(Y,Q′) for every Q,Q′ ∈Pq.
• S is �-evenly L0(G )-quasiconcave: for every (Ȳ , Q̄)∈ L0(G )×Pq, A∈

G and α ∈ L0(G ) such that K(Ȳ , Q̄) < α on A, there exists (S̄, X̄) ∈
L0
++(G )×Lp

G (F ) with
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Ȳ S̄+E
[

X̄
dQ̄
dP
|G
]
< Y S̄+E

[
X̄

dQ
dP
|G
]

on A

for every (Y,Q) such that K(Y,Q)≥ α on A.
• the set K (X) =

{
K(E[X dQ

dP |G ],Q) | Q ∈Pq
}

is upward directed for

every X ∈ Lp
G (F ) .

We will write with a slight abuse of notation R(Y,Q) instead of R
(

Y, dQ
dP

)
.

The class M (L0(G )×Pq) is non empty in general as we show in the fol-
lowing Lemma.

Lemma 3.2. The function R defined in (3.19) belongs to M (L0(G )×Pq)

Proof. First: R monotone in the first component follows from 3.1 i).
Second: R(Y 1A,Q)1A = R(Y,Q)1A follows from 3.1 iv).
Third: observe that R(Y,Q) ≥ inf

ξ∈Lp
G (F ) ρ(ξ ) for all (Y,Q) ∈ L0(G )×

Pq so that
inf

Y∈L0(G )
R(Y,Q)≥ inf

ξ∈Lp
G (F )

ρ(ξ ).

Conversely notice that the set {ρ(ξ )|ξ ∈ Lp
G (F )} is downward directed

and then there exists ρ(ξn) ↓ inf
ξ∈Lp

G (F ) ρ(ξ ). For every Q ∈Pq we have

ρ(ξn)≥ R
(

E
[
−ξn

dQ
dP
|G
]
,Q
)
≥ inf

Y∈L0(G )
R(Y,Q)

so that
inf

Y∈L0(G )
R(Y,Q)≤ inf

ξ∈Lp
G (F )

ρ(ξ ).

Fourth: for α ∈ L0(G ) and A ∈ G define

UA
α = {(Y,Q) ∈ L0(G )×Pq|R(Y,Q)≥ α on A},

and suppose /0 6= UA
α 6= L0(G )×Pq. Let (Ȳ , Q̄) ∈ L0(G )×Pq such that

R(Ȳ , Q̄)<α on A. From Lemma 3.1 (iii) there exists X̄ ∈ Lp
G (F ) such that

E[−X̄ dQ̄
dP |G ] ≥ Ȳ and ρ(X̄) < α on A. Since R(Y,Q) ≥ α on A for every
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(Y,Q) ∈UA
α then E[−X̄ dQ

dP |G ] < Y for every (Y,Q) ∈Uα on A: otherwise
we could define B = {ω ∈ A | E[−X̄ dQ

dP |G ]≥ Y}, P(B)> 0 and then from
Lemma 3.1 (iv) it must be that R(Y 1B,Q)< α on the set B. Finally we can
conclude that for every (Y,Q) ∈UA

α

Ȳ +E
[

X̄
dQ̄
dP
|G
]
≤ 0 < Y +E

[
X̄

dQ
dP
|G
]

on A.

Fifth: K =
{

R(E[X dQ
dP |G ],Q) | Q ∈Pq

}
is upward directed. Take Q1,Q2 ∈

Pq and define F = {R(E[X dQ1
dP |G ],Q1) ≥ R(E[X dQ2

dP |G ],Q2)} and let Q̂
given by

dQ̂
dP

:= 1F
dQ1

dP
+1FC

dQ2

dP
∈Pq.

It is easy to show, using an argument similar to the one in Lemma 1.4 that

R

(
E

[
X

dQ̂
dP
|G

]
, Q̂

)
=R

(
E
[

X
dQ1

dP
|G
]
,Q1

)
∨R
(

E
[

X
dQ2

dP
|G
]
,Q2

)
.

Lemma 3.3. Let Q ∈Pq and ρ satisfying (MON)′, (REG) then

R(Y,Q) = inf
ξ∈Lp

G (F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G
]
= Y

}
. (3.20)

Proof. For sake of simplicity denote by µ(·) = E[· dQ
dP |G ] and r(Y,µ) the

right hand side of equation (3.20). Notice that R(Y,µ)≤ r(Y,µ). By con-
tradiction, suppose that P(A) > 0 where A =: {R(Y,µ) < r(Y,µ)}. From
Lemma 3.1, there exists a r.v. ξ ∈ Lp

G (F ) satisfying the following condi-
tions

• µ(−ξ )≥ Y and P(µ(−ξ )> Y )> 0.
• R(Y,µ)(ω)≤ ρ(ξ )(ω)< r(Y,µ)(ω) for P-almost every ω ∈ A.

Set Z = µ(−ξ )−Y ∈ L0(G )⊆ Lp
G (F ) and it satisfies Z≥ 0, P(Z > 0)> 0.

Then, thanks to (MON)′, ρ(ξ ) ≥ ρ(ξ + Z). From µ(−(ξ + Z)) = Y we
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deduce:

R(Y,µ)(ω)≤ ρ(ξ )(ω)< r(Y,µ)(ω)≤ ρ(ξ +Z)(ω) for P-a.e. ω ∈ A,

which is a contradiction.

Consider the class M prop(L0(G )×Pq) composed by maps K : L0(G )×
Pq→ L̄0(G ) such that K ∈M (L0(G )×Pq) and there exist X1,X2 such
that

supK (X1)< supK (X2)<+∞.

Theorem 3.2. ρ : Lp
G (F )→ L0(G ) satisfies (MON)′, (REG), (EVQ) and

(PRO) if and only if

ρ(X) = sup
Q∈Pq

R
(

E
[
−dQ

dP
X |G

]
,Q
)

(3.21)

where

R(Y,Q) = inf
ξ∈Lp

G (F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G
]
= Y

}
is unique in the class M prop(L0(G )×Pq).

Remark 3.2. Since Q << P we can observe

EP

[
dQ
dP

ξ | G
]
= EP

[
dQ
dP

X | G
]
⇐⇒ EQ[ξ |G ] =Q EQ[X |G ],

so that we will write sometimes with a slight abuse of notation

R(EQ[X |G ],Q) = inf
ξ∈Lp

G (F )
{ρ(ξ ) | EQ[ξ |G ] =Q EQ[X |G ]}

From this last proposition we can deduce the following important result
which confirm what we have obtained in Chapter 1.

Proposition 3.3. Suppose that ρ satisfies the same assumption of Theorem
3.2. Then the restriction ρ̂ := ρ1Lp(F ) defined by ρ̂(X) = ρ(X) for every
X ∈ Lp(F ) is a quasiconvex risk measure that can be represented as
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ρ̂(X) = sup
Q∈Pq

inf
ξ∈Lp(F )

{ρ̂(ξ ) | EQ[−ξ |G ] =Q EQ[−X |G ]} .

Proof. For every X ∈ Lp(F ), Q ∈Pq we have

ρ̂(X) ≥ inf
ξ∈Lp(F )

{ρ̂(ξ ) | EQ[−ξ |G ] =Q EQ[−X |G ]}

≥ inf
ξ∈Lp

G (F )
{ρ(ξ ) | EQ[−ξ |G ] =Q EQ[−X |G ]}

and hence the thesis.

It’s a moot point in financial literature whether cash additivity (CAS)
(ρ(X +Λ) = ρ(X)−Λ for Λ ∈ L0(G ) is a too much restrictive assumption
or not. Surely adding (CAS) to a quasiconvex risk measure it automatically
follows that ρ is convex. The following result is meant to confirm that the
dual representation chosen for quasiconvex maps is indeed a good gener-
alization of the convex case. Differently from Corollary 1.2 here there are
no restrictive additional hypothesis and it becomes clear how a powerful
tool the modules are in this kind of applications.

Corollary 3.4. (i) If Q ∈Pq and if ρ is (MON), (REG) and (CAS) then

R(EQ(−X |G ),Q) = EQ(−X |G )−ρ
∗(−Q) (3.22)

where
ρ
∗(−Q) = sup

ξ∈Lp
G (F )

{EQ[−ξ |G ]−ρ(ξ )} . (3.23)

(ii) Under the same assumptions of Proposition 3.2 and if ρ satisfies in
addition (CAS) then

ρ(X) = sup
Q∈Pq

{EQ(−X |G )−ρ
∗(−Q)} .

Proof. Denote by µ(·) =: E
[

dQ
dP · | G

]
; by definition of R
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R(EQ(−X |G ),Q) = inf
ξ∈Lp

G (F )
{ρ(ξ ) | µ(−ξ ) = µ(−X)}

= µ(−X)+ inf
ξ∈Lp

G (F )
{ρ(ξ )−µ(−X) | µ(−ξ ) = µ(−X)}

= µ(−X)+ inf
ξ∈Lp

G (F )
{ρ(ξ )−µ(−ξ ) | µ(−ξ ) = µ(−X)}

= µ(−X)− sup
ξ∈Lp

G (F )

{ρ(ξ )−µ(−X) | µ(−ξ ) = µ(−X)}

= µ(−X)−ρ
∗(−Q),

where the last equality follows from

ρ
∗(−Q)

(CAS)
= sup

ξ∈Lp
G (F )

{µ(−ξ −µ(X−ξ ))−ρ(ξ +µ(X−ξ ))}

= sup
η∈Lp

G (F )

{µ(−η)−ρ(η) | η = ξ +µ(X−ξ )}

≤ sup
η∈Lp

G (F )

{µ(−η)−ρ(η) | µ(−η) = µ(−X)} ≤ ρ
∗(−Q).

Remark 3.3. If we look at equation (3.21) in the light of Proposition 3.1
we could naively claim that the inequality

R
(

E
[
−dQ

dP
X |G

]
,Q
)
≥ E

[
−dQ

dP
X |G

]
−ρ

∗(−Q)

can be translated into : ‘If the preferences of an agent are described by a
quasiconvex - not convex - risk measure I can’t recover the risk only taking
a supremum of the Fenchel conjugate over all the possible probabilistic
scenarios. I shall need to choose a more cautious and conservative penalty
function.’
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3.3.3 Proof of Theorem 3.2

We recall that Lp
G (F ) is a normed module so that the concatenation

property always holds true. During the whole proof we fix an arbitrary
X ∈ Lp

G (F ). We are assuming (PRO) and for this reason we refer to proof
of Theorem 3.1 step 3 for the definitions and notations. There exists a
ζ1,ζ2 ∈ E such that ρ(ζ1)< ρ(ζ2) ∈ L0(G ) and we recall that the evenly
convex set

C 1
ε =: {ξ ∈ Lp

G (F ) | ρ(ξ )≤ Yε 1Amax +ρ(ζ1)1(Amax)C} 6= /0.

may be separated from X̃ =X1Amax +ζ21(Amax)C by µε ∈L (Lp
G (F ),L0(G ))

i.e.
µε(X̃)> µε(ξ ) ∀ξ ∈ C 1

ε .

ONLY IF.

Let η ∈ Lp
G (F ), η ≥ 0. If ξ ∈ C 1

ε then (MON) implies ξ + nη ∈ C 1
ε for

every n∈N. In this case µε(·) = E[Zε · |G ] for some Zε ∈ Lq
G (F ) and from

(3.17) we deduce ∀n ∈ N:

E[Zε(ξ +nη)|G ]< E[Zε X̃ |G ] ⇒ E[−Zε η |G ]>
E[Zε(ξ − X̃)|G ]

n

i.e. E[Zε η |G ] ≤ 0 for every η ∈ Lp
G (F ), η ≥ 0. In particular Zε ≤ 0:

only notice that 1{Zε>0} ∈ Lp
G (F ) so that E[Zε 1{Zε>0}] ≤ 0 if and only if

P({Zε > 0}) = 0.
If there exists a G -measurable set G, P(G)> 0, on which Zε = 0, then we
have a contradiction. In fact fix ξ ∈ C 1

ε : from E[Zε ξ |G ] < E[Zε X̃ |G ] we
can find a δξ ∈ L0

++(G ) such that

E[Zε ξ |G ]+δξ < E[Zε X̃ |G ]

and then
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δξ 1G = E[Zε 1Gξ |G ]+δξ 1G ≤ E[Zε 1GX̃ |G ] = 0.

which is absurd because P(δξ 1G > 0)> 0.
We deduce that E[Zε 1B] = E[E[Zε |G ]1B] < 0 for every B ∈ G and then
P(E[Zε |G ] < 0) = 1. Hence we may normalize Zε to Zε

E[Zε |G ] =
dQ
dP ∈

L1(F ).
From equation (3.16) in the proof of Theorem 3.1 we can deduce that

ρ(X) = π(−X) = sup
Q∈Pq

inf
ξ∈Lp

G (F )

{
π(ξ ) | E

[
ξ

dQ
dP
|G
]
≥ E

[
−X

dQ
dP
|G
]}

= sup
Q∈Pq

inf
ξ∈Lp

G (F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G
]
≥ E

[
−X

dQ
dP
|G
]}

(3.24)

Applying Lemma 3.3 we can substitute = in the constraint.
To complete the proof of the ‘only if ’statement we only need to show

that R ∈M prop(L0(G )×Pq). By Lemma 3.2 we already know that R ∈
M (L0(G )×Pq) so that applying (PRO) and (3.24) we have that R ∈
M prop(L0(G )×Pq).

IF.

We assume that ρ(X) = supQ∈Pq R(E[−X dQ
dP |G ],Q) holds for some R ∈

M prop(L0(G )×Pq). Since R is monotone in the first component and
R(Y 1A,Q)1A = R(Y,Q)1A for every A ∈ G we easily deduce that ρ is
(MON) and (REG). Also ρ is clearly (PRO). We need to show that ρ i
(EVQ).
Let Vα = {ξ ∈ Lp

G (F )|ρ(ξ )≤ α}where α ∈ L0(G ) and X̄ ∈ Lp
G (F ) such

that X̄1A∩Vα 1A = /0. Hence ρ(X̄) = supQ∈Pq R(E[−X̄ dQ
dP |G ],Q)> α .

Since the set {R(E[−X̄ dQ
dP |G ],Q)|Q ∈Pq} is upward directed we find

R
(

E
[
−X̄

dQm

dP
|G
]
,Qm

)
↑ ρ(X̄) as m ↑+∞.
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Consider the sets Fm = {R(E[−X̄ dQm
dP |G ],Qm) > α} and the partition of

Ω given by G1 = F1 and Gm = Fm \Gm−1. We have from the properties of
the module Lq

G (F ) that

dQ̄
dP

=
∞

∑
m=1

dQm

dP
1Gm ∈ Lq

G (F )

and then Q̄ ∈Pq with R(E[−X̄ dQ̄
dP |G ], Q̄)> α .

Let X ∈ Vα : if there exists A ∈ G such that E[X dQ̄
dP 1A|G ] ≤ E[X̄ dQ̄

dP 1A|G ]

on A then ρ(X1A)≥ R(E[−X dQ̄
dP 1A|G ], Q̄)≥ R(E[−X̄ dQ̄

dP 1A|G ], Q̄)> α on
A. This implies ρ(X)> α on A which is a contradiction unless P(A) = 0.
Hence E[X dQ̄

dP |G ]> E[X̄ dQ̄
dP |G ] for every X ∈Vα .

UNIQUENESS.

We show that for every K ∈M prop(L0(G )×Pq) such that

ρ(X) = sup
Q∈Pq

K(E[−X
dQ
dP
|G ],Q),

K must satisfy

K(Y,Q) = inf
ξ∈Lp

G (F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G
]
≥ Y

}
.

Define the set A (Y,Q) =
{

ξ ∈ Lp
G (F ) | E

[
−ξ

dQ
dP |G

]
≥ Y

}
.

Lemma 3.4. For each (Ȳ , Q̄) ∈ L0(G )×Pq

K(Ȳ , Q̄) = sup
Q∈Pq

inf
X∈A (Ȳ ,Q̄)

K
(

E
[
−X

dQ
dP
|G
]
,Q
)

(3.25)

Proof (Proof of the Lemma). To prove (3.25) we consider
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ψ(Q, Q̄,Ȳ ) = inf
X∈A (Ȳ ,Q̄)

K
(

E
[
−X

dQ
dP
|G
]
,Q
)

Notice that E[−X dQ̄
dP |G ]≥ Ȳ for every X ∈A (Ȳ , Q̄) implies

ψ(Q̄, Q̄,Ȳ ) = inf
X∈A (Ȳ ,Q̄)

K
(

E
[
−X

dQ̄
dP
|G
]
, Q̄
)
≥ K(Ȳ , Q̄)

On the other hand E[Ȳ dQ̄
dP |G ] = Ȳ so that−Ȳ ∈A (Ȳ , Q̄) and the the second

inequality is actually an equality basically

ψ(Q̄, Q̄,Ȳ )≤ K
(

E
[
−(−Ȳ )

dQ̄
dP
|G
]
, Q̄
)
= K(Ȳ , Q̄).

If we show that ψ(Q, Q̄,Ȳ )≤ ψ(Q̄, Q̄,Ȳ ) for every Q ∈Pq then (3.25) is
done. To this aim we define

C =

{
A ∈ G | E

[
X

dQ̄
dP
|G
]
= E

[
X

dQ
dP
|G
]

on A, ∀X ∈ Lp
G (F )

}
D =

{
A ∈ G | ∃X ∈ Lp

G (F ) s.t. E
[

X
dQ̄
dP
|G
]
≶ E

[
X

dQ
dP
|G
]

on A
}

For every C ∈ C we have for every X ∈ Lp
G (F )

K
(

E
[
−X

dQ
dP
|G
]
,Q
)

1C = K
(

E
[
−X

dQ
dP
|G
]

1C,Q
)

1C

= K
(

E
[
−X

dQ̄
dP
|G
]

1C, Q̄
)

1C = K
(

E
[
−X

dQ̄
dP
|G
]
, Q̄
)

1C

which implies ψ(Q, Q̄,Ȳ )1C = ψ(Q̄, Q̄,Ȳ )1C.
For every D∈D there will exists X ∈Lp

G (F ) such that whether E
[
−X dQ̄

dP |G
]
>

E
[
−X dQ

dP |G
]

on D or < on D. Let us define Z =X−E
[
−X dQ̄

dP |G
]
. Surely
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E
[
Z dQ̄

dP |G
]
= 0 but E

[
Z dQ

dP |G
]
≶ 0 on D. We may deduce that for every

α ∈ L0(G ), −Ȳ +αZ ∈A (Ȳ , Q̄) and also notice that any Y ∈ L0(G ) can
be written as Y = E[(−Ȳ +αY Z) dQ

dP |G ] on the set D. Finally

ψ(Q, Q̄,Ȳ )1D ≤ inf
α∈L0(G )

K
(

E
[
−(−Ȳ +αZ)

dQ
dP
|G
]
,Q
)

1D

= inf
Y∈L0(G )

K (Y 1D,Q)1D = inf
Y∈L0(G )

K
(
Y 1D, Q̄

)
1D

= K
(
Ȳ , Q̄

)
1D

Now we need to show that there exists a maximal element in both
class C and D . To this aim notice that if A,B ∈ C then A∪B, A∩B be-
long to C . Consider the set {1C|C ∈ C }: the set is upward directed since
1C1 ∨ 1C2 = 1C1∪C2 for every C1,C2 ∈ C . Hence we can find a sequence
1Cn ↑ sup{1C|C ∈ C }= 1Cmax where Cmax = ∪nCn ∈ G . Through a similar
argument we can get a maximal element for D , namely Dmax: notice that
P(Cmax∪Dmax) = 1 so that we conclude that ψ(Q, Q̄,Ȳ ) ≤ ψ(Q̄, Q̄,Ȳ ) =
K(Ȳ , Q̄) and the claim is proved.

Back to the proof of uniqueness. By the Lemma

K(Ȳ , Q̄) = sup
Q∈Pq

inf
X∈A (Ȳ ,Q̄)

K
(

E
[
−X

dQ
dP
|G
]
,Q
)

≤ inf
X∈A (Ȳ ,Q̄)

sup
Q∈Pq

K
(

E
[
−X

dQ
dP
|G
]
,Q
)
= inf

X∈A (Ȳ ,Q̄)
ρ(X)

We need to prove the reverse inequality and then we are done. Again we
consider two classes of G -measurable sets:

C =
{

A ∈ G | K(Ȳ , Q̄)1A ≥ K(Y,Q)1A ∀(Y,Q) ∈ L0(G )×Pq}
D =

{
A ∈ G | ∃(Y,Q) ∈ L0(G )×Pq s.t. K(Ȳ , Q̄)< K(Y,Q) on A

}
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For every C ∈ C the reverse inequality is obviously true.
For every D ∈ D there exists some (Q,Y ) ∈ L0(G )×Pq such that
K(Y,Q) > K(Ȳ , Q̄) on D. This means that it can be easily build up a
β ∈ L0(G ) such that β > K(Ȳ , Q̄) on D and the set UD

β
= {(Y,Q) ∈

L0(G )×Pq|K(Y,Q)≥ β on D} will be non empty. There exists (S̄, X̄) ∈
L0
++(G )×Lp

G (F ) with

Ȳ S̄+E
[

X̄
dQ̄
dP
|G
]
< Y S̄+E

[
X̄

dQ
dP
|G
]

on D

for every (Y,Q) ∈UD
β

.
All the following equalities and inequalities are meant to be holding P

almost surely only on the set D. Set Λ =−Ȳ −E[ X̄
S̄

dQ̄
dP |G ] and X̂ = X̄

S̄ +Λ ,

so that E[X̂ dQ̄
dP |G ] =−Ȳ : for every (Y,Q) ∈Uβ

Ȳ S̄+E
[
X̄ dQ̄

dP |G
]
< Y S̄+E

[
X̄ dQ

dP |G
]

implies Ȳ +E
[(

X̄
S̄ +Λ

)
dQ̄
dP |G

]
< Y +E

[(
X̄
S̄ +Λ

)
dQ
dP |G

]
implies Ȳ +E

[
X̂ dQ̄

dP |G
]
< Y +E

[
X̂ dQ

dP |G
]

i.e. Y +E
[
X̂ dQ

dP |G
]
> 0 for every (Y,Q) ∈Uβ .

For every Q ∈Pq define YQ = E
[
−X̂ dQ

dP |G
]
. If there exists a B⊆D ∈

G such that K(YQ,Q)≥ β on B then YQ +E
[
X̂ dQ

dP |G
]
> 0 on B.

In fact just take (Y1,Q1) ∈UD
β

and define Ỹ = YQ1B +Y11BC and Q̃ ∈Pq

such that
dQ̃
dP

=
dQ
dP

1B +
dQ1

dP
1BC

Thus K(Ỹ , Q̃) ≥ β on D and Ỹ + E
[
X̂ dQ̃

dP |G
]
> 0 on D, which implies

YQ +E
[
X̂ dQ

dP |G
]
> 0 on B and this is absurd.

Hence K(YQ,Q)< β . Surely X̂ ∈A (Ȳ , Q̄) and we can conclude that
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K(Ȳ , Q̄)1D ≤ inf
X∈A (Ȳ ,Q̄)

sup
Q∈Pq

K
(

E
[
−X

dQ
dP
|G
]
,Q
)

1D

≤ sup
Q∈Pq

K
(

E
[
−X̂

dQ
dP
|G
]
,Q
)

1D ≤ β1D

The equality follows since β can be taken near as much as we want to
K(Ȳ , Q̄) and then we conclude that

K(Ȳ , Q̄) = inf
X∈A (Ȳ ,Q̄)

ρ(X).

Repeating the argument in Lemma 3.4 we can find a maximal element
Dmax ∈D and Cmax ∈ C and conclude from P(Cmax∪Dmax) = 1.
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29. FöLLMER, H. AND PENNER, I. (2006) Convex risk measures and the dynamics
of their penalty functions , Statistics and Decisions 24(1), 61-96.
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