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Introduction

Recent advances in biotechnology and the availability of ever more pow-

erful computers have led to the formulation of increasingly complex mod-

els at all levels of life sciences, in particular of cardiac electrophysiology.

Multiscale modeling of the bioelectric activity of the heart, taking into

account macroscopic (fiber architecture and anisotropy) and microscopic

(cellular) features of the tissue, aim to develop predictive tools for fu-

ture drug design and patient-specific therapies, using detailed and efficient

three-dimensional solvers for the governing equations of tissue electro-

physiology.

At the microscopic level, models of cellular electrophysiology are built

up via an iterative interaction between experiment and theory. The se-

quential activation of depolarizing and repolarizing currents carried by ion

channels, specified proteins located across the cell membrane, give rise to

cardiac action potentials, which describe the pointwise excitation of the

tissue. Action potential waveforms are distinct in different regions of the

hearth owing to differences in channels’ expression. In the first chapter of

this thesis, after a brief introduction on cellular electrophysiology and the

underlying mathematical modeling techniques, we will provide a review

of the experimental results related to the cellular heterogeneity of the ca-

nine left ventricle and, starting from a recently published model of canine

epicardial cell represented by a stiff nonlinear system of 29 ODEs, we will

then derive and validate a model of canine LV cellular heterogeneity based

on available published experimental data.

At the macroscopic level, the cardiac tissue can be represented as the
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superimposition of two anisotropic continuous media, the intra- (i) and

extra- (e) cellular media, coexisting at every point of the tissue and sepa-

rated by a distributed continuous cellular membrane; the cardiac Bidomain

model consists of a system of two nonlinear Reaction-Diffusion equations

for the intra- and extra-cellular potentials ui and ue




∂tv − div(Di∇ui) + Iion(v, w, c) = 0 in Ω× (0, T )

− ∂tv − div(De∇ue)− Iion(v, w, c) = −Ieapp in Ω× (0, T )

nTDi,e∇ui,e = 0 in ∂Ω× (0, T )

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0 in Ω× (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω

,

where v = ui − ue is the transmembrane potential, Iion the ionic cur-

rent per unit volume, Ieapp the applied extracellular stimulus, Di and De

the anisotropic diffusion tensors of the two media accounting for fiber ro-

tation and tissue anisotropy. This degenerate parabolic system of PDEs

is coupled with the stiff ionic model where w are the gating variables

of the ionic channels and c the intracellular ionic concentrations. The

Monodomain model, a single parabolic Reaction-Diffusion equation for

the transmembrane potential, is usually derived in literature by assuming

equal anisotropy ratio of the two media. In this thesis, the anisotropic

Monodomain model will be derived from the Bidomain model by assum-

ing that the major source of electrical flux is directed along the fibers. Both

models are discretized by the finite element method with Q1 elements in

the three dimensional space and a semi-implicit IMEX method in time; for

the Bidomain model shown above, we then obtain the following iteration

matrix
1

δt

[
M −M

−M M

]
+

[
Ai 0
0 Ae

]
,

where Ai and Ae are the stiffness matrices related to the elliptic diffusion

part of the PDEs, M the mass matrix and δt is the time step. In Chap-

ter two, we will thus introduce the differential formulation of both the

models, and we will show how the Monodomain can be derived from the
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Bidomain model. The variational formulations at the semidiscrete level

will be also shown and we will describe in details the splitting of the time

operator. Additional details related to the variational formulation of the

elliptic stationary problems will be given in order to provide additional

results needed in the following chapters.

For the three-dimensional solvers considered in this thesis, the main

computational costs at each time step are associated with the solution of

a large and sparse linear system. We will use the Preconditioned Conju-

gate Gradient method (PCG) since both the Bidomain or the Monodomain

iteration matrices are symmetric positive semi-definite (Monodomain ma-

trix is positive definite); PCG efficiency depends on the choice of the ini-

tial guess and on the preconditioner. Namely, at the mth iteration of the

method the well known formula for error reduction holds

||y − ym||A ≤ 2||y − y0||A
(√

κ2(M−1A)− 1√
κ2(M−1A) + 1

)m

,

where y is the exact solution vector of the linear system, y0 the PCG initial

guess, ym the m-th iterate of the PCG, A the iteration matrix, M the pre-

conditioner and κ2(M
−1A) the condition number of the preconditioned

system. The choice of the PCG initial guess can thus produce a gain in the

iterative solution process lowering the initial residual, though it will not be

as substantial as using an optimal preconditioner. However, the latter can

be designed independently from the choice of the initial guess. In Chapter

three, we will thus analyze different strategies for the choice of the PCG

initial guess for the the cardiac Monodomain and Bidomain models, only

using the solutions obtained in the previous time steps: namely, we will

study the efficiency of lagrangian interpolations in time of the previous

solutions and some projection-based techniques, such the Fischer’s algo-

rithms and the Proper Ortoghonal Decomposition (POD) combined with

a usual Galerkin technique. Finally, since the most recent models used to

reproduce cellular reaction are very sensible to the initial ionic concen-

trations, we will introduce and validate a useful technique, based on an

offline simulation of a one-dimensional fiber, to obtain suitable initial val-
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ues for the ionic concentrations in order to reduce the necessary number

of heart beats in the three dimensional context. Numerical results on the

influence of transmural cellular heterogeneity on repolarization patterns in

the tissue will be also provided for the Monodomain model.

In Chapter four we will introduce and analyze non-overlapping Do-

main Decomposition preconditioners of Neumann-Neumann (NN) type

for the Monodomain and Bidomain models. After introducing the dis-

crete bilinear forms of their Schur complements and additional results of

upper bounds for finite element functions defined at the interface of the

non-overlapping partition, we will explicitly construct such precondition-

ers and we will provide theoretical estimates. In particular, for the Mon-

odomain model, we will construct and analyze the one-level multisubdo-

main NN preconditioner and we will be able to prove that the condition

number of the preconditioned Monodomain operator will be independent

of the number of subdomains of the non-overlapping partition and can be

bounded by

κ2(M
−1
NN ŜΓ) ≤ C

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2,

where ŜΓ is the Schur complement matrix of the Monodomain model, h
is the discretization step, H the characteristic size of the non-overlapping

partition, σM and σm the continuity and coercivity parameters of the Mon-

odomain stiffness matrix and δt is the time step. For the Bidomain model

we will consider the two-level hybrid Balancing version of the NN pre-

conditioner (BNN), since the NN preconditioner itself cannot be directly

applicable to the Bidomain model due to the singularity of the local prob-

lems involved in the application of the preconditioner. We will consider

two choices for the balancing coarse space; in particular, we will be able

to prove that the condition number of the preconditioned Bidomain op-

erator using a minimal coarse space, needed to assure balancing, will be

independent of the number of subdomains and bounded from above by

κ2(M
−1
BNN ŜΓ) ≤ C

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2,
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where now σM = max{σi
M , σ

e
M} and σm = min{σi

m, σ
e
m} where σi,e

M

and σi,e
m are the continuity and the coercivity parameters of the elliptic part

of the Bidomain iteration matrix. Using a suitable enriched coarse space

we will prove that the condition number of the preconditioned Bidomain

operator will be independent of the number of subdomains and bounded

from above by

κ2(M
∗−1

BNN ŜΓ) ≤ C max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2,

where now σi,e(j)

M and σi,e(j)

m are the maximum and minimum eigenval-

ues of the diffusion tensors of the jth subdomain. Numerical results will

sharply confirm the theoretical estimates.

In Chapter five, we will introduce and analyze the recent Balancing

Domain Decomposition by Constraints (BDDC) preconditioner for the

Bidomain model; BDDC is a two-level additive preconditioner based on a

non-overlapping partition of the spatial domain, and which is the dual of

the FETI-DP preconditioner using the same set of primal constraints. Two

BDDC formulations present in the literature will be introduced: a first

one based on Lagrange multipliers and a second one which implements a

change of basis of the underlying finite element space. Theoretical esti-

mates and parallel results will be provided, showing the robustness of such

a preconditioner for the cardiac Bidomain model in the presence of jumps

in the coefficients of the stiffness matrix. In particular, using a special

change of basis, we will be able to prove that the condition number of the

preconditioned Bidomain operator will be independent of the number N
of subdomains and can be bounded from above as

κ2(M
−1
BDDC ŜΓ) ≤ C max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

Experimental results will improve the latter estimate for small values of δt
showing a sigmoidal dependence of the condition number of the BDDC
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operator from the time step. Results will be also provided combining the

BDDC preconditioner and the POD technique for the choice of the initial

guess.

In Chapter six, we will introduce the inexact formulation of the BDDC

preconditioner for the Bidomain model in order to deal with the intrinsic

computational limitations of all non-overlapping preconditioners. In par-

ticular, since the main limitations of memory consumption are associated

with the factorizations of the subdomain Dirichlet and Neumann prob-

lems involved in the application of the preconditioner, we will replace

such problems with the application of Algebraic MultiGrid (AMG) pre-

conditioners in order to exploit their optimal complexity and their spectral

equivalence with the original local problems of the Bidomain model. After

introducing in details the formulation of the inexact BDDC preconditioner,

which relies on the original formulation of BDDC based on Lagrange mul-

tipliers, we will provide a theoretical link between the exact and inexact

formulations; numerical results will fully confirm the theoretical results.

Finally, we will provide parallel large scale numerical results regarding the

scalability of the inexact BDDC method considered.

Parallel codes have been developed in Fortran90 using MPI for mes-

sage passing and several HPC libraries like PETSc, LAPACK, UMFPACK,

MUMPS, SLEPc and HYPRE. Code developing has been performed us-

ing the clusters Ulisse and Nemo located at the Math department; large

numerical simulations (up to 576 computing cores) have been performed

with IBM machines BCX (power5) and SP6 (power6) of CINECA, and

Linux cluster MATRIX of CASPUR. BDDC code has been also used to

validate a theoretical study on the solution of the three-dimensional linear

elasticity system in the almost compressible case using Gauss-Lobatto-

Legendre spectral elements, in collaboration with Prof. Luca F. Pavarino

(University of Milan) and Prof. Olof B. Widlund (Courant Institute, NY).
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Chapter 1

Cellular models of cardiac

electrophysiology

1.1 Cellular electrophysiology

The mechanical functioning of the mammalian heart depends on its proper

electrical functioning, reflected in the sequential activation of cells in spe-

cialized pacemakers regions of the heart and the propagation of activity

through the ventricles. Myocardial cellular electrical activity is attributed

to the generation, in response to an overthreshold stimulus, of action po-

tentials (AP). The propagation of activity and the coordination of the elec-

tromechanical functioning of the ventricles also depend on electrical cou-

pling between cells, mediated by gap junctions. The exciting wave is ini-

tiated in specialized self-depolarizing cells located in the sinoatrial (SA)

node that acts as pacemakers (see figure 1.1). The wave is then propa-

gated through the atria to the AV node; following a brief pause in the AV

node, excitation spreads in the ventricles through the right and left bundle

branches. Ramifications of the bundle branches give rise to the subendo-

cardial network of the Purkinje fibers, that transmit the electrical impulse

into the working myocardium. The heart is then activated from apex to
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base, from endocardium to epicardium, and his normal coordinated elec-

trical functioning is readily detected in surface electrocardiograms (ECG

in figure 1.1). The P wave indicates atrial excitation, the QRS complex

ventricular contraction and the following T wave the subsequent ventricu-

lar relaxation.

50

100
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200

250

300

350

400

450

500

550

Figure 1.1: Electrical activity in the myocardium. Top: schematic of a human heart

with illustration of typical action potential waveforms recorded in different regions. Bottom:

schematic of a surface electrocardiogram; three sequential beats are displayed (redrawn from

[97]).

The generation of myocardial APs reflects the sequential activation

and inactivation of ion channels that conduct depolarizing (inward Na+

and Ca2+) currents, and repolarizing (outward K+) currents. The wave-

forms of APs in different regions of the heart are distinct, owing to differ-

ences in the expression and/or the properties of the underlying ion chan-

nels; moreover, waveforms of cardiac APs are different among the animal

species. Regional differences contribute to the normal unidirectional prop-

agation of excitation through myocardium and to the generation of normal
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cardiac rhythms. Changes in the properties or the functional expression of

myocardial ion channels can results from inherited mutations in the genes

encoding these channels, from myocardial disease or from drug adminis-

tration: these changes can lead to changes in APs waveforms, synchro-

nization and propagation, thereby predisposing the hearth to potentially

life-threatening arrhythmias.

0 50 100 150 200 250 300
−100

−80

−60

−40

−20

0

20

40

PHASE 0

PHASE 1

PHASE 2

PHASE 3

Figure 1.2: A ventricular action potential

In the following we will concentrate on canine left ventricular APs; for

a review to whole heart regional and species differences see [97]. AP up-

stroke (phase 0 in figure 1.2) is rapid, resulting from the rapidly activation

(and inactivation) of voltage-gated sodium channels underlying the fast in-

ward sodium current INa. Phase 0 is followed by a transient repolarization

(phase 1 or notch), reflecting sodium channels inactivation and the activa-

tion of the fast transient voltage-gated outward potassium current Ito1 and

the transient calcium dependent chloride current Ito2. Membrane depolar-

ization also activates voltage-gated calcium current ICaL through L-type

calcium channels during the plateau (phase 2): this current is the main

trigger for excitation contraction coupling in the working myocardium.

During the plateau phase, the driving force for potassium efflux is high

and, as the calcium channels inactivate, the outward potassium currents

predominate, resulting in repolarization (phase 3), bringing the transmem-

brane voltage back to the resting potential. Although sodium channels

inactivation is rapid, some channels reopen later during phase 3; this late
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sodium current is called INaL. In contrast to Na+ and Ca2+ channels,

there are multiple types of K+ channels that contribute to AP repolariza-

tion: voltage-gated channels underlying the delayed rectifier currents IKs

and IKr during phase 3, and non-voltage gated channels underlying the

inward rectifier IK1 current that anchors the transmembrane potential to

its resting value (late phase 3).

1.2 Evidences of left ventricular transmural

heterogeneities

100 200 300 400 500 600 700 800

0

50

100

150

200

250

Figure 1.3: Superimposed APs recorded in isolated cells from different regions of the

canine heart at different BCLs (redrawn from [83])

Until approximately twenty years ago, the cellular composition of the

ventricular wall was thought to be largely homogeneous. Recent advances

in our understanding of the electrophysiology and pharmacology of the

ventricular myocardium have revealed at least three distinct ventricular

types of isolated cells: epicardial (Epi), midmyocardial (M) and endocar-

dial (Endo) cells (see figure 1.3). Differences in the expression patterns of

a number of ion channels and in the pharmacologic profiles of these three

myocardial cell types have been described in the dog, guinea pig, rabbit

and human ventricles [2]. Recently ion channels’ gene expression in the

non-diseased human heart has been screened, showing statistical relevant

differences among different regions of the heart, confirmed by the analysis

4



of the protein levels [39].

The principal feature of the M cell is the ability of its action potential

to prolong more than that of epicardium or endocardium with slowing of

pacing rate ([82], [83]). In figure 1.4 experimental AP duration (at dy-

namical steady state) of isolated cells, measured at 90% of repolarization

(APD90), is plotted versus the basic cycle length of stimulation (BCL): a

transmural gradient is evident with the longest APD90 in M cells and the

shortest in Epi and Endo cells.

50

100

150

200

250

300

Figure 1.4: APD90 rate relationship from different regions of the canine heart (redrawn

from [82])

A review of canine LV transmural heterogeneities is given in the fol-

lowing; deeper descriptions with experimental data and related simula-

tions will be given in the next sections. Properties of sodium currents

expressed in different cell types from the same species, are similar [97].

Kinetic properties of L-type calcium channels are quite similar in differ-

ent cell types too ([23], [76], [7]), even if an experimental study reports a

transmural gradient in channel density [149]. Since this disparate results

may be related to differences in experimental conditions or in cells’ gender

5



[150], we choose to assume the same channel densities and kinetic param-

eters for ICaL in all types of cells considered. Also IK1 current has been

considered the same among the three cell types [82]. The ionic currents

that are known to exhibit transmural heterogeneities in the LV include the

transient outward potassium current Ito1 ([82], [76], [139]), the two com-

ponents of the delayed rectifier potassium currents IKs and IKr [83], the

late sodium current INaL ([156], [143]), the sodium-calcium exchanger

(NCX) current INaCa ([155], [151]), the sodium-potassium pump (NaK)

current INaK [41] and the sarcoplasmic reticulum pump current Iup [73].

Ito1 : Channel density of Ito1 varies transmurally in isolated cells from

different regions of the LV whereas the time- and voltage-dependent

properties of are similar. Differences in channel density influence

AP shape, causing the observed notch of isolated cells from epi-

cardium and midmyocardium ([82], [139], [76]).

IKs : As for the transient outward current, the time- and voltage-dependent

properties of IKs in isolated cells from different regions of the LV

are similar whereas the channel density varies transmurally: the

lowest density of channels has been measured in M cells, and this

contributes importantly to the longest APD of M cells (see [83])

IKr : The rapidly activating delayed rectifier potassium current IKr is al-

most the same with respect to his kinetics parameters, but a minimal

difference in channel density exists ([83]).

INaL : Late sodium current contributes to maintaining the AP plateau in

the different cell types across the wall of the canine LV; the existing

regional differences are due to variations in channel density, with

the greatest current reported in M cells, the lowest in Endo and Epi

cells ([156], [143]).

ICaT : In cells isolated from endocardium is expressed a different class

of calcium channels, together with L-type channels, called T-type

channels [149]. These channels (also known as low voltage calcium

channels) are mainly expressed in cells of the conducting system,

6



in which they play a role in pacemaking. They activate at relatively

hyperpolarized potentials and does not contribute to excitation con-

traction coupling (maybe because they are located far away from

T-tubules).

INaCa : A significant transmural gradient of INaCa is present in LV

([155],[151]): differences in protein levels have been measured,

with the Epi layer exhibiting the greatest level compared with M and

Endo layers. Yet, transmural differences in the current produced by

the exchanger has been reported, with the greatest measured current

in Epi cells, the lowest in Endo cells [151]. In a different experiment

([155]), the greatest current was found in M cells but this article

alone cannot distinguishes whether transmural differences in INaCa

result from a smaller density of channels, nonuniform sarcoplas-

matic reticulum (SR) loading, or some factor limiting SR calcium

release in the proximity of endocardial exchanger [155].

INaK : Transmural heterogeneities in the sodium-potassium pump have

been published in [41], reporting a transmural gradient in the cor-

responding current: the latter larger in Epi cells than in Endo cells,

with M cells being intermediate.

Iup : Transmural differences in canine calcium handling has been ob-

served in wedge preparations [73] and in isolated cells [23]. Both

studies reported a slower (larger time constant) calcium transient

decay and a greater calcium transient duration in endocardium com-

pared with epicardium. In [73] a reduced expression of the protein

encoding the channels has been measured in the midmyocardial and

endocardial layers compared with the epicardial layer. These facts

suggests that the transmural heterogeneity of calcium handling re-

ported is probably an intrinsic property of the cells, because activa-

tion sequence (endocardial versus epicardial pacing) did not influ-

ence the results [73].
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1.3 Mathematical modeling of isolated cells

The first mathematical model designed to describe accurately AP wave-

form, the associated permeability changes of the cellular membrane and

tissue conduction was proposed by Alan Lloyd Hodgkin and Andrew Field-

ing Huxley in 1952 [48]; for their pioneering and seminal work they re-

ceived (sharing it with John C. Eccles for his works on synapsis and mo-

toneurons) the Nobel Prize in medicine in 1963. Their formalism, de-

veloped to describe the AP of neurons has been used later in many mod-

els describing cardiac AP: for review of published computational models

and the relative interaction between experiment and theory on cardiac cell

(roughly speaking, the state of the art) see [117], [99], [110]. Since in this

section whole cellular models will be introduced together with a sketch of

implementation of experimental techniques, we refer the reader to the next

section for a more complete derivation of the Hodgkin-Huxley formalism

from the more general statistical point of view of Markov chains.

Different ionic concentrations, between outside and inside the cell,

build up a potential difference (an electrochemical gradient) across the cel-

lular membrane and thus the latter acts as a capacitor. Specified proteins

located on the cellular membrane are responsible for the diffusion of ions

(ionic currents) between inside and outside the cell: ionic channels (pores

of the membrane), pumps and exchangers. Ions flow through ionic chan-

nels along their electrochemical gradient (passive transport) whereas the

trafficking of ions through pump and exchangers is made against the elec-

trochemical gradient (active transport): pumps use energy derived from

the metabolism (ATP hydrolysis), whereas exchangers exploit the diffu-

sion energy of other ions. Different types of ionic channels, pumps and

exchangers exist, each type made up by a population of identical proteins.

The contractile function of the cell is a complex system involving differ-

ent subcellular compartments for calcium handling. Hence the quantity

of interest to reproduce cellular electrophysiology are the transmembrane

potential v, the gating variables of ionic channels

w = (w1, . . . , wM ),
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and the ionic intracellular and subcellular concentration variables

c = (c1, . . . , cP ).

Ionic currents acts as built in parallel with the capacitor behavior of the

membrane: the total transmembrane current per unit area im (measured in

µA/cm2) is therefore the sum between capacity current and ionic current:

im = cm
dv

dt
+ iion, (1.1)

where cm is the surface capacitance (measured in µF/cm2),
dv

dt
the ca-

pacity current and iion the ionic current per unit area. When an external

overthreshold conservative stimulus iapp is applied (see [64] for a math-

ematical analysis of the excitation process in the phases space), the all-

or-none cellular response is the AP and the variation of transmembrane

voltage for isolated cells is described by the equation:

dv

dt
= − 1

cm
(iion + iapp). (1.2)

The right hand side of the latter equation can be viewed as composed by

an autonomous system (represented by iion and the associated system of

ODEs) and a forcing term iapp applied every fixed time T (referred to in

cardiac literature as Basic Cycle Length, BCL); problems of this type can

be classified as impulsive ODEs [4].

The transmembrane ionic current per unit area has the following gen-

eral structure:

iion(v, c, w) =

N∑

k=1

Gk(v, c)(

Mk∏

j=1

w
pkj

kj
)Φk(v) + ipumps(v, c), (1.3)

where N is the number of different types of ionic currents and ipumps

is the total time independent (thus algebraic functions) ionic flux through

pumps and exchangers. As a convention, an outward current is considered
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positive and therefore acts to reduce the transmembrane voltage, whereas

an inward current is considered negative and thus raise up the transmem-

brane voltage. The current through the k-th population of ionic channels

is characterized by a specific membrane conductance Gk that account for

the whole number of channels of the population (i.e. channel density,

measured in µA/cm2), an instantaneous current voltage relation Φk(v)
that account for the instantaneous current through a single channel of the

population, andMk dimensionless variablesw
pkj

kj
accounting for different

gating mechanism of the k-th population. pkj is an integer representing

the number of identical and independent subunits of the j-th gate for the

k-th current; the opening probability of each subunit is described by a

nonlinear ODE having the following structure





dwkj

dt
= αkj (v)(1 − wkj )− βkj (v)wkj = Rkj (v, w)

0 ≤ wkj (0) = w0
kj

≤ 1
, (1.4)

where akj (v) and bkj (v) (measured in s−1) are positive functions repre-

senting voltage-dependent transition rates (from closed to open state and

from open to closed state respectively) for each subunit of the j-th gate of

the k-th current. All the pkj subunits must be in the conductive state to

open the j-th gate, therefore the probability that the j-th gate is open is

w
pkj

kj
, and

∏Mk

j=1 w
pkj

kj
is the probability that the k-th channel is open (or

equivalently the proportion of open channels of k-th population as it will

be shown in the next section).

Experiments on ionic currents (see [47]) are mainly conducted con-

trolling the transmembrane voltage; briefly, in voltage clamp (VC) and

patch clamp (PC) conditions the transmembrane voltage is held fixed (i.e.

dv/dt = 0 in (1.1)), whereas in voltage ramp (VR) conditions time deriva-

tive of transmembrane voltage is held fixed: ionic currents are measured

as the transmembrane current necessary to maintain the conditioning (or

clamped) potential. VC and PC techniques are principally used analyz-

ing currents through ion channels, VR studying time independent currents

through pumps and exchangers; in any case it is possible to isolate, with
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specific pharmacological aid (i.e. channel blockers or ion-free extracellu-

lar and/or intracellular conditions), each component of the ionic current.

Differences between VC and PC exist: VC measures the total determinis-

tic current across the membrane, PC isolates a little part of the membrane

and measures the stochastic current through a single channel (we refer the

interested reader to [47] for a deeper explanation). However, with these

experimental techniques the voltage is fixed and therefore it is possible to

analytically solve equation (1.4) and consequently infer the values of the

transition rates. Solutions of (1.4) at a given voltage v are characterized

by the following two quantities:

wkj ,∞(v) =
αkj (v)

αkj (v) + βkj (v)

τwkj
(v) =

1

αkj (v) + βkj (v)
,

where the dimensionless variablewkj ,∞(v) is called steady state availability

and τwkj
(v) the time constant (measured in s) of the j-th gate of the k-th

current at v .

Instantaneous current voltage relation can be of two types:

ΦLIN(v) = v − Ec (1.5)

ΦGHK(v) =
z2vF 2

RT

cie
zFv/RT − ce

ezFv/RT − 1
, (1.6)

where Ec is the Nerst potential of the ion c, z is the valence of ion c, F
the Faraday constant, R the gas constant, T the absolute temperature and

ci and ce the internal and external concentration of ion c. Both formulas

are derived for electrodiffusion theories and are the results of two distinct

limits for channel length: equation (1.5) (long-channel limit) is linear with

transmembrane voltage, whereas equation (1.5) (short-channel limit) is the

constant field equation, otherwise referred to as GHK equation; in both
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cases, the reversal potential is the so called Nerst potential

Ec =
RT

F
log

ce
ci
,

which can be derived from a statistical mechanics point of view (for math-

ematical derivations of these standard formulas, the reader is referred to

[64]).

The dynamics of each intracellular concentration variable is tracked

considering ionic and diffusion fluxes. The instantaneous flux Jk of a

single ionic current ik(v, w) across the cellular membrane is described by

the formula [28]:

Jk = − ik(v, w)Acap

V zF
, (1.7)

where V is the intracellular volume,Acap is the capacitive membrane area,

z is the valence of the ion and F is the Faraday constant. The minus sign

appear taking into account the convention on the currents. The diffusion

flux JDIFF between one subcellular compartment with volume V1 and

local concentration c1 to another compartment with volume V2 and local

concentration c2 can be linearly approximated as

JDIFF = −c2 − c1
τ12

V1
V2
,

where τ12 is an experimental diffusion constant (measured in s) between

V2 and V1. Each concentration variable thus obeys the ODE:





dcj
dt

= Sj(v, w, c)

cj(0) = c0j

, (1.8)

where Sj(v, w, c) is the sum of all ionic and diffusive fluxes carrying ion

cj ; the total flux of the j-th ion in the time interval [t0, t1] can be computed

as: ∫ t1

t0

Sj(v, w, c)dt.
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For sake of completeness, the conservative stimulus current is added in

the computation of intracellular concentrations [53]: it is assumed equal

to −80µA/cm2, lasting for 1 ms and composed equally by potassium and

chloride ions.

The whole nonlinear system of ODEs describing cellular electrophysi-

ology is made up by equation (1.2) (where iion is given by equation (1.3)),

coupled with M (=
∑

kMk, i.e the number of gating variables) equation

of type (1.4), P (number of intracellular and subcellular ionic concentra-

tions) equation of type (1.8). Since different time scales exist during an AP

(see figure 1.2), the cellular model must be solved with implicit methods

designed for stiff problems. For these models, an usual choice in literature

is the Matlab variable-order solver ode15s (see also [126]).

50 100 150 200 250 300 350 400 450

50

100
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200

250

Figure 1.5: Schematic diagram of HRd2007 (redrawn from [81])

In the following we will consider the most recent published version

[81] of the Hund-Rudy model [54] (HRd2007), designed for LV epicar-
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dial canine cells; see figure 1.5 for a schematic diagram of the model.

Hrd2007’s nonlinear system of ODEs has dimension twenty-eight: ionic

currents considered are INa, INaL, ICaL, Ito1, Ito2, IKs, IKr, IKp and

IK1, pumps and exchangers currents are INaK , INaCa and IpCa. The

latter current is the calcium sarcolemmatic pump that extrudes calcium

ions from the cell. We eliminate the plateau potassium current IKp from

the original formulation because there is no evidence confirming its pres-

ence in canine ventricular cells ([97]). Dynamical intracellular ionic con-

centrations are sodium, potassium, calcium and chloride; subcellular cal-

cium concentrations have been considered in the network sarcoplasmatic

reticulum (NSR), in the junctional sarcoplasmatic reticulum (JSR) and in

the dyadic space (subspace) with the associated diffusion fluxes. Since

chloride concentrations are taken into account, the sodium-chloride co-

transporter CTNaCl and the potassium chloride cotransporter CTKCl are

included into the model. In the dyadic space, the calcium inward cur-

rent through L-type channels interact in a phenomenological way with the

ryanodine receptors (RyRs) to account for the excitation contraction cou-

pling and IRel is resulting the calcium release current from JSR. Calcium

buffers modeled in the intracellular volume are calmodulin and troponin,

whereas in the JSR the calsequestrin is considered; each of these buffer

mechanisms is assumed to be instantaneous. A protein kinase (CaMKII)

interacts with calcium handling: with calcium influx via L-type chan-

nels, with calcium release trough RyRs and with calcium uptake through

SERCA2a pump. The interested reader is referred to [81] and references

therein for a deeper description of model’s features and limitations, to-

gether with the complete set of model’s equations.

1.4 Hodgkin-Huxley formalism and continuous

time Markov chains

Although the current through the entire population of ionic channels of a

species can be assumed deterministic, the current through a single chan-

nel is stochastic: deterministic models are useful tools to account for the
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whole species behavior but, since most properties of ion channels are best

studied with single channel data [96], these models fail to reproduce phys-

iological states of the constitutive proteins of ion channels. Proteins are

typically composed of one or more pore-forming α-subunits that can be

modulated by accessory subunits [97]. Each subunit contains sensors that

can undergo conformational changes and must be in the activated position

to open the channel. Markov state models are the natural framework to

deal with this kind of complexity and they were applied after the stochas-

tic nature of the single channel current was revealed in 1976 by Neher

and Sakmann ([95], Nobel Prize in 1991), more than twenty years before

Hodgkin and Huxley’s work, further emphasizing the quality of their for-

malism.

The gating behavior of a single channel is assumed to be described by

a semi-Markov process, i.e. a collection of random variables

{X(t)|t ∈ R
+},

with values in a finite state space S = {1, . . . , N}, and in which states are

visited according to an (homogeneus) continuous time Markov chain, i.e.

∀s, t ≥ 0, ∀0 ≤ u ≤ s and i, j, x(u) ∈ S holds that [115]

Pij(t) =Prob {X(t+ s) = j|X(s) = i}
=Prob {X(t+ s) = j|X(s) = i,X(u) = x(u)}, (1.9)

where the line brackets denote the conditioning probability. In other words,

a continuous time Markov chain is a process with no memory of the past:

in fact, indicating with Ti the time spent by the system in state i (dwell

time), from (1.9) follows that

Prob {Ti > s+ t|Ti > s} = Prob {Ti > t}

∀s, t ≥ 0. Therefore the random variable Ti is memoryless and it must be

necessarily exponentially distributed, i.e.

Prob {Ti ≤ t} = 1− e−λit,
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for some λi ∈ R
+. Noting that < Ti >= λ−1

i , where < · > denote the

mean of a random variable, the parameter λi can be interpreted as the exit

rate from state i. Let us define, ∀i 6= j

qij = λiPij (1.10)

the transition rate from state i to state j; note that qij = 0 if states i and

j are unlinked. Markov chains generally have several loops in the model

that must satisfy microscopic reversibility. Microscopic reversibility is

derived from the law of conservation of energy and states that the product

of transition rate when traversing a loop clockwise must be equal to the

product when traversing the same loop counterclockwise [47].

Supposing that, in an infinitesimal time interval dt, the probability that

two transition occurs is o(dt) (i.e. o(dt)/dt → 0 if dt→ 0) holds that

lim
dt→0

1− Pii(dt)

dt
= λi (1.11)

lim
dt→0

Pij(dt)

dt
= qij (1.12)

∀i 6= j; therefore

λi =
∑

j 6=i

qij , (1.13)

i.e. the exit rate from state i is the sum of the transition rates from linked

states. From assumptions (1.11) and (1.13) follows the so called forward

Kolmogorov equations [144]:

d

dt
Pij(t) = −λiPij(t) +

∑

k 6=i

qikPkj(t) (1.14)

∀t ∈ R
+ and ∀i, j ∈ S.

The system of stochastic differential equations (1.14) describe the tem-

poral behavior of the transition probabilities for a continuous time Markov

chain, and exact stochastic trajectories of the process can be computed

with standard Monte Carlo methods. Drawing two random numbers r1
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and r2 uniformly distributed in [0, 1] and supposing that the system is in

state i, dwell times are computed as

Ti = − log r1/λi,

since they are exponentially distributed with parameter λi. At the end of

the dwell time, the next state k of the system is chosen if r2 ∈ Ik, where

Ik (k ∈ S, k 6= i) is a subinterval of [0, 1] of amplitude qik/λi.
Hodgkin and Huxley formalism can be derived analyzing the deter-

ministic behavior of the system. We will denote with xi(t) the probability

that a channel is in state i at time t: noting that the Kolmogorov equations

(1.14) provide the temporal behavior of the transition probabilities not of

the occupancy probabilities, and defining the set of states from whose the

system can reach state i as

Ri = {j ∈ S|qji 6= 0},

holds that [144]:

dxi
dt

=
∑

k∈Ri

qkixk(t)− λixi(t).

Therefore the vector of occupancy probabilities

x(t) = (x1(t), . . . , xN (t))T

obeys the linear system of stochastic differential equations

d

dt
x(t) = Q · x, (1.15)
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where the transition matrix Q is




−λ1 q21 . . . qn1
q12 −λ2 . . . qn2

...
. . .

. . .
...

q1n q2n . . . −λN


 . (1.16)

Most ion channel models have distinct eigenvalues of transition matrix Q

given in eq. (1.16), with one being zero, since the sum of each column of

Q is zero for equation (1.13), and the others negative [22].

Supposing to have a large population of independent and equally dis-

tributed channels {Xi}Mi=1 obeying (1.15), and defining the random vari-

able

Yk,i(t) =

{
1 if Xk(t) = i

0 otherwise

∀i ∈ S, from the laws of large numbers follows that

< lim
M→∞

1

M

M∑

k=1

Yk,i(t) >= xi(t),

and thus xi(t) describes the proportion of channels of the population oc-

cupying state i at a given time t. Therefore, since thousands of channels

exist for each species, we can treat deterministically system (1.15) in order

to describe the average behavior of the whole population of a species.

Single activating subunit model. The simplest model is given by assum-

ing that one subunit determines the opening and closure of the channel.

The Hodgkin-Huxley formalism can be schematized as

C
α(v)−−−⇀↽−−−
β(v)

O (1.17)

whereC andO denotes closed and open state, α(v) and β(v) are subunit’s

positive voltage dependent transition rates from closed to open state and
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from open to closed state respectively. The nonlinear system of differential

equations is thus





dC

dt
= −α(v)C(t) + β(v)O(t)

dO

dt
= α(v)C(t) − β(v)O(t)

,

and the markovian matrix is

Q =

[
−α β
α −β

]
.

Since ∀t ∈ R
+ must be C(t) + O(t) = 1, after some algebra the latter

system can be reduced to a nonlinear differential equation

dO

dt
=
O∞(v)−O

τO(v)
(1.18)

where

O∞(v) =
α(v)

α(v) + β(v)

τO(v) =
1

α(v) + β(v)
.

Assuming that v is constant and equal to v (as in VC and PC experimental

conditions) and that O(0) = O, the solution of (1.18) is

O(t) = O∞(v)− (O∞(v)−O)e
−

t

τO(v) . (1.19)

Therefore, for the simple gating schema given in eq. (1.17), if O <
O∞(v) the channels open and the qualitative behavior of the solution is

1 − e−t/τO(v); otherwise, if O > O∞(v) the channels close and the so-

lution behaves as e−t/τO(v). Since equation (1.19) tends to O∞(v) this

quantity is called steady state availability of the gate; moreover, since it
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holds that
O(t+ τO(v))−O(t)

O∞(v)−O(t)
=
e − 1

e
(1.20)

∀t ∈ R
+, τO(v) is called time constant of the gate. Greater time constants

imply a slower approach to steady state availability: in fact, assuming the

same initial condition and steady state availability, from eq. (1.20) follows

that O(τO(v)) is a constant function of the time constant (see Figure 1.6

and its caption).

O
∞

O
∞

A B

τ
1
 τ

2
τ

1
 τ

2

Figure 1.6: Simple gating mechanisms with same steady state availability and different

time constants. Panel A: opening gates. Panel B: closing gates. For each panel, steady state

availability (O∞) and time constants (τ1 < τ2) are shown.

Multiple activating subunit model. Supposing that K independent

and identical subunits regulate channel activation and denoting with Cj

the state of a channel with 0 ≤ j ≤ K subunits in the opening position

(i.e. the open state is CK ), the system in state Cj can move to state Cj+1

opening one of its K − j subunit in closing position (with transition rate

(K − j)α(v), where α(v) is the opening transition rate of each identical

subunit), or to state Cj−1 closing one of its j subunit (with transition rate

jβ(v), where β(v) is the closing transition rate of each identical subunit).

In this case, the markovian matrix becomes a tridiagonal matrix where the
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main diagonal is given by

(−Kα,−(K − 1)α− β, . . . ,−α− (K − 1)β,−Kβ),

the upper diagonal by

(β, 2β, . . . ,Kβ),

and the lower diagonal by

(Kα, (K − 1)α, . . . , α).

It is possible to show that the occupancy probability of state Cj for a chan-

nel of this type is (see [64]):

Cj =

(
K

j

)
Oj(1−O)K−j , (1.21)

where
(
·
·

)
is the binomial coefficient and O obeys the differential equa-

tion (1.18). With multiple subunits, open state probability shows an initial

delay (S shaped behavior in panel A of figure 1.7) because each subunit

must undergo an opening transition to open the channel, whereas channel

closure is faster than in the simple gating mechanism because one subunit

is enough to close the channel; with K subunits the time constant of the

gate is approximatelyK times lower than a single subunit model as it can

be seen in panel B of figure 1.7.

Multiple activating and inactivating subunits model. The models con-

structed above doesn’t account for the inactivation of channels (in time)

at the same constant potential value. This can be achieved considering

two different kind of subunits, one type regulating activation and one

regulating inactivation. Denoting with Ci,j the state of a channel with

0 ≤ i ≤ K independent and identical activating subunits (with forward

and backward transition rates α(v) and β(v) respectively) in opening po-

sitions and 0 ≤ j ≤ M independent and identical inactivating subunits

(with forward and backward transition rates γ(v) and δ(v) respectively) in
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A B

Figure 1.7: Qualitative comparison between opening (panel A) and closure (panel B) of a

channel with 1 subunit (continuous lines) and 4 subunits (dotted lines).

opening position, the open state probability CK,M is (see [64])

CK,M = OK
AO

M
I (1.22)

where OA and OI are the open state probability of an activating and inac-

tivating subunit respectively, i.e they obeys





dOA

dt
= α(v)(1 −OA(t)) − β(v)OA(t)

dOI

dt
= γ(v)(1 −OI(t)) − δ(v)OI(t)

. (1.23)

Figure 1.8 shows the open probability of a channel (continuous line) that

can inactivate in time together with the opening probabilities of the acti-

vating subunits (dotted line) and inactivating ones (dashed lines).

As we have seen, Hodgkin-Huxley formalism can be derived from

the more general framework of Markov chains when considering the in-

dependence and identity of subunits composing the channels. Although

the Hodgkin-Huxley formalism is a powerful tool capable to reproduce

the macroscopic observed features of the currents, more complex Markov
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Figure 1.8: Opening probability (continuous line) of a channel that can inactivate as the

product of the opening probability of one activating particle (dotted line) and one inactivating

particle (dashed line).

chains can account for more physiological models of channels and pro-

vide useful insights into their mutations [117]. They are now widely used

as accepted as the gold standard of ion channel modeling and extensively

used for detailed cellular simulations (see for example [44], [35], [38]).

However, the HRd2007 model has been chosen because it retains much of

the complexity observed in a cardiac cell without the help of markovian

models: clearly, a much simpler representation of the cell’s mechanisms

will loose accuracy in reproducing biophysical observations, but inserting

markovian models with their multiple states and small time sclaes in tridi-

mensional mathematical representation of the cardiac tissue would result

in computationally untractable problems.

1.5 Modeling transmural heterogeneities

In this section we will present the changes applied to HRd2007 in order

to fit experimental data related to LV transmural heterogeneities. We will

refer to this modified model as HHRd (Hetero HRd). Other models of

ventricular heterogeneity have been published ([38], [10], [124]): [124]
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has been developed from the Priebe- Beuckelmann model [109] based on

human data, [38] from the canine ventricular markovian model of Winslow

and Greenstein [44] whereas [10] has been assembled from the Hund-

Rudy model [54] and published in the meanwhile HHRd was developed.

Qualitative differences and similarities exist between the HHRd model and

the model published in [10], and they will be shown here and in the next

sections. Results for Epi cells will be shown in red, for M cells in blue and

for Endo cells in green. Cell geometry and capacitance is assumed equal

among the three types of cells [82].
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Figure 1.9: Panel A: Peak current voltage relations for Ito1 in the three cell types. Panel

B: Experimental values (redrawn from [82]).

Transient outward potassium current Ito1 varies transmurally because

of different channel densities; therefore we scale the maximum conduc-

tance of the current to reproduce the observed heterogeneity. With voltage

clamp techniques, the greatest peak current has been measured in Epi and

M cells, the lowest in Endo ([82], [76], [139]). The percentage of reduc-

tion from Epi to Endo cells vary among studies, from 80% ([82], [139])

to 50% [76]. The contribution of this current has been evaluated with the

same VC protocol used in [82], setting [K+]e = 6.0 mM: from an hold-

ing potential of −80 mV, the cell is depolarized to different test potentials

and peak of the current is measured. In figure 1.9 is provided a compari-
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son between experimental [82] and simulated peaks at clamped potentials:

the simulated current in Endo cells is greater than that measured in [82]

and [76], but the ratio between Epi and Endo currents is in accordance

with [139]. This choice has been made in order to get a more physiolog-

ical AP waveform for endocardial cells as in [10]. In the heterogeneous

model published in [38], this issue was overcame augmenting the maxi-

mum conductance of the chloride transient outward current Ito2: further

experimental investigations are mandatory to resolve this point.
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Figure 1.10: Heterogeneity of delayed rectifier potassium currents. Panel A: Tail current

voltage relations for IKs in the three cell types. Panel B: IKs experimental data. Panel C:

Tail current voltage relation for IKr . Panel D: IKs experimental data. (Experimental panels

redrawn from [83]).

Channel densities of delayed rectifier potassium currents IKs and IKr

vary transmurally. evaluating the tail currents (i.e. peak of current in re-
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sponse to repolarizing steps) in voltage clamp experiments, the greatest

IKs current has been measured in Epi and Endo cells, the lowest in M

cells ([83]). Regarding IKr , a minimal difference in channel density can

be enlightened evaluating the tail currents [83]. Although a calmodulin

mediated calcium dependence of IKs exists [125], we eliminate the cal-

cium dependence of IKs from the original formulation (as in the model

published in [44]) because it is based on guinea pig data [153]; further in-

vestigations, outside the scope of this study, are required to model this po-

tentially important mechanism of functional regulation of IKs. Focusing

on cellular heterogeneities, the contribution of delayed rectifier potassium

currents has been assessed measuring tail current densities with a VC pro-

tocol setting [K+]e = 6.0 mM (see [83]): from an holding potential of

−40 mV, the cell is depolarized for 5 seconds to different test potentials,

ranging from −20 to 60 mV, and then stepped back to −40 mV (tail cur-

rent densities are instantaneous peaks of the current during the step back);

figure 1.10 shows a comparison between experimental and simulated tail

currents densities versus the test potentials.

Late sodium current INaL varies transmurally [156]. We simulated

the same experimental VC protocol ([K+]e = 0 mM, [Cl−]e = 0 mM

and [Na+]i = 10 mM): from an holding potential of −130 mV, the cell is

clamped for 1 second to different test potentials ranging from−40 to 0mV.

The mean current density during intervals of 30-35 ms (Panel A in figure

1.11) and 295-300 (Panel B) ms after the start of the depolarizing pulse

has been simulated and compared in figure with experimental data. Time

constant of inactivation was modified from the original constant value of

600 ms according to the formula

τ = c1 exp(c2V )

where V is the potential and the constant values for the different cell types

are listed in Table 1.1, in better agreement with canine data published in

[86].

T-type calcium channels are present in Endo cells only; until now, they

are not considered in any of the ventricular canine models present in liter-

ature. The formulation of the gating variables, together with time constant
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Figure 1.11: Mean of simulated INaL current density (panels A and B) and experimental

data (panels C and D, redrawn from [156]) during 30-35 ms interval (panels A and C) and

during 295-300 ms interval (panels B and C) after the start of the depolarizing pulse.

of activation, is from [34]. Time constant and steady state of inactiva-

tion are from canine data published in [149]. Steady state of activation

has been assessed to reproduce observed peak current voltage relationship

[149]. In figure 1.12 simulated (solid line) and experimental (filled circles)

peak current voltage relationship have been compared; in order to perform

simulation at physiological temperatures (experimental data are at 29 Cel-

sius degrees) we assume aQ10 factor of 2.5 for the maximum conductance

of the current.

Since a significant transmural gradient in NCX protein levels exists

[151], a scaling parameter is introduced to the maximum current produced

by the exchanger. The relative contribution of INaCa is evaluated perform-

ing the same experimental protocol described in [151] ([K+]e = [K+]i =
0 mM): the cell is initially clamped for several minutes at −40mV to allow

adequate internal dialysis of calcium and then a descending VR from 80
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Epi M Endo

c1 495.1 426.9 387

c2 9.185E-3 3.334E-3 7.898E-3

Table 1.1: Constants defining the time constant of inactivation of the Late Sodium current

with the HHRd model. See text for details.
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Figure 1.12: Simulated (panel A) and experimental (panel B, redrawn from [149]) peak

current voltage relation of ICaT in Endo cells at 29.

to −100 mV in 360 ms (dV/dt = 0.5) is applied. In figure 1.5 is shown

a comparison between simulated (Panel A) and experimental (Panel B)

currents plotted against transmembrane voltage: maxima and minima of

current densities are in closely agreement with experimental values as well

as the characteristic crossing of data at about −40 mV.

A transmural gradient of INaK and associated variations in intracellu-

lar calcium has been recently published [41] for isolated canine ventricular

cells; we therefore introduce a scaling parameter to the maximum current

produced by the pump in order to qualitatively reproduce the experimental

results. From an holding potential of 0 mV and with [Na+]i = 60 mM, a
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Figure 1.13: Simulated end experimental INaCa in different regions of the heart. Exper-

imental figure has been redrawn from [151]

IKs IKr Ito1 INaL INaCa INaK Iup ICaT

Epi 1.72 1.00 1.10 1.77 2.70 1.30 1.50 0.00

M 0.80 0.95 1.00 3.30 1.30 1.05 1.00 0.00

Endo 1.47 0.97 0.50 2.69 0.90 0.95 0.75 0.40

Table 1.2: Summary of scaling factors for maximum conductances of the HHRd model

with respect to the original formulation.

descending VR, from +50 mV to −100mV in 4 seconds (dV/dt = 3/80),

is applied. In figure 1.5 simulated (continuous lines) and experimental data

(dotted lines) are compared: although simulated and experimental curves

don’t match, the transmural gradient is qualitatively preserved, with the

highest current in Epi cells, the lowest in Endo ones.

A significant transmural gradient in SERCA2a protein levels exists

[73]; a scaling parameter is thus introduced to the maximum uptake cur-

rent Iup. Experimental values of protein level in M and Endo cells is 66%

and 61% of Epi cells, computational percentages used for simulations are

67% and 50% respectively. Since a direct measurement of this current

doesn’t exist in literature, a validation can be made only analyzing his

effects on whole cell calcium transients.
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Figure 1.14: Simulated (continuous lines) end experimental (dotted lines) INaK in dif-

ferent regions of the heart.

1.6 Validations of the HHRd model

Dynamical steady state. The HHRd model has been simulated for thou-

sands of beats from original (HRd2007) initial conditions until it will reach

a dynamical (long term) steady state [53], here defined when the maximum

absolute value of the difference between two consecutive vectors of initial

conditions is less than 0.0001, i.e.

||xN
0
− xN+1

0
||∞ < 0.0001 (1.24)

where xN
0

is the vector of initial conditions for the N -th beat. All vari-

ables influences AP waveform: gating variables reach their dynamical

steady state values within tens of beats, subcellular and intracellular cal-

cium concentrations in hundreds of beats whereas other sarcoplasmatic

ionic concentrations (sodium, potassium and chloride) reach their steady

state values in thousands of beats with a biexponential time course of the

type

x0 + x1e
−t/τ1 + x2e

−t/τ2 (1.25)
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where x0 is the dynamical steady state value. In figure 1.6 is shown a

representative behaviour of the beat-varying intracellular ionic concentra-

tions for Epi cells: sodium concentrations reach their steady state val-

ues within the simulations, whereas potassium and chloride concentrations

reach their long term steady state values after the simulated beats because

the stimulus current is injected at every beat. We choose to maintain the

cut-off value (1.24) since long term experimental concentrations of sodium

have been already published [41], whereas potassium and chloride concen-

trations haven’t been published yet.
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Figure 1.15: Initial values of intracellular ionic concentrations for Epi cells (asterisks)

plotted against beat number; continuous line are the biexponential fittings. Below each panel

the principal features of the fitting are summarized consistently with the notation used in

eq. (1.25). Sodium concentrations are shown in red, potassium concentrations in blue and

chloride concentrations in green

APD rate relationship. Since the HHRd model was built up to ana-

lyze transmural dispersion of repolarization (TDR, maximum APD minus

minimum APD among cell types at fixed BCL) in heterogeneous tissues,

a validation of the ionic currents’ balance should be based upon experi-

mental data of steady state APD90 rate relationship: we choose the data

published in [83] since they were used to validate the other models of left

ventricular heterogeneity. Differently from other computational studies of

cellular heterogeneity ([38], [10], [124]), we set [K+]e = 6.0 mM to more

31



500 1000 1500 2000
150

200

250

300

350

400

A
P

D
90

Epi cell

500 1000 1500 2000
150

200

250

300

350

400

BCL (ms)

M cell

500 1000 1500 2000
150

200

250

300

350

400

Endo cell

Figure 1.16: APD rate relationship for the HHRd model (filled circles) and experimental

values (mean ± SD) at [K+]e = 6.0 mM [83].

closely reproduce experimental conditions: simulated (filled circles) and

experimental values (continuous line is for mean, dashed lines for mean

± standard deviation) are in agreement as shown in figure 1.16. Physi-
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Figure 1.17: Steady state APs simulated with HHrd for BCLs ranging from 500 to 2000

ms in different regions of the heart.

ological ([K+]i = 5.4 mM) steady state APs at different BCLs, ranging

from 500 to 2000 ms in 500 ms step, are shown in figure 1.17 whereas

in figure 1.18 is shown APD90 rate relationship for the three cell types

together with the TDR. Observed APs are well reproduced by the HHRd

model (see figure 1.3). The simulated APD90 rate relationships preserve
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Figure 1.18: APD90 rate relationship in different regions of the heart.

the transmural gradient observed in most of experimental studies ([83],

[5], [139], [138]), with Endo APD90 longest than that of Epi cells as in

the model [38], even if some other experimental studies reports the oppo-

site configuration ([82], [76], [127]) as predicted by the model published

in [10]. Moreover, since the maximum conductance of IKr current is di-

rectly proportional to the square root of extracellular potassium, the HHRd

model predicts longer APs at physiological concentrations of extracellular

potassium (with values varying from 15 to 25 ms) than that used to vali-

date it.

Diastolic concentrations. Dynamical steady states of diastolic intra-

cellular concentrations of sodium and calcium are shown in figure 1.19.

Diastolic intracellular sodium is higher at lower BCLs (a feature already

reproduced by HRd2007 model) for each type of cell; moreover HHRd

model predicts higher concentrations of sodium in Endo cells rather than

Epi cells, in closely agreement with experimental values [41]. The greater

heterogeneity of sodium flux across the membrane is through the sodium-

calcium exchanger and the sodium potassium pump. In fact, total sodium

flux through NCX (JNa
NCX ) is positive for each type of cells at every BCL

simulated, and thus NCX pumps sodium into the cell; moreover, at dy-

namical steady state, the flux of the exchanger is an increasing function of
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Figure 1.19: Heterogeneity of diastolic intracellular sodium and calcium concentrations

at steady state simulated by the HHrd model as functions of BCL.

the BCL. NaK extrudes sodium ions from the cell (i.e the flux JNa
NaK < 0)

and it is a decreasing function of the BCL at dynamical steady state. The

computational sum JNa
NCX + JNa

NCX results in a negative decreasing func-

tion of the BCL, indicating that NaK has the major role in intracellular

sodium handling. To enlight this point, dynamical steady states at 1 Hz

have been simulated with the same density of INaK or with the same den-

sity of INaCa (chosen equal to the mean of densities in HHRd model) for

each type of cell (see figure 1.20): the results show how heterogeneity in

NaK is necessary to build up the intracellular sodium gradient observed

in isolated cells, while INaCa heterogeneity doesn’t influence intracellu-

lar sodium concentration heterogeneity. Regarding to diastolic intracel-

lular free calcium concentration at dynamical steady state, HHRd model

predicts higher concentrations in Endo cells rather than in Epi cells as ob-

served experimentally in rat cells [29].

Systolic calcium concentration. Since tension development in cardiac

cells is a function of peak intracellular calcium concentration, another im-

portant feature of LV transmural heterogeneity is the frequency depen-

dence of calcium transients during an AP. In figure 1.21 calcium transients
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Figure 1.20: Transmural gradient in diastolic intracellular sodium concentration at 1 Hz:

control conditions (continuous line), with the same INaK for all cells (dotted line) and with

the same INaCa for all cells (dashed line)

are plotted for the same cell type at different BCLs (see legend), whereas

in figure 1.22 is shown the frequency-dependence of ∆[Ca2+]i (panel A)

and of the peak of CaMKII activity (panel B). It must be noted that the

model published in [10] doesn’t account for a positive force frequency re-

lationship (higher calcium peak at higher frequency) for Epi cells.
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Figure 1.21: Calcium transients at different BCLs of stimulation (see legend) in different

cell types.
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Figure 1.22: Heterogeneity of ∆[Ca2+]i (panel A) and CaMKII activity (panel B) sim-

ulated by the HHRd model.
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Chapter 2

Cardiac reaction-diffusion

models

2.1 Governing partial differential equations

2.1.1 Bidomain model

In the following, we will denote by Ω the volume of cardiac tissue consid-

ered, by v the transmembrane potential, i.e. the potential jump across the

cellular membrane

v = ui − ue,

with ui and ue the intra- and extra-cellular electrical potentials, respec-

tively. The macroscopic Bidomain model represents the cardiac tissue as

a syncytium, i.e. the superimposition of two anisotropic continuous me-

dia, the intra- (i) and extra- (e) cellular media, coexisting at every point

of the tissue and separated by a distributed continuous cellular membrane;

see [98] and [107] for a derivation of the Bidomain model from homog-

enization of cellular models. The cardiac ventricular tissue can be mod-

eled as an arrangement of cardiac fibers which rotate counterclockwise

(CCW) from epi- to endocardium ([134]) and which has a laminar orga-
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nization modeled as a set of muscle sheets running radially from epi- to

endocardium ([75]). Therefore, at every point x it is possible to identify

a triplet of orthonormal principal axes, al(x), at(x) and an(x), with al(x)
parallel to the local fiber direction, at(x) and an(x) respectively tangent

and orthogonal to the radial laminae, and both being trasversal to the fiber

axis. Recently, the development of the Diffusion Tensor Magnetic Res-

onance Imaging (DT-MRI) has produced non-invasive information about

the anatomic structure of the myocardium, which further supports the con-

cept of a laminar structure, bringing about an orthotropic anisotropy of the

myocardial tissue (see [52] for a recent numerical and experimental vali-

dation on this subject).

Denoting by σi,e
l , σi,e

t and σi,e
n the conductivity coefficients in the

intra- and extracellular media measured along the corresponding direc-

tions al(x), at(x) and an(x), the anisotropic conductivity tensors Di(x)
and De(x) related to orthotropic anisotropy of the media are given by

Di,e(x) = σi,e
l al(x)a

T
l (x) + σi,e

t at(x)a
T
t (x) + σi,e

n an(x)a
T
n (x). (2.1)

In this thesis, domain Ω will be a three-dimensional slab (i.e. a paral-

lelepiped) of cardiac tissue described in the usual cartesian coordinate

system (ex, ey, ez), in order to reproduce the experimental setting of the

arterially-perfused left ventricular wedge of Antzelevitch [152]; the fibers

rotate intramurally linearly proceeding CCW from epicardium to endo-

cardium. Noting that al(x), at(x) and an(x) form an orthonormal triplet

∀x ∈ Ω, it follows that the diffusion tensors (2.1) can be expressed as

Di,e(x) = σi,e
t I + (σi,e

l − σi,e
t )al(x)a

T
l (x) + (σi,e

n − σi,e
t )an(x)a

T
n (x),

therefore only two orthogonal vectors are required to define the conduc-

tivity tensors. Considering an(x) = ez (i.e. fibers lie in the (x,y) plane)

and denoting with lz the thickness of the tissue, we thus define a complete
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Intracellular Extracellular Unity measure

σl 3 · 10−3 2 · 10−3 Ω−1cm−1

σt 3.1525 · 10−4 1.3514 · 10−3 Ω−1cm−1

σn 3.1525 · 10−5 6.757 · 10−4 Ω−1cm−1

Table 2.1: Conductivity coefficients

orthonormal triplet with a total amount of rotation α0π by setting:





al(x) = ex cosα(z) + ey sinα(z)

α(z) = α0π
lz − z

lz
− π

4
0 ≤ z ≤ lz

.

We assume that both the intracellular coupling and the extracellular matrix

are uniform, i.e. the intra- and extracellular conductivity coefficients along

and across fibers are independent of position. Their values are given in

table 2.1.1: for their validation, the interested reader is referred to [21].

Denoting by χ the ratio of membrane surface area per tissue volume,

then from eq. (1.2) the transmembrane current per unit volume is given by

Iion = χiion and the surface capacitance per unit volume is Cm = χcm.

In our simulations, the ratio of membrane area per tissue volume is as-

sumed equal to 1E3 whereas the cell capacitance equal to 1E-3; therefore

in the following we will assume Cm = 1. Imposing the conservation of

currents, i.e. the interchange between the two media must balance the

membrane current flow per unit volume, one derives a reaction-diffusion

system for cardiac tissue. More specifically, denoted by Ji = −Di∇ui
and Je = −De∇ue the intra- and extracellular current densities in terms

of the intra and extracellular potentials, due to the current conservation law

we have ∇ · Ji = −Iion and ∇ · Je = Iion − Ieapp (Ieapp is a suitable ap-

plied extracellular current per unit volume) with ∇· the usual divergence
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operator, i.e. in three dimensions

∇ · u =

3∑

i=1

∂u

∂xi
.

Then the Bidomain model in the unknowns ui(x, t), ue(x, t) and v(x, t),
coupled with the cellular model, can be written as:





∂tv −∇ · (Di∇ui) + Iion(v, w, c) = 0 on Ω× (0, T )

− ∂tv −∇ · (De∇ue)− Iion(v, w, c) = −Ieapp on Ω× (0, T )

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0 on Ω× (0, T )

nTDi,e∇ui,e = 0 on ∂Ω× (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) on Ω
(2.2)

where the nonlinear functions R(v, w) and S(v, w, c) account for the gat-

ing and ionic cellular system (see Chapter 1). Since we have imposed

insulated Neumann boundary conditions, we must impose the following

compatibility condition for the system (2.2) in order to be solvable

∫

Ω

Ieapp = 0. (2.3)

The Bidomain system uniquely determines v, while the potentials ui and

ue are defined only up to a same additive time-dependent constant relat-

ing to the reference potential. This potential is chosen to be the average

extracellular potential in the cardiac volume by imposing

∫

Ω

ue dx = 0. (2.4)
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2.1.2 Monodomain model

It is well known that the Bidomain system reduces to the Monodomain

model assuming equal anisotropy ratio of the two media [64]. For sim-

ulating purposes, we introduce another interesting derivation which does

not make such an assumption (see also [62] and [15]) and that we will still

call Monodomain model. Denoting by Jtot = Ji + Je the total current

flowing in the two media, since Jtot = −Di∇ui −De∇ue and substitut-

ing ui = v + ue, we get

D∇ue = −Di∇v − Jtot (2.5)

with D = Di + De. Since the tensors Di,e are symmetric positive def-

inite (see eq. (2.1) and Section 2.4), the second equation in (2.2) can be

rewritten as

−∂tv+∇ · (DeD
−1Di∇v) +∇ · (DeD

−1Jtot)− Iion(v, w, c) = −Ieapp
(2.6)

and, omitting the dependence of principal axes from x, we obtain

DeD
−1 = µe

l I + (µe
t − µe

l )ata
T
t + (µe

n − µe
l )anaT

n (2.7)

with µe
l,t,n = σe

l,t,n/(σ
e
l,t,n + σi

l,t,n). Assuming constant conductivity

coefficients and taking into account that ∇ · Jtot = −Ieapp, we have

∇ · (DeD
−1Jtot) =− µe

l I
e
app + (µe

t − µe
l )∇ · (ataTt Jtot)+

(µe
n − µe

l )∇ · (anaT
n )Jtot).

(2.8)

From (2.5) it follows that −DeD
−1Di∇v = DeD

−1Jtot+De∇ue; hence

we have the flux relationship

nT (DeD
−1∇v) = nTDeD

−1Jtot + nTDe∇ue. (2.9)
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Using the split form (2.7) the first term on the right hand side can be writ-

ten as

nT (DeD
−1Jtot) =µ

e
l nTJtot + (µe

t − µe
l )(n

T at)(a
T
t Jtot)+

(µe
n − µe

l )(n
T an)(a

T
nJtot).

The insulating conditions nT Ji = nTJe = 0 trivially imply that nTJtot =
0, i.e. Jtot is tangent to ∂Ω, and assuming that fibers are also tangent to

∂Ω we have nT an = 0 and aT
l Jtot = 0; substituting these conditions in

(2.9) it follows

nTDeD
−1Di∇v = 0. (2.10)

Disregarding the two additional source terms in (2.8) related to the pro-

jections of Jtot on the directions across fibers (i.e. at and an), it results

∇ · DeD
−1Jtot ≈ −µe

l I
e
app. Substituting this approximation in (2.6)

and considering the boundary conditions (2.10), we obtain the anisotropic

Monodomain model consisting in a single parabolic reaction-diffusion

equation for the transmembrane potential v, with the conductivity tensor

Dm = DeD
−1Di (2.11)

and applied stimulus

Imapp = Ieapp σ
i
l/(σ

e
l + σi

l ) (2.12)

coupled with the same cellular system:





∂tv −∇ · (Dm∇v) + Iion(v, w, c) = Imapp

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0

nTDm∇v = 0

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x)

. (2.13)
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2.2 Variational formulations

In this section, we briefly describe the variational formulation of both the

Monodomain and the Bidomain model, providing some references to their

theoretical analysis. We will deal with the following functional spaces:

V the Sobolev space H1(Ω), Ṽ the quotient space H1(Ω)/R and U their

cartesian product V × Ṽ . Let us define

(φ, ψ) =

∫

Ω

φψ,

ai,e(φ, ψ) =

∫

Ω

(∇φ)TDi,e∇ψ,

a(φ, ψ) =

∫

Ω

(∇φ)TDm∇ψ

(2.14)

the usual L2(Ω) inner product and the elliptic bilinear forms given by the

tensors.

The variational formulation of the Monodomain model (2.13) reads as

follows. Given v0, w0, c0 ∈ L2(Ω) and Imapp ∈ L2(Ω × (0, T )), find

v ∈ L2(0, T ;V ), w ∈ L2(0, T ;L2(Ω)M ) and c ∈ L2(0, T ;L2(Ω)P )
such that ∂v/∂t ∈ L2(0, T ;V ), ∂w/∂t ∈ L2(0, T ;L2(Ω)M ), ∂c/∂t ∈
L2(0, T ;L2(Ω)P ) and ∀t ∈ (0, T )





(∂tv(t), φ) + a(v(t), φ) + (Iion(v, w, c), φ) = (Imapp, φ)

(∂tw(t), ψ) = (R(v(t), w(t)), ψ)

(∂tc(t), ψ) = (S(v(t), w(t), c(t)), ψ))

(2.15)

with suitable tests functions and appropriate initial conditions on v, w and

c and taking into account the compatibility condition (2.3). Analogously,

the variational formulation of the Bidomain model (2.2) reads as follows.

Given v0, w0, c0 ∈ L2(Ω), Ieapp ∈ L2(Ω× (0, T )), find ui ∈ L2(0, T ;V ),

ue ∈ L2(0, T ; Ṽ ), w ∈ L2(0, T ;L2(Ω)M ) and c ∈ L2(0, T ;L2(Ω)P )
such that ∂v/∂t ∈ L2(0, T ;V ), ∂w/∂t ∈ L2(0, T ;L2(Ω)M ), ∂c/∂t ∈
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L2(0, T ;L2(Ω)P ) and ∀t ∈ (0, T )





(∂tv(t), ûi) + ai(ui(t), ûi) + (Iion(v, w, c), ûi) = 0

− (∂tv(t), ûe) + ae(ue(t), ûe)− (Iion(v, w, c), ûe) = −(Ieapp, ûe)

(w(t), ψ) = (∂tR(v(t), w(t)), ψ)

(c(t), ψ) = (∂tS(v(t), w(t), c(t)), ψ)
(2.16)

with suitable tests functions and initial conditions on v, w and c and taking

into account the compatibility condition (2.3).

Many well-known theoretical results available for reaction-diffusion

equations (see [12] and [129]) can be applied to the Monodomain model.

Less is known on degenerate reaction-diffusion systems such as the Bido-

main model. For the Bidomain system with the Fitz-Hugh-Nagumo model,

we refer to ([18], [121]) for existence, uniqueness and regularity results,

both at the continuous and at the semidiscrete level, and to [121] for a

convergence analysis of finite element approximations. A recent math-

ematical analysis of the Bidomain model taking into account more gen-

eral gating systems and intracellular concentrations can be found in [145].

More results are known on the related eikonal approximation describing

the propagation of the excitation front; we refer to [16], [17], [61] and

[9]. A mathematical analysis of the Bidomain model using Γ-convergence

theory can be found in [1].

2.3 Space-Time discretization

Spatial discretization.

The parallelipedal domain Ω is discretized by introducing a structured

quasi-uniform grid of hexahedral isoparametricQ1 elements (see e.g. [113]

for a general introduction to the finite element method, FEM) obtained

by a uniform subdivision of the intervals [0, lx] × [0, ly] × [0, lz], into

(nx, ny, nz) subintervals. Using the same symbol for the domain and its

FEM approximation, we have Ω =
⋃

E∈Th
E, where E = TE(Ê), with
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Ê = [−1, 1]3 and TE a trilinear map. The associated finite element spaces

are given by:

Vh = {ϕh ∈ V : ϕh ∈ C0(Ω), ϕh|E◦TE ∈ Q1(Ê), ∀E ∈ Th}, (2.17)

Ṽh = {ϕh ∈ Vh :

∫

Ω

ϕh = 0}, (2.18)

Uh = Vh × Ṽh,

where Q1(Ê) is the space of the trilinear functions on Ê. A semidiscrete

problem is first obtained by applying a standard Galerkin procedure and

choosing a finite element basis ϕi for Vh. Let M = (mrs), A = (ars) and

Ai,e = (ai,ers ) be the symmetric mass and stiffness matrices defined by:

mrs =
∑

E

∫

E

ϕrϕs dx,

ars =
∑

E

∫

E

∇ϕrDm(x)∇ϕs dx,

ai,ers =
∑

E

∫

E

∇ϕrDi,e(x)∇ϕs dx,

where the diffusion tensors’ appearing in these formulas are from (2.11)

and (2.1). Let Ihion, Im,h
app and Ie,happ be the finite element interpolants of Iion,

Imapp and Ieapp, respectively. Denoting by the same letters finite element

functions and the vectors of their nodal values, in the Monodomain model,

the finite element approximation vh of the transmembrane potential is the

solution of the following nonlinear system of ODEs

M
∂vh
∂t

+ Avh + MIhion(vh, wh, ch) = MIm,h
app ,
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while in the Bidomain model, the finite element approximations ui,h and

ue,h of the intra- ed extracellular potentials are the solutions of the system





M
∂vh
∂t

+ Aiui,h + MIhion(vh, wh, ch) = 0

−M
∂vh
∂t

+ Aeue,h − MIhion(vh, wh, ch) = −MIe,happ

,

or in compact form as

M ∂

∂t

(
ui,h
ue,h

)
+A

(
ui,h
ue,h

)
+

(
MIhion(vh, wh, ch)

−MIhion(vh, wh, ch)

)
=

(
0

−MIe,happ

)
,

where vh = ui,h − ue,h and

M =

[
M −M

−M M

]
, A =

[
Ai 0
0 Ae

]
.

For both models, system’s equations are coupled with the semidiscrete

approximations of the gating and concentration systems





∂wh

∂t
= R(vh, wh)

∂ch
∂t

= S(vh, wh, ch)

.

Time discretization.

Time discretization is performed by an IMEX method [3] using for the dif-

fusion term the implicit Euler method, while the nonlinear reaction term

is treated explicitly [19]. For a fully implicit approach using the first Luo-

Rudy model for cellular reaction see [93]. The implicit treatment of the

diffusion terms appearing in the models illustrated before is essential in

order to adaptively change the time step according to the stiffness of the

various phases of the heart-beat. The ODE system for the gating variables

is discretized by the semi-implicit Euler method and the explicit Euler
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method is applied for solving the ODE system for the ion concentrations.

As a consequence, the operator of the full evolution system is splitted by

first solving (at time step n + 1) for gating and ionic concentrations vari-

ables given the transmembrane potential at the n-th time-step





wn+1
h − wn

h

δt
= R(vnh , w

n+1
h )

cn+1
h − cnh
δt

= S(vnh , w
n+1
h , cnh)

and then solving for vn+1
h in the Monodomain case

(
1

δt
M + A

)
vn+1
h =

1

δt
Mvnh−MIhion(v

n
h , w

n+1
h , cn+1

h )+MIm,h
app (2.19)

and for un+1
i,h and un+1

e,h in the Bidomain case as

(
1

δt
M +A

)(
un+1
i,h

un+1
e,h

)
=

1

δt

(
Muni,h − Mune,h − MIhion

−Muni,h + Mune,h + MIhion + MIe,happ

)
.

(2.20)

For sake of text editing, ionic current dependencies has been eliminated

from the previous equations.

Adaptive time-stepping strategy is based on controlling for the trans-

membrane potential variation

δv = max(vn+1
h − vnh )

at each time step. In short, the adaptive strategy is the following:

• if δv < δvmin then δtnew =
δvmaxδtold

δv

• if δv > δvmin then δtnew =
δvminδtold

δv
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where

δvmin = 0.5mV, δvmax = 0.5mV, δtmin = 0.05ms, δtmax = 6ms

Due to the linearity of the gating equation (1.4) in the Hodgkin-Huxley

formalism and in order to also guarantee a control on their variation, gating

variables are integrated exactly according to (1.19) yielding a first order

approximation provided that the potential variation is bounded (see also

[146] and [50]). Higher order approximations of ionic and gating vari-

ables should be implemented when considering more advanced Markov

Chains for the gating system [137].

A uniform spatial discretization of order h =1E-2 cm is necessary in

order to produce simulations free of numerical artifacts and sufficiently

accurate, since during the cardiac excitation phase a moving internal layer

about 1mm thick, associated to a fast variation of the transmembrane po-

tential distribution, sweeps the entire tissue. In order to elicit the excitation

front, we apply a stimulus of 200µA/cm3 lasting for 1ms on a small vol-

ume of the tissue. Integrals are computed with a 3D trapezoidal quadrature

rule, so the mass matrix M is lumped to diagonal form. As in the contin-

uous Bidomain model, vn+1
h is uniquely determined by the given initial

and boundary conditions, while un+1
i,h and un+1

e,h are determined only up

to the same additive time-dependent constant related to a reference poten-

tial. Since we consider bounded domains, we can determine this constant

imposing

Mun+1
e,h = 0,

which is the discrete counterpart of (2.4).

Our strategy for building an efficient parallel solver is based on us-

ing the parallel library PETSc from Argonne National Laboratory (see

http://www.mcs.anl.gov/petsc, [6]). In our FORTRAN code, the neces-

sary vectors and matrices are built and subassembled in parallel on each

processor and then the solution is advanced in time on each processor in

a synchronous manner. The linear system associated to the Monodomain

model given in eq. (2.19) is very well conditioned and it can be solved
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efficiently with cheap preconditioners: a preconditioning choice for the

Monodomain model is to use a block Jacobi preconditioner with ILU(0)

solver (BJ) on each block [19]. The blocks are associated with a decompo-

sition of the domain into subdomains and each one is assigned to one pro-

cessor. Even if one-level preconditioner is not optimal, since the number

of iterations of the resulting solver will depend on the number of subdo-

mains, previous numerical results show that for the Monodomain model

the number of iterations of the one-level preconditioner BJ is quite sat-

isfactory [19]. The more severe ill-conditioning of the Bidomain matrix

seems to be related to its degenerate structure rather than just to the size

of doubling the unknowns. In fact, the addition to the stiffness matri-

ces (related to elliptic operators with Neumann boundary conditions) of

a zero-order term with the mass matrix stemming from the time stepping

scheme, greatly improves the spectrum of the Monodomain iteration ma-

trix but not of the Bidomain iteration matrix (see [19]). More advanced

preconditioners, such as multilevel additive Schwarz preconditioners of

the overlapping type (see e.g. [123], [104] and also [122]) must be used in

order to efficiently solve the coupled semidefinite Bidomain problem.

2.4 Variational formulations of the stationary

problems

In this section we will provide additional results needed for the analysis

of non-overlapping preconditioners introduced in the following chapters.

Assume that

(H1) the cardiac region Ω is a bounded Lipschitz connected open subset

of R3.

(H2) the tensors Di,e(x) and Dm(x), given in eqs. (2.1) and (2.11) re-

spectively, satisfy the following uniform ellipticity condition:

∃ αi,e,m, βi,e,m > 0 : αi,e,m|ξ|2 ≤ ξTDi,e,m(x)ξ ≤ βi,e,m|ξ|2

∀ξ ∈ R
3 and ∀x ∈ Ω.
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The variational formulation of the elliptic stationary Monodomain prob-

lem reads as follows: given fn ∈ L2(Ω) find vn+1 ∈ V such that:

amono(v
n+1, ϕ) = fn(ϕ), ∀ϕ ∈ V (2.21)

with

amono(v, ϕ) =

∫

Ω

Dm∇v · ∇ϕ+ γ

∫

Ω

vϕ, (2.22)

γ = 1/δt and

fn(ϕ) =

∫

Ω

(γvn − Iion(v
n, wn+1, cn+1) + Imapp)ϕ, (2.23)

where Iion(v
n, wn+1, cn+1) is the ionic current and Imapp the applied cur-

rent per unit volume. For sake of simplicity, we drop the dependence of

the tensor from x. The ellipticity assumption (H2) guaranties the elliptic-

ity of the variational problem (2.21) and thus existence and uniqueness of

the solution.

The variational formulation of the elliptic stationary Bidomain prob-

lem reads as follows: given Fn = (fn,i, fn,e) ∈ L2(Ω) × L2(Ω) find

un+1 = (un+1
i , un+1

e ) ∈ U such that:

abido(u
n+1, ϕ) = Fn(ϕ), ∀ϕ = (ϕi, ϕe) ∈ U (2.24)

where

fn,i(ϕi) =

∫

Ω

(γvn − Iion(v
n, wn+1, cn+1))ϕi,

fn,e(ϕe) = −
∫

Ω

(γvn − Iion(v
n, wn+1, cn+1) + Ieapp)ϕe,
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vn the tranmembrane potential at the nth time step and the Bidomain bi-

linear form defined on U × U given by

abido(u, ϕ) =

∫

Ω

Di∇ui·∇ϕi+

∫

Ω

De∇ue·∇ϕe+γ

∫

Ω

(ui−ue)(ϕi−ϕe).

(2.25)

To prove existence and uniqueness of the variational problem related to

the stationary Bidomain model we must first define a norm on U and show

the continuity and coercivity of abido(·, ·) with respect to it.

Lemma 2.4.1. The bilinear form ((·, ·)) : U × U → R defined as

((u, ϕ)) =

∫

Ω

∇ui · ∇ϕi +

∫

Ω

∇ue · ∇ϕe +

∫

Ω

(ui − ue)(ϕi − ϕe).

is an inner product on U

Proof. Clearly ((·, ·)) is symmetric, bilinear and positive semidefinite;

if ((u, u)) = 0 for some u ∈ U , then necessarily ui = ue and thus∫
Ω
|∇ue|2 = 0. But since ue ∈ Ṽ and (H1) holds, then ue = 0, which in

turn implies ui = 0 and thus ((·, ·)) is an inner product on U .

Denoting with ||| · ||| the norm on U induced by the inner product

((·, ·)), it is now simple to show the ellipticity of the variational formula-

tion of the stationary Bidomain model on U .

Lemma 2.4.2. The bilinear form abido(·, ·) is elliptic in U with respect of

||| · |||.

Proof. We can easily prove continuity using (H2), usual Cauchy-Schwarz
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inequalities and definition of ||| · ||| norm:

∫

Ω

Di∇ui · ∇ϕi +

∫

Ω

De∇ue · ∇ϕe + γ

∫

Ω

(ui − ue)(ϕi − ϕe)

≤βi
∫

Ω

∇ui · ∇ϕi + βe

∫

Ω

∇ue · ∇ϕe + γ

∫

Ω

(ui − ue)(ϕi − ϕe)

≤max{βi, βe, γ}((u, ϕ))
≤max{βi, βe, γ} |||u||| |||ϕ|||.

Similarly, we can prove the coercivity:

∫

Ω

Di∇ui · ∇ui +
∫

Ω

De∇ue · ∇ue + γ

∫

Ω

(ui − ue)(ui − ue)

≥αi

∫

Ω

|∇ui|2 + αe

∫

Ω

|∇ue|2 + γ

∫

Ω

(ui − ue)
2

≥min{αi, αe, γ}|||u|||2.

Remark 2.4.3. It can be easily shown that the variational problem of the

elliptic stationary Bidomain model given in (2.24) is equivalent to the fol-

lowing one (see [122] for the proof): find un+1 = (un+1
i , un+1

e ) ∈ U such

that

abido(u
n+1, ϕ) = Fn(ϕ) ∀ϕ ∈ V × V.

Remark 2.4.4. Regarding assumption (H2), denoting by

Q(x) =
[
al(x)|at(x)|an(x)

]

the matrix formed columnwise by the three orthonormal directions at point

x, from tensors’ definition given in (2.1) we will have

Di,e(x) = Q(x)Σi,eQ(x)T , (2.26)
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with

Σi,e =



σi,e
l 0 0

0 σi,e
t 0

0 0 σi,e
n


 .

Since Q(x) is orthonormal at every point x, we will have

Q(x)TDi,e(x)Q(x) = Σi,e,

and thus Di,e(x) and Σi,e will have the same eigenvalues, which implies

that

αi,e = min
•=l,t,n

{σi,e
• }, βi,e = max

•=l,t,n
{σi,e

• }.

For the Monodomain model, recalling that

Dm(x) = De(x)(Di(x) +De(x))
−1Di(x),

we can use formula (2.26) and the fact that Q(x) is orthonormal at every

point x, to obtain

(Di(x) +De(x))
−1 =

(
Q(x)ΣiQ(x)T +Q(x)Σi,eQ(x)T

)−1

= Q(x)(Σi +Σe)
−1Q(x)T

where

(Σi +Σe)
−1 =




1

σi
l + σe

l

0 0

0
1

σi
t + σe

t

0

0 0
1

σi
n + σe

n



.
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Therefore, we can rewrite the monodomain diffusion tensor as

Dm(x) = De(x)(Di(x) +De(x))
−1Di(x)

= Q(x)ΣeQ(x)TQ(x)(Σi +Σe)
−1Q(x)TQ(x)ΣiQ(x)T

= Q(x)Σe(Σi + Σe)
−1ΣiQ(x)T ,

and thus we will have

αm = min
•=l,t,n

{ σi
•σ

e
•

σi
• + σe

•

}, βm = max
•=l,t,n

{ σi
•σ

e
•

σi
• + σe

•

}.
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Chapter 3

Choice of Krylov initial

guess and efficient multiple

heartbeat simulations

3.1 Introduction

Computational multiscale modeling of the heart (see [132] and [102] for

recent reviews) has becoming widely accepted as a tool for future drug de-

sign [131] and patient-specific therapies [114]. Thus it is very important

to develop efficient solvers at tissue level (see [147] for a review on this

subject) and sufficiently detailed models at the cellular level (see Chap-

ter 1 and reference therein). In this chapter, we will analyze two separate

approaches in order to reduce the whole computational costs associated

with three-dimensional multi-beating simulations using HHRd as cellular

model. In the final section of the chapter we will show some numeri-

cal results on the influences of transmural cellular heterogeneity on three-

dimensional patterns of activation and repolarization wavefronts.

At each time step the main computational costs are associated with
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updating pointwise the cellular variables and the reaction term, and then

solving a sparse linear system

Miteryn+1 = bn+1, (3.1)

where the superscript n indicated the current time step. Since the iteration

matrix Miter is symmetric and positive definite for the Monodomain dis-

cretization and positive semidefinite for the Bidomain discretization (see

Chapter 2), we use the preconditioned conjugate method (PCG) as itera-

tive method to solve (3.1) for which holds the well known formula for the

error reduction (see e.g. [113])

||yn+1 − ym||Miter
≤ 2||yn+1 − yn+1

0 ||Miter

(√
κ2 − 1√
κ2 + 1

)m

,

where yn+1
0 is the PCG initial guess, ym the m-th iterate produced by the

method and κ2 is the condition number of the preconditioned system. The

choice of the initial guess can thus produce a gain in the iterative solution

process, tough it will not be as substantial as using an optimal precondi-

tioner which speed up the iterative solution process. However, the latter

can be designed independently from the choice of the initial guess (see

chapter 5). In Sections 3.2 to 3.4 we will consider different approaches to

the choice of the PCG initial guess using previous computed solution vec-

tors, providing numerical results either for the Monodomain or the Bido-

main model. We note that, instead of using the previous solutions, another

interesting approach consists in reusing the Krylov vectors generated by

the PCG either for the choice of the initial guess, or to augment the pre-

conditioner via a projection (see e.g. [119]).

Another aspect to deal with in multibeating simulations are the initial

ionic concentration variables prescribed at the beginning of the simula-

tions. As seen in Chapter 1, cellular models that incorporate ionic con-

centrations variables requires the simulation of a greater number of beats

in reaching a suitable dynamical steady state to study APD and trasnmural

dispersion or repolarization (TDR). Drug developing thus requires simula-

tions of several beats, either with the Bidomain or the Monodmain model,
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in order to accurately analyze the drug effects’ at tissue level. In section

3.5 we will consider two different choices of cellular initial conditions

simulating for 50 beats the Monodomain model and compare them either

from the point of view of the cellular variables, or analyzing the three-

dimensional patterns of activation and repolarization wavefronts sweeping

the tissue, described in details in the last section.

For the test cases considered in sections 3.2 to 3.4, the slab dimension

for the Monodomain model is 1 × 1 × 0.5 cm3, discretized with a grid

100×100×50 and solved with 18 processors, distributed 3×3×2 across

the spatial grid using the Linux cluster Ulisse located at University of Mi-

lan. In Bidomain test cases, the slab dimension is 1.92× 1.92× 0.48 cm3,

discretized with a grid 192 × 192 × 48 and solved with 36 processors,

distributed 6× 4× 1 across the spatial grid using the Linux cluster Topsy

located at IMATI-CNR in Pavia. We use HHRd (see Chapter 1) has cel-

lular model. An absolute preconditioned residual norm lesser than 1E-4

has been chosen as stopping criterion for the PCG. For all configurations,

transmural cellular heterogeneity is considered as in the 3-slab configu-

ration already introduced in [21]: briefly, the cardiac slab is transmurally

subdivided into three equal layers of the same thickness, endocardial, mid-

myocardial and epicardial, and the corresponding type of cell (see Chapter

1) is assigned to each layer. Four test cases will be considered:

• TC1: Monodomain model solved with constant time step δt = 0.05
ms for 500 ms

• TC2: Monodomain model solved with adaptive time stepping strat-

egy for 2000 ms

• TC3: Bidomain model solved with constant time step δt = 0.05 ms

for 50 ms

• TC4: Bidomain model solved with adaptive time stepping strategy

for 500 ms
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3.2 Lagrangian interpolants of previous solu-

tions

In most applications involving the discretization of time dependent PDEs,

the initial guess for the linear solver is chosen as the solution at the pre-

vious time step. A very simple and computational inexpensive approach

to improve this choice is to use lagrangian interpolants in time of previous

solutions, i.e. setting

yn+1
0 =

d∑

k=0

yn−d+klk(t
n+1), (3.2)

where 0 ≤ k ≤ d and

lk(t) =

d∏

j=0,j 6=k

t− tn−d+j

tn−d+k − tn−d+j

are the usual lagrangian polynomials on the time grid tn−d < tn−d+1 <
· · · < tn. Note that the choice of the previous computed solution as PCG

initial guess can be thought as a zero order polynomial approximation set-

ting d = 0 in the above formulas. Figure 3.1 shows the number of itera-

tions and the initial residual

||Miteryn+1
0 − bn+1||2;

for different choices of interpolation degrees with the Monodomain model

solved with constant step size δt = 0.05ms for 10000 time steps using

a Block Jacobi (BJ) preconditioner (TC1). Results are collected in Table

3.1.

At each time step and for each choice of degree, lagrangian interpola-

tions show to be very effective tools in lowering the initial residual of the

Monodomain linear system; moreover, since neglecting the approximation
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Lagrangian initial guesses for TC1

degree 0 1 2 3 4 dAD

Iterations per time step

phase 0 7.6 6.3 5.5 5.4 5.4 5.4

phase 1-2 6.1 2.5 0.8 1.1 1.1 0.8

phase 3 6.4 2.6 1.0 1.1 1.1 0.8

rest 4.1 0.9 0.8 1.1 1.1 0.5

Admissible Solutions

phase 0 0 0 0 3 3 3

phase 1-2 0 0 589 9 0 598

phase 3 0 0 334 6 3 339

rest 0 1496 1063 10 6 2100

Table 3.1: PCG-BJ iteration counts for different choices of lagrangian interpolations, from

degree 0 to 4; 10000 steps with δt = 0.05ms with Monodomain model.
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Figure 3.1: PCG iterations (upper panels) and initial residual norm in logarithmic scale

(lower panels) at each time step for different degrees of lagrangian interpolation (showed on

top) for Monodomain model with constant step size δt = 0.05ms. PCG was preconditioned

with BJ.

errors introduced by the stopping criterion of the PCG holds that

Miteryk = bk, ∀k ≤ n

the initial residual with lagrangian interpolation of degree d can be equiv-

alently expressed as

||
d∑

k=0

bn−d+klk(t
n+1)− bn+1||2. (3.3)

and thus we can directly estimate the initial residual without using matrix

vector multiplications and adaptively select the interpolation degree dAD

which minimizes (3.3) at each time step. Moreover, equation (3.3) im-

plies that the capabilities of lagrangian interpolants in lowering the initial

residual are limited by the dependence of the interpolation error from the

smoothness of the rhs. Indeed, it must be noted that some interpolants
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were able to produce admissible solutions for the linear solver (i.e. ini-

tial guesses that automatically fulfill the stopping criterion of the PCG)

in the plateau and resting phases of the AP where the reaction term is

smoother; on the other hand, the capability in lowering the initial residual

saturates with the interpolation degree during the activation phase (see Ta-

ble 3.1). Quadratic interpolation showed the best performance in terms of

total number of iterations (data not shown), reducing them considerably by

a factor of 4, and yielding the greatest number of admissible solutions for

the solver. Linear interpolation gave the worse results during the first three

phases of APs (i.e. when cells are active) and doesn’t produce admissible

solutions during the plateau phase, but it performed better in the resting

phase regarding to admissible solutions. Results for third and fourth de-

gree interpolation were better in the activation phases but after this phase

their approximation properties degraded. For quadratic interpolation, a

20% reduction in the total solving time has been observed: this difference

was totally due to a 55% reduction in entire solving time for the linear sys-

tem, since this interpolation produce a 76% reduction of the whole number

of iterations, that is a speed up factor 4. Finally, degree adaptivity was able

to select the best initial guess at each time step reducing further the number

of iterations and improving the total number of admissible solutions.

The second test case for lagrangian interpolants has been performed

using the adaptive time stepping strategy (see Chapter 2) on a time interval

of 2000 msec with the Monodomain model (TC2); lagrangian interpolants

lowered the initial residual with variable time step size mainly when the

cardiac cells in the spatial domain were active rather than in the resting

phase of the AP, see Figure 3.2 and Table 3.2. Quadratic interpolation

showed the best performance with a speed up factor 2 in terms of total

solving time for the linear system, due to a 57% reduction of total number

of iterations of the PCG. A 66% reduction in total number of iterations has

been achieved using the adaptive selection of the interpolation degree. In

all the cases, no admissible solutions were produced.

Until now, we studied lagrangian interpolants for a well conditioned

system like the Monodomain model precondioned with BJ. The Bidomain

model is an ill-conditioned system due to the singularity of the linear sys-

tem’s matrix, and when preconditioned with BJ it requires a huge number
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Lagrangian initial guesses for TC2

degree 0 1 2 3 4 dAD

Total number of iterations

27913 16001 11927 12235 14425 9926

Total solving time (s) for linear solver

1623 1384 875 1031 1230 775

Table 3.2: PCG-BJ iteration counts for different choices of lagrangian interpolations, from

degree 0 to 4; 2 seconds of heartbeat for Monodomain model with adaptive time stepping

strategy
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Figure 3.2: PCG iterations (upper panels) and initial residual norm in logarithmic scale

(lower panels) at each time step for different degrees of lagrangian interpolation (showed on

top) for Monodomain model with adaptive time stepping strategy. PCG was preconditioned

with BJ

of iterations per time step to achieve convergence. In order to test if an

ill-conditioned system can benefit by using lagrangian interpolants, we

perform some Bidomain runs with a constant time step size δt = 0.05ms
for 1000 iterations in the activation phase, i.e. the most expensive part of

the simulation (TC3). The number of iterations and initial residual norms

at each time step are shown in Figure 3.3, the results on iteration counts

in Table 3.3. Differently from the Monodomain model, linear interpola-

tion in time showed the best results with a speed up factor 2 and other

the choices of interpolation degree yielded oscillating results in terms of

number of iterations per time step. Using an adaptive interpolation degree

doesn’t improve further the results in terms of total number of iterations

and solving time and, as expected, the convergence remained slow.

When the Bidomain linear system is preconditioned with a multilevel

Schwarz preconditioner, the number of iteration per time step is consider-

ably reduced from hundreds to tens or lower. We then test lagrangian in-

terpolants with the preconditioner MHS(5) published in [123] in order to
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Lagrangian initial guesses TC3

degree 0 1 2 3 4 dAD

Total number of iterations

193278 111234 106357 119555 134685 96195

Total solving time (s) for linear solver

54394 28361 35458 39245 44351 27075

Table 3.3: PCG iteration counts for different choices of lagrangian interpolations, from

degree 0 to 4; 1000 steps with δt = 0.05ms with Bidomain model preconditioned with BJ
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Figure 3.3: PCG iterations (upper panels) and initial residual norms in logarithmic scale

(lower panels) at each step for different degrees of lagrangian interpolation (showed on top)

with Bidomain model. PCG was preconditioned with BJ

analyze the reduction factor with time adaptivity simulating 500 ms (TC4).

For additional details on the preconditioner see also [122]. Third order la-

grangian interpolants yielded the best results together with the adaptive

choice of the interpolation degree, with a speed up factor of more than 2;

second and fourth order lagrangian gave almost same results. See Figure

3.4 and Table 3.4.

Despite their simplicity, Lagrangian interpolants in time are effective

and computational inexpensive tools for the choice of the initial guess;

also, they are very simple to implement. Moreover, the degree adaptation

can yield even more gain at a lower additional cost. High order lagrangian

interpolants works better with well- rather than ill-conditioned linear sys-

tems; moreover, the action of suitable preconditioner make them effective

also with the Bidomain system. With the adaptive time stepping strategy

they run the risk of generating poor initial guesses since they doesn’t take

into account any information about the underlying system’s matrix. In the

next section we will thus consider a different approach to the choice of the
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Lagrangian initial guesses TC4

degree 0 1 2 3 4 dAD

Total number of iterations

21002 14212 10227 9579 10263 9173

Total solving time (s) for linear solver

48550 38651 27227 27017 27386 26954

Table 3.4: PCG iteration counts for different choices of lagrangian interpolations, from

degree 0 to 4; 500 ms of heartbeat for Bidomain model preconditioned with MHS(5) and

adaptive time stepping strategy.

66



0

5

10

15

20

25

It
er

a
ti
o
n
s

0

5

10

15

20

25

0

5

10

15

20

25

10
−10

10
−5

10
0

In
it
ia

l
re

si
d
u
a
l

10
−10

10
−5

10
0

10
−10

10
−5

10
0

number of time step

10
−10

10
−5

10
0

10
−10

10
−5

10
0

0

5

10

15

20

25

0

10

20

30
1 2 3 40

Figure 3.4: PCG iterations (upper panels) and initial residual norms in logarithmic scale

(lower panels) at each time step for different degrees of lagrangian interpolation (showed on

top) for Bidomain model with adaptive time stepping strategy. PCG was preconditioned with

MHS(5)

PCG initial guess.

3.3 Fischer’s projection algorithms

Instead of interpolating in time the previous solutions, another possible

approach to speed up iterative solution processes is using information gen-

erated from previous right-hand sides. In this section we apply two algo-

rithms, first proposed in [37], for extracting information from the previous

linear systems to generate initial guesses to the current one. The first ap-

proach is equivalent to simply remove any component of the current right

hand side bn+1 for which the solution is already known, i.e. by project-

ing bn+1 onto a set of orthonormal vectors which spans {bn, . . . , bn−k}
(having associated solutions {yn, . . . , yn−k}), and then solving the linear

system with a zero initial guess and the orthogonal component of bn+1 to

the finite dimensional set spanned by {bn, . . . , bn−k} as right hand side.
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Here 1 ≤ k ≤ K , and K represents the maximum number of vector to

be stored by the algorithm. The second approach is a refinement of the

first and exploits the features of the conjugate gradient method that seeks

approximations which successively minimize the error in the Miter-norm:

the second method looks in fact for the best approximation to yn+1 in the

set spanned by {yn, . . . , yn−k} with respect to the Miter-norm when the

linear system matrix is symmetric and positive definite, i.e.

yn+1
0 = argmin

y∈span{yn,...,yn−k}

||yn+1 − y||Miter . (3.4)

These procedures, summarized below, are in principle superior to those

derived from extrapolation techniques based on high-order interpolants in

time since such projection techniques yield the best possible approxima-

tion within a given basis set. We will test this two approaches only with the

Monodomain model, since they implicitly assume the positive definitess

of the iteration matrix (see basis updating procedures below) and thus they

cannot be directly applied to the Bidomain model; we will overcome this

issue using a different technique in the following section.

The choice of the initial guess by the two algorithms described in [37]

can be summarized as:

Method 1 : Supposing that we have collected two orthogonal sets Uk =
{ỹ1, . . . , ỹk} and Bk = {b̃1, . . . , b̃k} and that Bk is orthonormal

with respect to an appropriately weighted inner product < ·, · >,

the guess generator at time step n+ 1 is given by:

• evaluate βi =< bn+1, b̃i >, i = 1, . . . , k

• generate the next initial guess as yn+1
0 =

∑k
i=1 βiỹi

• update the sets Bk and Uk

Method 2 : Supposing that we have collected an orthonormal (with re-

spect to Miter-norm) set Xk = {ỹ1, . . . , ỹk}, the guess generator at

time step n+ 1 is given by:

• evaluate βi =< bn+1, ỹi >, i = 1, . . . , k (minimization pro-

cedure)
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• generate the next initial guess as yn+1
0 =

∑k
i=1 βiỹi

• update the set Uk

Second method residual’s minimization procedure is based on the follow-

ing straightforward calculation: since

||yn+1 − yn+1
0 ||Miter =(yn+1)T Miteryn+1 − 2

k∑

i=1

βiỹ
T
i Miteryn+1+

k∑

i,j=1

βiβj ỹT
i Miter ỹj

exploiting the orthonormality of the basis (with respect to the Miter-norm)

and requiring a vanishing first variation of the last expression leads to

βi =< bn+1, ỹi > i = 1, . . . , k.

To complete the description of the methods, we summarize algorith-

mically the basis updating:

Method 1 :

if k = K then

b̃1 = Miteryn+1/||Miteryn+1||
ỹ1 = yn+1/||Miteryn+1||
k = 1

else

ỹ = yn+1 −∑k
i=1 βiỹi

b̂ = Miter ỹ

γi =< b̂, b̃i >, i = 1, . . . , k

b̃k+1 =
(

b̂ −∑k
i=1 γib̃i

)
/||b̂ −∑k

i=1 γib̃i||
ỹk+1 =

(
ỹ −∑k

i=1 γiỹi

)
/||b̂ −∑k

i=1 γib̃i||
k = k + 1

endif
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Method 2 :

if k = K then

ỹ1 = yn+1/||yn+1||Miter

k = 1
else

ỹ = yn+1 −∑k
i=1 βiỹi

γi =< ỹ, ỹi >Miter , i = 1, . . . , k

ỹk+1 =
(

ỹ −∑k
i=1 γiỹi

)
/||b̂ −∑k

i=1 γib̃i||Miter

k = k + 1
endif
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Figure 3.5: Preconditioned initial residual for the two Fischer’s methods as a function of

stored vector K at the 20-th time step of TC1.

For our numerical experiments we use the implementation of the Fis-

cher’s methods provided by the PETSc library. Figure 3.5 shows the pre-
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conditioned initial residual as a function of K for both methods applied

to TC1 at the 20-th time step with different values K of stored vectors;

we choose the 20th time step in order to have a comparison of the meth-

ods with the greatest allowed dimension of projection basis for each K

(i.e k = K at the 20th time step) since the basis updating procedure suf-

fers from an implicit restart. Numerical results show a saturation in the

approximation properties with growing K for both methods thus the per-

formances of projection-based methods suffer from the same saturation

problem experienced during the activation phase also by the lagrangian

interpolants. Moreover, no significant differences between the two Fis-

cher methods were observed in terms of iterations reduction.

Tables 3.5 and 3.6 collect the results for the second Fischer methods in

the TC1 and TC2 case respectively for different choices of K , in order to

give a comparison between projection-based methods and lagrangian in-

terpolants (see Table 3.1 and 3.2 respectively). With such projection tech-

niques, a further improvement in reducing the total number of iterations

of the TC1 and TC2 simulations is achieved as expected since projection

methods produce the best initial guess with respect to a given basis set; on

the other hand, such improvement is less pronounced for the total solving

time due to expensive Gram-Schmidt orthogonalization procedures inher-

ent in the algorithms.

3.4 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) technique is able to extract,

from a given set of snapshots {yi | 1 ≤ i ≤ N} of discrete solutions on

a given time grid t1 < · · · < tN , a coherent structure which has the

largest mean square projection on the observations [128]. Although it is

possible to use POD to derive the approximate solution of some classes

of parabolic problems (see e.g. [71], [40]), due to IMEX approach to the

strong nonlinearity of the cardiac models, we are only concerned here in

analyzing the performances of a POD based technique in finding suitable

PCG initial guesses for the full order linear system (3.1).

Supposing that the solution of the problem of interest is y ∈ X where
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Fischer’s method 2 for TC1

K 0 5 10 20

Iterations per time step

phase 0 7.6 6.2 5.7 5.4

phase 1-2 6.1 1.5 0.6 0.3

phase 3 6.4 1.5 0.7 0.3

rest 4.1 0.5 0.3 0.3

Admissible Solutions

phase 0 0 0 2 9

phase 1-2 0 1091 1816 2259

phase 3 0 640 1138 1443

rest 0 2866 3210 3566

Table 3.5: PCG-BJ average number of iterations per time step and number of admissible

solutions in different AP phases for different choices of stored vectors K with Fischer’s

method 2 in TC1 case.
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Fischer’s method 2 for TC2

K 0 5 10 20

Total number of iterations

27913 13833 10365 8341

Total solving time (s) for linear solver

1623 1447 778 750

Table 3.6: PCG-BJ iteration counts for different choices of stored vectors K for Fischer’s

method 2 in TC2.
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X is a suitable Hilbert space, with the POD approach we seek for its pro-

jection ỹ ∈ Xnp , where Xnp is a finite dimensional subspace of X of

dimension np. POD aims to construct a suitable basis {ψk}np

k=1 of Xnp in

order to split the solution field as

Py =

np∑

k=1

αkψk(x), (3.5)

where P is the projection operator fromX onXnp . Given a suitable inner

product (·, ·)X in X , the key idea of the POD method consists in finding

such subspace Xnp , in a way that the basis {ψk}np

k=1 is orthonormal in

X (with respect to the norm induced by the inner product) and captures

the highest energy configuration provided by the snapshots. Then, the

projection of each snapshot on Xnp can be expressed as

Pyi =

np∑

k=1

(yi(x),ψk)Xψk. (3.6)

From the knowledge of the basis elements, αk coefficients in (3.5) can be

obtained as

αk = (yi,ψk(x))X .

The idea of POD is based on an optimality argument: given a set of

snapshots, it chooses the first basis element maximizing αk coefficients in

equation (3.5) according to

max
ψ∈X

N∑

i=1

(yi,ψ)
2
X , (3.7)

where the optimization problem is subjected to the constraint ||ψ||X = 1
with ||·||X the norm onX induced by the inner product (·, ·)X . The second

basis element is obtained posing the same maximization problem in the

space orthogonal to the first eigenfunction, and by finite induction we can

obtain the POD basis of rank np < N as the solution of the optimization
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problem

max
ψ1,...,ψnp

np∑

i=1

N∑

j=1

(yj ,ψi)
2
X , (3.8)

with the constraint (ψi,ψj)X = δij . Moreover, it can be shown that the

latter maximization problem is equivalent to a minimization one

min
{ψk}

np
k=1

N∑

i=1

||yi −
np∑

k=1

(yi(x),ψk)Xψk||2X , (3.9)

where again the minimum is constrained to the condition of orthonormal-

ity of the basis, i.e.

(ψi,ψj)X = δij

∀ 1 ≤ i ≤ np, 1 ≤ j ≤ i. We note that the POD space describes a

typical member of the snapshots’ ensemble better than any other finite

dimensional subspace of X of dimension np, providing the most efficient

way of capturing the dominant components of an infinite-dimensional pro-

cess with only finitely many, and often surprisingly few, modes in the

Hilbert space X . This basis is known by different names in the litera-

ture: Karhunen-Loeve expansion ([60], [84]), principal components [56],

empirical orthogonal eigenvectors [85], factor-analysis [45] and total least

squares [43]. Usual choices of the space X in literature are R
Ndof where

Ndof is the number of degrees of freedom for the FE system, L2 (Ω) and

H1 (Ω); for sake of simplicity, we will sketch the derivation of the POD

basis in the vector space RNdof ; for additional functional details and a more

complete treatment of POD see [59], [40] or the monograph [49].

Let us now consider for simplicity the optimization problem (3.8) with

np = 1 and his associated lagrange function

L(ψ, λ) =
N∑

j=1

(yj ,ψ)
2
R

Ndof
+ λ(1 − ||ψ||2

R
Ndof

).

A first order necessary optimality condition can be obtained deriving the
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latter function with respect to an arbitrary componentψi (i = 1, . . . , Ndof)

of the vector ψ

∂L(ψ, λ)
∂ψi

=
∂

∂ψi




N∑

j=1

|
Ndof∑

k=1

Ykjψk|2 + λ(1 −
Ndof∑

k=1

ψ2
k)




= 2

N∑

j=1

(
Ndof∑

k=1

Ykjψk

)
Yij − 2λψi

= 2




N∑

j=1

Ndof∑

k=1

YijYkjψk − λψi




= 2

(
Ndof∑

k=1

(Y Y T )ikψk − λψi

)

= 2((Y Y Tψ)i − λ(ψ)i),

where we denoted by Y the matrix formed columnwise by the snapshots,

i.e.

Y = [y1| . . . |yN ].

Requiring a zero first order variation for each vector component, we obtain

the eigenvalue problem

Y Y Tψ = λψ, (3.10)

where the matrix Y Y T is symmetric and positive semi-definite, and there-

fore all the eigenvalues are real and nonnegative. The first POD basis el-

ements ψ1 is thus the eigenvector which maximizes λ; by finite induction

one can prove that the ith POD basis element is the eigenvector of Y Y T

associated to the ith largest eigenvalue. See [59] for additional details.

Computing the POD basis elements solving the eigenvalue problem

(3.10) can be very expensive since the matrix Y Y T has dimension RNdof
×

RNdof
; in order to overcome this issue, the snapshots method [128] has

been introduced in literature. With this method we can reduce drastically

the dimension of the eigenvalue problem for computing the POD basis
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elements using a Singular Value Decomposition (SVD) argument. First

recall the singular value decomposition of a rectangular matrix:

Lemma 3.4.1. For a matrix Y ∈ R
m×k with k < m and rank r ≤ k there

exist r positive singular values d1 ≥ d2 ≥ · · · ≥ dr > 0 together with

orthogonal matrices U = [u1| . . . |um] ∈ R
m×m and V = [v1| . . . |vk]

∈ R
k×k, which satisfy

Y = UDV T .

The matrix D has nonzero entries only on the diagonal, that is Dii = di
for 1 ≤ i ≤ r. Moreover,

Y vi = diui,

Y T ui = divi.

Corollary 3.4.2. From SVD Lemma follows directly than the left singular

vectors ui and the right singular vectors vi are eigenvectors of Y Y T and

Y TY respectively and their associated eigenvalues satisfies λi = d2i .

Using the SVD we can thus infer that the eigenvalues of the matrix

Y Y T and Y TY are the same; moreover the POD basis elements (eigen-

vectors of Y Y T ) can be calculated from the eigenvectors of the so called

correlation matrix Y TY that are easier to compute since the latter matrix

has dimension N × N . The kth POD spatial mode is then reconstructed

according to the formula

ψk =
1√
λk

N∑

j=1

vjkyj , (3.11)

where vjk is the jth element of the kth eigenvector of the correlation matrix

vk, or in matrix form as

Ψ = Y V D−1/2,
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where

D = diag (λ1, . . . , λN )

is the diagonal matrix of eigenvalues of Y TY and

Ψ = [ψ1| . . . |ψN ]

is the matrix formed columnwise by the finite element approximation of

the N spatial modes.

Remark 3.4.3. In order to compute the POD basis elements using a general

inner product (·, ·)X the correlation matrix entries will simply be

(yi, yj)X . (3.12)

Moreover, the computational costs of building the correlation matrix can

be limited noting that at each time step we only need to shift the already

computed values and update the last column of the correlation matrix. We

choose to assemble and compute eigenvalues and eigenvectors of the cor-

relation matrix on each processor using standard LAPACK subroutines

[72] for symmetric eigenvalue problems; then each processor can com-

pute its local part of the POD basis elements using (3.11) without addi-

tional communications. For the Bidomain model, we choose to decouple

the intra- and the extra-cellular component of the snapshots and construct

a correlation matrix separately for each scalar component.

The POD approximation properties with general inner products are

guarantied by the following Lemma (for the proof see [128]):

Lemma 3.4.4. Let λ1 ≥ · · · ≥ λN ≥ 0 denote the eigenvalues of the

correlation matrix given by the N snapshots according to (3.12). We then

have the following error formula ∀np ≤ N :

N∑

i=1

||yi −
np∑

k=1

(yi,ψk)ψk||2X =

N∑

k=np+1

λk.

78



Differently from Fischer’s methods illustrated in the previous section,

with the POD projection technique we don’t necessarily need the itera-

tion matrix to compute the projection basis; moreover we can in principle

obtain additional informations on the basis elements using their energies.

The eigenvalue of the correlation matrix in fact decay to zero and the faster

the decay, the lowest the number of POD basis elements required to accu-

rately approximate the previous solutions. An example of the exponential

decay of the eigenvalues at a given time step during the activation phase

is plotted in Figure 3.6 for the Monodomain model (black curves) and the

Bidomain model (red curves ue, blue curves ui) using N = 10 snapshots

and different discrete inner products (inner product in L2 (Ω) continuous

lines, inner product in R
Ndof dashed lines). Since we are dealing with

structured grids with a lumped mass matrix, the choice of the inner prod-

uct yielded approximatively the same relative decay.
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Figure 3.6: Exponential decay of the eigenvalues at a fixed time step during the activation

phase. Red curves extracellular potential and blue curves intracellular potential for the Bido-

main model; black curves tranmembrane potential for the Monodomain model. Continuos

lines X = L2 (Ω), dashed lines X = R
Ndof

Remark 3.4.5. For the application of POD to concrete problems the choice

of the number of basis elements is certainly of central importance, as is

also the number of snapshots taken. No general a-priori rules are currently

available. Rather, the choice of np is based on heuristic considerations

combined with observing the ratio between the modeled and the total in-

formation contained in the snapshot ensemble. A usual procedure in the
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literature consists in choosing the first np eigenvalues that retain a pre-

scribed fraction of the total energy of the system, that is, using Lemma

3.4.4, np is the maximum integer lesser than N for which it holds

∑np

i=1 λi∑N
i=1 λi

≤ 1− ε, (3.13)

where ε is a prescribed tolerance, referred to in the sequel as POD cut-off

tolerance.
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Figure 3.7: Number of POD basis elements (see colorbar) with 20 snapshots for trans-

membrane potential with Monodomain model, and for intra- and extracellular potentials with

the Bidomain model

Figure 3.7 shows the dependence of the number of POD basis elements

from the POD cut-off tolerance ε for the cardiac Monodomain (left panel)

and Bidomain model (central panel ui, right panel ue) both solved with

a constant time step δt = 0.05 ms for 10000 time steps, and considering

as snapshots’ set the previous 20 computed solutions. As a first observa-

tion, the POD technique seems to be able to sense the temporal variation

of the AP but also that its approximation properties deteriorates with the

presence of localized sharp activation fronts inside the spatial domain: a
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slower decay of the approximation error is present during the activation

phase, which means that a greater number of basis elements is not suffi-

cient to accurately approximate the past dynamics. In the other AP phases,

very few POD elements are needed to closely approximate the previous

solutions.
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Figure 3.8: Transmembrane potential v and first three most energetic POD basis elements

for the Monodomain model during the activation phase
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Figure 3.9: Transmembrane potential v and first three most energetic POD basis elements

for the Monodomain model during the plateau phase

Figures 3.8, 3.9 and 3.10 show layers cut of the three most energetic

POD basis elements at different AP phases for the Monodomain model

excited in the lower left corner and in the right vertical face at different

time instances; transmembrane potential distribution is also provided to

give a comparison. The activation fronts are evident in Figure 3.8 for

the transmembrane potential; POD elements are locally sharp near the

fronts, whereas they are almost equal to 0 far away from the fronts. In
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Figure 3.10: Transmembrane potential v and first three most energetic POD basis ele-

ments for the Monodomain model during the repolarization phase

the other AP phases, the transmembrane potential and the POD elements

are smoother.

POD-Galerkin initial guess.

The POD technique can be very efficient used in combination with Galerkin

projection schemes in order to obtain lower dimensional systems that,

when solved, could produce suitable initial guesses for the PCG [89];

we will refer to this approach as POD-Galerkin scheme. In the general

context of Galerkin methods (see e.g [113]), after introducing an approx-

imation space where we seek for the solution, we force the true residual

(i.e. the difference between the computed approximated solution and the

exact one) to be zero onto the approximation space. Therefore, with a

POD-Galerkin scheme, a lower dimensional system can be derived using

as approximation space

Xnp = {ϕ ∈ X | ϕ =

np∑

i=1

αiψi}, (3.14)

thus using the POD basis elements like test functions in a usual FEM

method.
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For the Monodomain system’s matrix (2.19), the POD-Galerkin scheme

at time step n+ 1 can be compactly written in matrix form as:

ΨT MiterΨα
n+1 = ΨT bn+1, (3.15)

where Ψ is the matrix formed columnwise by the spatial modes computed

at the current time step, Miter is the iteration matrix (2.19), bn+1 the right

hand side of the full order linear system (3.1) and αn+1 the unknowns of

the current lower dimensional system.

Analogously, the POD-Galerkin scheme for the Bidomain system’s

matrix (2.20) can be derived using as approximation space the cartesian

product of the two POD spaces for the intra- and extra-cellular compo-

nents, that is X i
np

× Xe
np

; therefore the matrix of POD basis elements

is

Ψ =

[
Ψi 0
0 Ψe

]
,

where

Ψi,e = [ψi,e
1 | . . . |ψi,e

ni,e
p
]

are the POD basis element matrices for the intra- and extra-cellular com-

ponent. Thus the lower dimensional linear system matrix, obtained by

projecting the Bidomain iteration matrix (2.20) onto Ψ, is

1

δt

[
ΨiT MΨi ΨiT MΨe

ΨeT MΨe ΨeT MΨe

]
+

[
ΨiT AiΨi 0

0 ΨeT AeΨe

]
, (3.16)

where M and Ai,e are respectively the original mass and stiffness matrices.

Analogous arguments can be used to construct the right hand side of the

lower dimensional system starting from the right hand side of the full-

order linear system.

The lower dimensional POD-Galerkin matrices will be symmetric and

positive definite either for the Monodomain or the Bidomain model; as

for the correlation matrices, we choose to assemble the lower dimensional

systems on each processor and then solve them using standard LAPACK

subroutines for Cholesky decomposition. Then, each processor compute
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the local part of the PCG initial guess as

yn+1
0 = Ψαn+1.

Remark 3.4.6. The computational limitations of the POD technique mostly

resides in the assembling of the lower dimensional matrix, which in prin-

ciple require at least np(np + 1)/2 matrix vector multiplications for sym-

metric linear systems like the Monodomain model; in case of unsymmet-

ric systems, the number of matrix vector multiplication becomes n2
p. This

issue can be overcame using suitable inner products in building the cor-

relation matrices. For the Monodomain model, since the iteration matrix

is symmetric and positive definite, we can choose it as the discrete in-

ner product. With this choice, the computational costs of assembling the

lower dimensional system can be considerably reduced since the lower di-

mensional system’s matrix will become the identity matrix exploiting the

orthonormality of the POD basis with respect to the inner product chosen.

Moreover, for the recursive nature of the correlation matrix, only one ma-

trix vector multiplication, namely Miteryn, must be performed in order to

compute the new column

(y1Miteryn, . . . , ynMiteryn)
T

of the correlation matrix at the current time step. In practice, the latter

matrix vector multiplication can be avoided noting that its result is equal

to the previous right hand side of the full-order system. Note that with this

choice of inner product, the POD-Galerkin scheme will strictly resemble

the second Fischer method illustrated in Section 3.3. For the Bidomain

model, we see that if we use the discrete L2 inner product (i.e. the lumped

mass matrix M) for the calculation of the correlation matrix, the lower

dimensional projected matrix can be written as

1

δt

[
I −M̃

−M̃
T

I

]
+

[
Ãi 0

0 Ãe

]
,

where the diagonal blocks of the first matrix are identity matrices of ap-
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propriate sizes, the off-diagonal block

M̃ = Ψi
T MΨe

is the cross mass matrix between the two POD spaces and

Ãi,e = ΨT
i,eAi,eΨi,e

are the projected stiffness matrices. With this inner product additional

matrix vector multiplications must be performed to project the stiffness

matrices and thus we will not have any computational gain. A suitable

choice is to choose as inner products the matrices

1

δt
M + Ai,e

for the intra- and extra-cellular components: in this way, the diagonal

blocks of the lower dimensional matrix will become the identity and we

need to perform only ni
pn

e
p additional discreteL2 dot products to assemble

the off diagonal blocks.

Remark 3.4.7. Fischer’s methods and POD-Galerkin technique strictly re-

sembles each other, but the latter can also be applied to semidefinite (as

in our case) but also indefinite linear systems since the derivation of the

lower dimensional system is naturally related to the full dimensional one.

Moreover, the former methods possess additional limitations since they

suffer from an implicit restart which make the choice of the dimension

of the projection subspace untractable without a necessary rebuilding of

the basis. Also, with Fischer’s algorithms the cost of implementing the

Gram-Schmidt orthogonalizations must be taken into account, whereas the

computational costs of assemble the lower order system can be drastically

reduced with POD-Galerkin method.

Remark 3.4.8. As shown in [71], the choice of inner product does not

affect the POD approximation properties, which can be improved by in-

cluding in the snapshots ensemble the so called difference quotients: with
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the notation introduced at the beginning of the section, the snapshots’ en-

semble introduced in [71] becomes:

ỹ
B
i =





yi if 1 ≤ i ≤ N
yi−N+1 − yi−N

ti+1 − ti
if N + 1 ≤ i ≤ 2N − 1

.

Note that the difference quotients are usual backward finite difference (and

so the B superscript) and that no additional inner products must be per-

formed to assemble the correlation matrix due to the linearity of the inner

products involved. With the same idea, we can consider in the snapshots

ensemble the centered finite differences

ỹ
C
i =





yi if 1 ≤ i ≤ N
yi−N+1 − yi−N−1

ti−N+1 − ti−N−1
if N + 1 ≤ i ≤ 2N − 1

.

In this case, the zero index snapshot must be stored and N additional in-

ner products must be performed. In order to limit the computational costs

involved in forming the correlation matrix, we can use the modified snap-

shots’ ensemble with central differences for all time instances but t1 and

tN :

ỹ
CM
i =





yi if 1 ≤ i ≤ N
yi−N+2 − yi−N

ti−N+2 − ti−N
if N + 1 ≤ i ≤ 2N − 2

.

In all cases, no additional matrix vector multiplications are needed to as-

semble the lower dimensional linear system.

Numerical results.

We test the POD-Galerkin schemes for different choices of the snapshots’

number N and POD cut-off tolerance ε. The results are summarized in

Table 3.4 for TC1, in Table 3.8 for TC2 and in Table 3.4 for TC4 using all

spatial modes with positive eigenvalues. We also test the POD-Galerkin

method with the Bidomain model BJ preconditioned in TC3 (data not
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shown): no substantial gain was achieved with respect to the lagrangian

choice (see Table 3.3). The very simple derivation of the low-order model

and the capability of the POD technique in produce admissible solutions

even with few snapshots taken make it the ideal candidate as a tool for the

choice of the next initial guess for the cardiac models. Numerical results

show that increasing the number of stored snapshots doesn’t necessarily

produce high dimensional POD spaces suitable in predicting the future,

either when sharp fronts are locally moving inside the spatial domain dur-

ing tissue activation or in the other AP phases. In the activation phase

iterations are similar for different values of the number of snapshots and

POD cut-off tolerance (see Table 3.9): this can be due to the minimization

procedure inherent in the construction of the POD basis which is defined

on the whole spatial domain and thus suffering from the strong localiza-

tion of the fronts. Moreover, a POD space derived from a lower number of

snapshots better catch the dynamics, as it can be seen in Table 3.4 taking

into account the admissible solutions or in Table 3.8. The best choice with

POD-Galerkin method is thus a relatively little number of snapshots and

to retain all the spatial modes with positive eigenvalues.

Results including the difference quotients in the snapshots’ ensemble

for TC1 are shown in table 3.4 forN = 5 andN = 10 retaining all spatial

modes; the inclusion of the difference quotients greatly improve the per-

formances of the POD-Galerkin scheme for the Monodomain model in all

AP phases but the activation. Central finite differences show to be the best

choice, with a little loss of performance in the modified CM case. More-

over, the inclusion of the difference quotients in the snapshots’ ensemble

improve the performances only with lower values of N , confirming the

fact that the dimension of the snapshots set can (and must) be small. In

Chapter 5 we will provide additional results applying the POD-Galerkin

technique to the Schur complement matrix of the Bidomain system.

3.5 Choice of cellular initial conditions

In this section we will concentrate on the cellular initial conditions pre-

scribed at the beginning of the simulations simulating 50 beats with the
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POD-Galerkin method for TC1

N 0 10 20 30

Iterations per time step

phase 0 7.6 5.3 5.3 5.4

phase 1-2 6.1 0.5 0.7 0.7

phase 3 6.4 0.7 0.9 0.8

rest 4.1 0.5 0.9 1.0

Admissible Solutions

phase 0 0 0 0 0

phase 1-2 0 1534 879 1021

phase 3 0 550 333 437

rest 0 1866 383 74

Table 3.7: POD initial guess: average iteration count per time step and admissible solu-

tions in different AP phases for TC1. See text for details.
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POD-Galerkin method for TC2

N 0 5 10

Total number of iterations

27913 8303 7200

Total solving time (s)

1623 544 496

Table 3.8: POD initial guess: total number of iterations and total solving time for different

numbers of stored snapshots for TC2.
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POD-Galerkin method in phase 0

and POD cut-off tolerance

ε 1E-12 1E-13 1E-14 1E-15 1E-16

Iterations per time step

N = 10 5.5 5.5 5.5 5.4 5.4

N = 20 5.5 5.4 5.3 5.3 5.3

N = 30 5.5 5.4 5.4 5.3 5.3

Table 3.9: Average number of iterations per time step in the activation phase for TC1.

Number of snapshots by rows and POD cut-off tolerance ε by columns.

Monodomain model and adaptive time stepping strategy at different stim-

ulation frequencies. At each time step, the initial guess for the linear solver

is chosen using the adaptive lagrangian method descripted in section 3.2

since these results were obtained before studying the POD method. As

test case for this section, the dimension of the slab is 1.92× 1.92 × 0.64
cm3 and the grid dimension is 192× 192× 64: simulations has been per-

formed with 18 processors, distributed 3×3×2 across the spatial grid with

the Linux cluster Ulisse at University of Milan (www.ulisse.mat.unimi.it).

With this solving configuration, each beat requires approximatively 40

minutes to be simulated.

Transmural cellular heterogeneity is considered as in the 3-slab con-

figuration already introduced in [21]: the cardiac slab is subdivided trans-

murally into three equal layers of the same thickness: endocardial, mid-

myocardial and epicardial, composed by the corresponding type of cell

provided by the HHRd model developed in Chapter 1. In order to de-

scribe the macroscopic features of the excitation and subsequent repolar-
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POD-Galerkin method for TC4

N 5 10 15 20

Total number of iterations

9852 8338 7933 7914

Admissible solutions

65 172 250 257

Table 3.10: Total number of iterations and admissible solutions for the Bidomain model

preconditioned with MHS(5) in TC4 for different values of N .
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POD-Galerkin method for TC1

and difference quotients

nodiff B C CM

Iterations per time step N = 5

phase 0 5.9 5.9 5.4 5.6

phase 1-2 1.0 0.7 0.4 0.5

phase 3 1.2 0.9 0.5 0.6

rest 0.8 0.5 0.4 0.4

Admissible Solutions N = 5

phase 0 0 0 1 2

phase 1-2 838 1026 1699 1381

phase 3 581 657 901 804

rest 2294 2470 2268 2568

Iterations per time step N = 10

phase 0 5.3 5.3 5.3 5.3

phase 1-2 0.5 0.4 0.3 0.4

phase 3 0.7 0.7 0.6 0.6

rest 0.5 0.5 0.7 0.7

Admissible Solutions N = 10

phase 0 0 1 3 1

phase 1-2 1534 1683 1946 1922

phase 3 550 658 767 907

rest 1866 1872 1418 1553

Table 3.11: POD initial guess and difference quotients: average iteration count per time

step and admissible solutions in different AP phases for TC1. See text for details.
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Figure 3.11: Slab sections considered in showing results; numbers in following figures

identify the spatial grid

ization process, we extract from the spatiotemporal transmembrane po-

tential the sequence of the propagating excitation and repolarization wave

fronts. Since cellular AP waveform is increasingly monotone in the up-

stroke phase and decreasingly monotone in the repolarization phase (see

e.g. Figure 1.2), activation and repolarization times are uniquely deter-

mined for fixed threshold values of the transmembrane potential, chosen

as −60mV for activation (with upward crossing) and −75mV for repo-

larization (with downward crossing). From the knowledge of ACTI and

REPO patterns, APD distributions can be obtained as REPO − ACTI. In

the following, the level surfaces of activation and repolarization times will

be denoted by ACTI and REPO respectively and will be shown as slab

sections (see Figure 3.11).

In order to elicit the excitation front, we apply a stimulus of 200µA/cm3

for 1ms on a small volume (containing 5 mesh points in each x- and y-

direction and 3 mesh points in the z-direction) at the center of the endocar-

dial face. The total amount of rotation considered is 120 degrees, starting

from 75 degrees at the endocardial face. BCLs considered are 500 ms (in

the range of normal canine rates) and 2000 ms (to reproduce bradycardia).

We take into account two configurations for the initial conditions (IC) of

the cellular system:

IC0D IC from the dynamical steady state of the 0D model

IC1D IC evaluated simulating 500 beats of an heterogeneous monodomain

fiber

The transmural fiber has been implemented in MATLAB with a centered
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finite difference scheme for the spatial discretization and the same IMEX

approach (see Chapter 2) for the temporal discretization, using HHRd as

cellular model. The grid dimension of the fiber has been chosen equal to

the dimension of the z-axis of the three dimensional grid: initial conditions

for the cellular model in the slab are then assigned depending on the height

(z-value) of the cell in the slab.

Regularities of ACTI and REPO waves through successive waves are

summarized in Figure 3.12 for BCL 500 and in Figure 3.13 for BCL 2000:

for each beat we collected ACTI and REPO three dimensional patterns

and a relative differences between successive waves has been measured

by means of the following simple formulas:

||ACTIn+1 − ACTIn||2
||ACTIn||2

||REPOn+1 − REPOn||2
||REPOn||2

where || · ||2 is the usual euclidean norm.

ACTI patterns result similar among successive beats, whereas REPO

patterns depends on different choices of initial conditions and on different

stimulation frequencies. At BCL 500 ms, REPO wave alternates start-

ing from endocardial or epicardial sites during the first beats (not shown),

until a stable configuration is reached; no substantial differences exist be-

tween IC0D and IC1D choices (see Figure 3.12). At BCL 2000 ms, REPO

waves are much more stable through multiple beats and IC1D choice per-

form better than IC0D in terms of relative differences, indicating lesser

variation between waves through successive beats, and thus a more sta-

ble APD configuration. It must be noted that the two choices of cellular

initial conditions yields qualitatively the same three dimensional patterns

of activation and repolarizations, either at BCL 500 ms or at BCL 2000

ms, but with different APD mean values as it can be seen in Figure 3.14,

where the mean APD on each layer of the slab (for each choice of initial

condition) is compared with the dynamical steady state obtained from the

0D model and with its final distribution on the transmural fiber. It was also

noted (data not shown) that the total number of iterations per beat decrease
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in successive beats, for each choice of initial conditions; moreover, IC1D

lowers the total number of iterations per beat with respect to IC0D. This

can be due to the fact that IC1D introduce a smoother initial distribution of

the transmembrane potential that lowers the iterations per time step mainly

during the activation phase.
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Figure 3.12: Three dimensional relative differences in logarithmic scale of ACTI and

REPO patterns for different choice of initial conditions at BCL 500. Red dots curve IC1D,

black dots curve IC0D

Next, we analyze the three-dimensional relative differences collected

for HHRd cellular variables and the results are shown in Figure 3.15 for

BCL 500 and in Figure 3.16 for BCL 2000. Cellular variables that moves

slower to their dynamical steady state are, as expected, ionic concentra-

tion variables (sodium, potassium and chloride, respectively nai, ki and

cli in figures) and subcellular calcium concentrations (denoted by jsrT

and nsr in the figures); for the gating variables (see [54] and [81] for their

definitions) the choice of cellular initial conditions doesn’t influence the

results. Note that the highly oscillatory behaviour of the irel variable

is a numerical artifact since at the beginning of each beat, its value is al-

most equal to 0 for each cell of the slab. Relative differences of cellular
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Figure 3.13: Three dimensional relative differences in logarithmic scale of ACTI and

REPO patterns for different choice of initial conditions at BCL 2000. Red dots curve IC1D,

black dots curve IC0D

variables suggest thus that IC1D is closer than IC0D to the three dimen-

sional dynamical steady state, even if it is far from being reachable in

three dimensional simulations also with the Monodomain model. Numer-

ical results suggest also that a lower number of beats simulated with the

transmural fiber would give better results in the IC1D case.

3.6 Influence of transmural heterogeneity in

three-dimensionsional simulations

In this section we qualitatively describe activation and repolarization pat-

terns at the 50th beats simulated using IC1D as prescribed ionic initial

conditions, either at BCL 500 ms or at BCL 2000 ms. Representative

three-dimensional ACTI patterns (similar between different BCL consid-

ered and initial conditions prescribed) are shown in figures 3.17, 3.18 and
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Figure 3.14: APD90 distributions at the frequencies considered: cellular model HHRd

(dotted lines), one dimensional monodomain fiber (dashed lines), mean on layers of the three-

dimensional slab (continuous lines)

3.19. Their features has been studied extensively with the Monodomain

and Bidomain models (see e.g. [20]) and with the approximation of its

levels set known as eikonal equations ([16], [17]); here only the main

features will be pointed out. Intramural excitation, starting from an en-

docardial stimulation site, first proceeds toward the epicardium but subse-

quently, due to fiber rotation, comes back pointing toward the endocardial

plane. Due to these intramural return pathways, propagation undergoes

an acceleration, in particular in endocardial areas where the excitation

moves mainly across fibers. Stimulation at the center of the endocardial

face produces approximately elliptical excitation isochrone lines, a clear

sign of their anisotropic propagation: the major axes of the oblong ex-

citation isochrones are nearly parallel to the endocardial fiber direction

(5/12π). Also, the excitation isochrones show an inflection correspond-

ing to a dimple-like inflection of the wave front (see also [20] where the

slab dimension is greater and these features are more pronounced). These

findings, i.e. the accelerating propagation across fibers, the bulging and
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the dimple-like inflection of the isochrones, are attributed to the influence

on the endocardium of the activation processes through the deeper layers

(see figure 3.18 where the cut planes are nearly perpendicular to the en-

docardial fiber direction). Proceeding from endo- to epi-cardium on the

intramural planes parallel to the endocardium, the spacing between exci-

tation isochrones increases, the wave front shapes become rounder and we

observe a transmural twisting of the isochrones, i.e. the major axis of the

oblong isochrones progressively rotates clockwise with increasing depth.

However, their rotation lags behind the rotation of the fiber direction at cor-

responding depths (the fiber direction at the epicardium is −π/4). On the

epicardial plane, the excitation front-boundary collision first occur at the

center of the face (BKT, breakthrough point) since the model considered

does not incorporate the epi- endocardial obliqueness of the fibers ([134])

(see e.g. [17] were this feature was included in the simulations). Subse-

quent excitation isochrones have a well rounded, elliptical shape centered

at the point of epicardial face and the large spacing between successive

isochrones indicates a fast excitation.

Following the analysis on relative differences, only REPO and APD

patterns for the last beat simulated with IC1D will be shown. Repolariza-

tion waves on layers cut are similar for BCL 500 and BCL 2000 ms, and

both are faster then the activation ones. At endocardium, REPO waves

are faster along than across fibers, yielding almost elliptical shape of the

isochrones; through the depth of the slab the front shape rotates clockwise

(lesser than the excitation front) from endo- to epicardium maintaining the

ellipticity in the central part of the layers. When the repolarization wave

approach the boundaries of the slab, the front velocity decreases yielding

almost linear isochrones. APD distributions on layers are therefore sim-

ilar between the two stimulation frequencies considered; with respect to

previous simulations, the dispersion od repolarization per layers is higher

with HHRd rather than LR1 (see [21]). The only qualitative difference

per layers between the two frequencies considered using HHRd ad cellu-

lar model has been observed on the endocardial surface in the proximity

of the point where we applied the stimulus: at BCL 2000, the repolar-

ization wave start from the stimulus site and proceeds mainly along the

fiber direction, whereas at BCL 500 REPO wave starts almost contempo-
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rary from two different sites symmetric with respect to the fiber direction

as observed experimentally in [101] (see figure 3.20, left panel BCL 500,

right panel BCL 2000).

The main differences between REPO waves at the frequencies consid-

ered can be enlighted analyzing the vertical sections: at BCL 500 ms, the

wave start at the BKT point on the epicardial face and then proceeds al-

most as a planar wave through the depth of the slab, ending in the slab’s

angles opposed to the fiber direction and lasting for 80 ms. At BCL 2000

ms, REPO wave starts almost contemporary from the stimulus site at the

endocardium and from the the activation BKT at the epicardium; since the

front velocity on the boundaries is lower, these two fronts first proceeds

faster through the center of the slab and then they come back pointing

through the slab’s angles opposed at the fiber direction ending in a suben-

docardial zone after about 40 ms, roughly an half of the duration of the

repolarization wave at BCL 500. As a consequence, the APD distribu-

tion differs significantly through the depth of the slab, even if it resembles

the 0D distribution (see figure 1.18); at BCL 500 ms, APD is greater at

endocardium rather than at epicardium, with a maximum attained at the

stimulus site. At BCL 2000 ms, even if the local maximum is attained at

the stimulus site, an island of M-cell can be clearly distinguished in the

center of the slab, further supporting the concept of cellular heterogeneity

for left ventricular tissue.
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Figure 3.15: Three dimensional relative differences in logarithmic scale for cellular vari-

ables for different choice of initial conditions at BCL 500. Red dots curve IC1D, black dots

curve IC0D
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Figure 3.16: Three dimensional relative differences in logarithmic scale for cellular vari-

ables for different choice of initial conditions at BCL 2000. Red dots curve IC1D, black dots

curve IC0D
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Figure 3.17: Monodomain activation sequence per layers (see figure 3.11) with central

endocardial stimulus. For each panel we show the number of layer on top; below minimum

and maximum attained.
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Figure 3.18: Monodomain activation sequence on ik sections (see figure 3.11) with central

endocardial stimulus. For each panel we show the number of section on top; below minimum

and maximum attained.
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Figure 3.19: Monodomain activation sequence on jk sections (see figure 3.11) with central

endocardial stimulus. For each panel we show the number of section on top; below minimum

and maximum attained.
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Figure 3.20: Zoom of the repolarization waves at the endocardial face. Left panel: BCL

500. Right panel: BCL 2000. The cross is the stimulus site.
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REPO layer sections: 50th beat at BCL 500

Figure 3.21: Monodomain repolarization sequence per layers (see figure 3.11) with cen-

tral endocardial stimulus. For each panel we show the number of layer on top; below mini-

mum and maximum attained.
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REPO ik sections: 50th beat at BCL 500

Figure 3.22: Monodomain repolarization sequence on ik sections (see figure 3.11) with

central endocardial stimulus. For each panel we show the number of section on top; below

minimum and maximum attained.
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REPO jk sections: 50th beat at BCL 500

Figure 3.23: Monodomain repolarization sequence on jk sections (see figure 3.11) with

central endocardial stimulus. For each panel we show the number of section on top; below

minimum and maximum attained.
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APD layer sections: 50th beat at BCL 500

Figure 3.24: Monodomain action potential duration distribution per layers (see figure

3.11) with central endocardial stimulus. For each panel we show the number of layer on top;

below minimum and maximum attained.
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Figure 3.25: Monodomain action potential duration distribution on ik sections (see figure

3.11) with central endocardial stimulus. For each panel we show the number of section on

top; below minimum and maximum attained.
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APD jk sections: 50th beat at BCL 500

Figure 3.26: Monodomain action potential duration distribution on jk sections (see figure

3.11) with central endocardial stimulus. For each panel we show the number of section on

top; below minimum and maximum attained.
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REPO layer sections: 50th beat at BCL 2000

Figure 3.27: Monodomain repolarization sequence per layers (see figure 3.11) with cen-

tral endocardial stimulus. For each panel we show the number of layer on top; below mini-

mum and maximum attained.
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REPO ik sections: 50th beat at BCL 2000

Figure 3.28: Monodomain repolarization sequence on ik sections (see figure 3.11) with

central endocardial stimulus. For each panel we show the number of layer on top; below

minimum and maximum attained.
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REPO jk sections: 50th beat at BCL 2000

Figure 3.29: Monodomain repolarization sequence on jk section (see figure 3.11) with

central endocardial stimulus. For each panel we show the number of layer on top; below

minimum and maximum attained.
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APD layer sections: 50th beat at BCL 2000

Figure 3.30: Monodomain action potential duration distribution per layers (see figure

3.11) with central endocardial stimulus. For each panel we show the number of layer on top;

below minimum and maximum attained.
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APD ik sections: 50th beat at BCL 2000

Figure 3.31: Monodomain action potential duration distribution on ik sections (see figure

3.11) with central endocardial stimulus. For each panel we show the number of layer on top;

below minimum and maximum attained.
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APD jk sections: 50th beat at BCL 2000

Figure 3.32: Monodomain action potential duration distribution on jk sections (see figure

3.11) with central endocardial stimulus. For each panel we show the number of layer on top;

below minimum and maximum attained.
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Chapter 4

Neumann-Neumann

preconditioners for cardiac

models

4.1 Introduction

In this chapter we will introduce and analyze non-overlapping domain de-

composition preconditioners of Neumann-Neumann type for the cardiac

Monodomain and Bidomain model. For a general introduction to these

methods, the interested reader is referred to the monographs [140], [88]

and [130]. In this section we will provide a brief introduction to the itera-

tive substructuring approach. We decompose a polyhedral domain Ω into

N non-overlapping open subdomains Ωi of the same diameter H (often

referred to as substructures) such that the union of their closures is the

closure of Ω, i.e.

Ω =

N⋃

i=1

Ωi
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and each of which is the union of shape-regular elements with the finite

element nodes on the boundaries of neighboring subdomains matching

across the interface.

Definition 4.1.1. Following [140] we define the interface:

Γ =
⋃

i6=j

∂Ωi ∩ ∂Ωj

as the union of

• the subdomain faces, regarded as open sets, that are shared by two

subregions,

• the subdomain edges, also regarded as open, that are shared by more

than two subregions,

• the subdomain vertices, which are endpoints of edges.

Each local interface will be denoted by

Γ(i) = ∂Ωi ∩ Γ.

Remark 4.1.2. If a subdomain edge is a part of ∂Ω and is common to the

boundaries of only two subdomains, we will regard that edge as a part of

the face common to this pair of subdomains. Similarly, we will regard a

subdomain vertex on ∂Ω part of an interior edge. The subdomain faces

which belong to ∂Ω are not part of the interface Γ; the nodal values on ∂Ω
which belong to only one subdomain will effectively belong to the subdo-

main interior.

Following the usual notation of substructuring algorithms, we will de-

note with W(i) the finite element space defined on Ωi: in particular W(i) =
Vh(Ωi) for the Monodomain discretization and W(i) = Vh(Ωi)× Vh(Ωi)
for the Bidomain discretization (see definitions given in eqs. (2.17) and

(2.18)). Each W(i) is then decomposed into a subdomain interior part
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W
(i)
I and a subdomain interface part W

(i)
Γ such that

W(i) = W
(i)
I

⊕
W

(i)
Γ .

We will denote the associated product spaces by

W =

N∏

i=1

W(i), WI =

N∏

i=1

W
(i)
I , WΓ =

N∏

i=1

W
(i)
Γ

and thus we will have

W = WI

⊕
WΓ.

Note that the functions belonging to W will not be in general continuous

across the interface; we will denote the space of functions defined on Ω
and continuous across Γ with Ŵ, i.e.

Ŵ = WI

⊕
ŴΓ,

where we denoted the subspace of WΓ of continuous functions on Γ by

ŴΓ. With abuse of notation, we will make no distinction between the

space of finite element functions and the space of degrees of freedoms

(dofs) of the finite element functions.

Denoting the faces of Ωi by F ij , its edges by E ik and its vertices by

V il, and introducing the set

Nx = { j |x ∈ W(j) , j = 1, . . . , N}

we can now describe the sets of nodes on F ij , E ik and V il for our case of

structured grid by equivalence classes:

x ∈ F ij ⇐⇒ |Nx| = 2

x ∈ E ik ⇐⇒ |Nx| = 4

x ∈ V il ⇐⇒ |Nx| = 8
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where |Nx| denotes the cardinality of the set Nx ; clearly

x ∈ W
(i)
I ⇐⇒ |Nx| = 1.

Figure 4.1 shows the union of the wirebaskets, i.e. the union of edges and

vertices for a global cubic grid 9 × 9 × 9 decomposed with a 2 × 2 × 2
subdomain grid with H/h = 5.

Ω

Figure 4.1: Edges nodes (blue circles) and vertices (green circles) for a 2x2x2 decopom-

position of Ω.

In order to describe the iterative substructuring algorithms, we need to

introduce several restriction, extension, and scaling operators between dif-

ferent spaces. The restriction operator R(i) maps a vector of the space Ŵ

to its restriction to the subdomain subspace W(i), whereas the restriction

operatorR
(i)
Γ maps a vector of the space ŴΓ to its restriction to the subdo-

main subspace W
(i)
Γ . The extension operatorsR(i)T andR

(i)T

Γ perform the

inverted transformations. Furthermore, we introduce the restriction opera-

tor R, which maps functions defined on Ŵ to W, as the direct sum of the

R(i), and RΓ, which maps functions defined on ŴΓ to WΓ, as the direct
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sum of the R
(i)
Γ , together with their inverted transformations RT and RT

Γ .

Restriction and extension operators are rectangular matrices with boolean

values; for a formal definition of such entries see [88].

Another important tool of substructuring algorithms is the so called

partition of unity operator, defined by the quantities

δi(x) =

∑
j∈Nx

aγj (x)

aγi (x)
(4.1)

for some γ ∈ [1/2,∞), where aj(x) is a representative value for subdo-

main j at the node x. Coefficients given in (4.1) provide a partition of

unity in the sense that

N∑

i=1

R
(i)T

Γ δ†i (x) = 1, ∀x ∈ Γ. (4.2)

where δ†i (x) is the pseudo-inverse of δi(x). Clearly, for the Bidomain dis-

cretization, we will have two subdomain representative values associated

to the two components of the finite element space. Denoting with D(i)

the diagonal matrix with δ†i (x) along the diagonal, we obtain the operator

R
(i)
D,Γ multiplying each R

(i)
Γ by D(i), and the operator RD,Γ as the direct

sum of the R
(i)
D,Γ . We than introduce the average operator

ED : WΓ → ŴΓ

whose action on u ∈ WΓ is given by

EDu =

N∑

i=1

R
(i)T

Γ Ih(δ†i ui) (4.3)

where Ih is the usual Lagrangian interpolation operator. Note that ED is

equal to the identity when restricted on ŴΓ thanks to formula (4.2).

Ordering the nodes interior to the subdomains first, followed by those
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on the interface Γ we can then write each symmetric linear system assem-

bled on Ŵ

Âu = f̂

as (
AII AIΓ

AT
IΓ AΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
. (4.4)

From now on, the hat symbol will denote an assembled matrix.

Within the substructuring approach, each bilinear form and load vector

defined on Ω are written in terms of contributions from individual subre-

gions, simply restricting their integration set to each Ωi: denoting with

a(·, ·) and ai(·, ·) the discrete bilinear forms on Ŵ and W(i) respectively,

we can state the subassembly relation for the these forms as:

a(u, v) =

N∑

i=1

ai(R
(i)u,R(i)v), ∀u, v ∈ Ŵ

where clearly each subdomain contribution is zero outside the substruc-

ture. The global finite element system can then be expressed by subassem-

bling, i.e.

Â = RTAR =

N∑

i=1

R(i)TA(i)R(i), f̂ =

N∑

i=1

R(i)T f (i)

where the local system matrices A(i), the global unassembled matrix A,

and the local load vectors f (i) are given by

A(i) =

(
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

)
, (4.5)

A =



A(1) 0 0

0
. . . 0

0 0 A(N)



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and

f (i) =

(
f
(i)
I

f
(i)
Γ

)
.

Thus, in order to perform a matrix-vector multiplication with Â, we first

restrict properly the vectors uI and uΓ to each W(i), then multiply them

by the individual substructure matrices and, finally, obtain the product Âu
by extending by zeros and adding the resulting vectors.

4.2 Schur Complement and discrete harmonic

extensions

Let us now consider how to represent the inverse of the symmetric, positive

(semi)definite block matrix given in eq. (4.4). Provided the invertibility of

the AII block, we can use block Cholesky elimination (see [79]) and split

the matrix as

(
III 0

AT
IΓA

−1
II IΓΓ

)(
AII 0
0 AΓΓ −AT

IΓA
−1
II AIΓ

)(
III A−1

II AIΓ

0 IΓΓ

)

(4.6)

where III and IΓΓ are identity matrices of appropriate sizes. The symmet-

ric matrix

ŜΓ = AΓΓ −AT
IΓA

−1
II AIΓ

is the Schur complement of the matrix (4.4) assembled at the interface

nodes.

Differently to the direct substructuring, in the iterative substructuring

approach the matrix ŜΓ is not formed explicitly, since this is a potentially

expensive operation. Indeed, the Schur complement matrix ŜΓ will have

a block dense structure depending on the ordering of nodes in Γ. If two

nodes xi and xj lie on some common subdomain boundary, then entry Ŝij

will typically be nonzero, otherwise, the entry Ŝij will be zero. The mag-

nitude of a nonzero entry Ŝij typically decreases with increasing distance

between the nodes xi and xj . Instead of explicitly assemble ŜΓ, in the iter-
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ative substructuring approach a sparse representation ofAIΓ, whose action

can be evaluated by subassembly, and the sparse, triangular factors of the

AII are stored, and the action of ŜΓ on an interface vector is obtained by

subassembly, i.e.

ŜΓ = RT
ΓSRΓ =

N∑

i=1

R
(i)T

Γ S(i)R
(i)
Γ

where

S =



S(1) 0 0

0
. . . 0

0 0 S(N)


 (4.7)

is the unassembled Schur complement defined on WΓ and

S(i) = A
(i)
ΓΓ −A

(i)T
IΓ A

(i)−1

II A
(i)
IΓ (4.8)

are the local Schur complement operators acting on the spaces W
(i)
Γ .

Remark 4.2.1. Note that the action of A−1
II is evaluated subdomain per

subdomain in parallel since it is a block diagonal matrix, with subdomain

blocks A
(i)−1

II , due to the fact that

W
(i)
I ∩ W

(j)
I = ∅, i 6= j.

Its application to a vector corresponds to the parallel solution of problems

with Dirichlet boundary conditions on Γ(i) and, eventually, homogeneous

Neumann data on ∂Ωi ∩ ∂Ω. For both configurations, the presence of a

Dirichlet boundary make these local problems always solvable, either for

the Monodomain or the Bidomain model.
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We can thus formally invert the three factors of (4.6), finding:

Â−1 =

(
III −A−1

II AIΓ

0 IΓΓ

)(
A−1

II 0

0 Ŝ−1
Γ

)(
III 0

−AT
IΓA

−1
II IΓΓ

)

=

(
A−1

II 0
0 0

)
+ΦŜ−1

Γ ΦT

(4.9)

where

Φ =

(
−A−1

II AIΓ

IΓΓ

)
.

Therefore, in order to solve a symmetric positive (semi)definite linear

system with matrix (4.4), we first solve on ŴΓ, through conjugate gradient

iterations, the Schur complement system defined on the interface

ŜΓuΓ = ĝΓ (4.10)

with right hand side given by

ĝΓ = ΦT f = fΓ −AT
IΓA

−1
II fI =

N∑

i=1

R
(i)T

Γ

(
f
(i)
Γ −A

(i)T

IΓ A
(i)−1

II f
(i)
I

)

(4.11)

then we extend the solution on Ŵ by solving for uI the block diagonal

system:

AIIuI = fI −AIΓuΓ.

Due to this fact, we will sometime refer to the Schur system as the reduced

system, in contrast to the global system represented by Â.

It can be easily seen that the reduced Schur complement system inher-

its the positive (semi)definitess from the global system, together with the

system solvability, through the concept of discrete harmonic functions:

Definition 4.2.2. A function u(i) defined on Ωi is said to be discrete har-

monic on Ωi if

A
(i)
II u

(i)
I +A

(i)
IΓu

(i)
Γ = 0.
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From this definition and the assumption of invertibility of local prob-

lems represented by AII , we can see that u(i) is fully determined by u
(i)
Γ ,

i.e. the value of u(i) on Γ(i). We will use the notation u(i) = Hiu
(i)
Γ and

call Hi the discrete harmonic extension operator on Ωi defining

Hiu
(i)
Γ =

{
−A(i)−1

II A
(i)
IΓu

(i)
Γ onW

(i)
I

u
(i)
Γ onW

(i)
Γ

A direct consequence of Definition 4.2.2 is that

v(i)
T

A(i)Hiu
(i)
Γ = 0

∀ v(i) that vanishes on Γ(i). We then have the following properties of the

discrete harmonic extension and discrete harmonic functions (see [140])

that can be obtained with elementary matrix algebra arguments using the

2x2 block decomposition of each A(i) given in eq. (4.5).

Lemma 4.2.3. Let u
(i)
Γ be the restriction of a finite element function u(i)

to Γ(i). Then, we can equivalently define the action of the local Schur

complements matrices as

(
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

)(
−A(i)−1

II A
(i)
IΓu

(i)
Γ

u
(i)
Γ

)
=

(
0

S(i)u
(i)
Γ

)

and thus the discrete harmonic extension satisfies the following matrix

equivalence

u
(i)T

Γ S(i)u
(i)
Γ = (Hiu

(i)
Γ )TA(i)Hiu

(i)
Γ .

We can thus empirically define the local Schur bilinear forms as

si(u
(i)
Γ , v

(i)
Γ ) = ai(Hiu

(i)
Γ ,Hiv

(i)
Γ ) (4.12)

and state the following Lemma (see also [140])

Lemma 4.2.4. The local Schur bilinear forms satisfies the energy mini-
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mization property

si(u
(i)
Γ , u

(i)
Γ ) ≤ ai(u

(i), u(i))

where u
(i)
Γ is the restriction to Γ(i) of a finite element function u(i) ∈ W(i).

Remark 4.2.5. We can also define the piecewise discrete harmonic exten-

sion operator H as direct sum of Hi operators: defining the Schur bilinear

form from the following subassembly relation

S(uΓ, vΓ) =
N∑

i=1

si(R
(i)
Γ uΓ, R

(i)
Γ vΓ) (4.13)

then, if uΓ is the restriction of a finite element function u to Γ, the piece-

wise discrete harmonic extension of uΓ into the interior of the subdomains

satisfies

S(uΓ, vΓ) = a(HuΓ,HvΓ).
Remark 4.2.6. Clearly, the Schur bilinear form S(·, ·) inherits all the prop-

erties of the elliptic bilinear form a(·, ·) since it is the restriction of the lat-

ter on the subspace of piecewise discrete harmonic extension. Therefore,

S(·, ·) will be positive definite for the Monodomain model and (at least)

positive semidefinite for the Bidomain model. The same will hold for the

local bilinear forms.

Remark 4.2.7. Regarding to the Bidomain model, it is easy to show that

1
(i)
Γ spans the null space of all the local Schur system, i.e.

1Ωi = Hi(1Γ(i)).

where 1Ωi and 1Γ(i) are the identity vectors of appropriate sizes and thus

that

1Ω = H(1Γ).

In fact, since 1Ωi spans the null space of ai(·, ·), from the positive semidef-
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iter ||r||2 ||e||2 ||e||∞

mono Â 29 6.5E-9 5.2E-4 9.6E-5

mono ŜΓ 22 8.9E-9 3.1E-4 2.4E-5

bido Â 164 9.9E-9 7.5E-3 3.5E-4

bido ŜΓ 73 9.5E-9 1.1E-3 5.1E-5

Table 4.1: Conjugate gradient iterations of the Monodomain and Bidomain system, using

the global assembled system Â or the Schur system ŜΓ. Test case considered is h =1E-

2, global grid 17x17x17, random right-hand side, null initial guess and absolute residual

tolerance 1E-8. Substrucutres subdivision in the three dimensions is 2x2x2. For each solve,

number of iteration, euclidean residual norm ||r||2, euclidean and infinity norm of the exact

error are shown.

initess of si(·, ·) and the energy minimization property follows

0 ≤ 1TΓ(i)S
(i)1Γ(i) ≤ 1TΩi

A(i)1Ωi = 0

and thus 1Γ(i) belongs to the null space of S(i). Otherwise, let u
(i)
Γ belongs

to the null space of S(i). Then for the definition of the local Schur bilinear

forms it will hold that

0 = u
(i)T

Γ S(i)u
(i)
Γ = (Hiu

(i)
Γ )TA(i)Hiu

(i)
Γ .

Therefore Hiu
(i)
Γ , and thus u

(i)
Γ , must be constant vectors.

Table 4.1 shows some preliminary results on conjugate gradient iter-

ations applied to the solution of the Monodomain and Bidomain systems

and to their assembled Schur complements. Test cases considered are de-

scripted in the caption.
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4.3 Technical tools

In this section, we will present some technical tools routinely employed

in the analysis of domain decomposition algorithms and that will be used

throughout this and the next chapter; unless otherwise stated, these results

can be found in [140] and references therein. Assume we have a bounded

open Lipschitz set Ω ⊂ R
n with Lipschitz continuous boundary according

to the next definition:

Definition 4.3.1. The boundary ∂Ω is Lipschitz continuous if there exist a

finite number of open sets Oi, i = 1, . . . ,m, that cover ∂Ω such that, for

every i, the intersection ∂Ω ∩ Oi is the graph of a Lipschitz continuous

function and Ω ∩ Oi lies on one side of this graph

We will deal with the usual functional Sobolev spaces defined on Ω:

L2(Ω) = {u : Ω → R |
∫

Ω

|u|2 <∞}

and

H1(Ω) = {u : Ω → R |
∫

Ω

|∇u|2 +
∫

Ω

|u|2 <∞}.

These spaces are equipped with the norms

||u||2L2(Ω) =

∫

Ω

|u|2, ||u||2H1(Ω) = |u|2H1(Ω) + ||u||2L2(Ω)

with the seminorm on H1(Ω) defined by

|u|2H1(Ω) =

∫

Ω

|∇u|2.

Given a proper subset Γ ⊆ ∂Ω with non vanishing (n − 1)-dimensional

measure and relatively open with respect to ∂Ω, we can define the space

Hs(Γ), s ≥ 0, consisting of functions on Γ such that:

||u||2Hs(Γ) = ||u||2H[s](Γ) + |u|2Hs(Γ) <∞

127



where [s] denotes the greater natural number lesser than s and the semi-

norm is defined as:

|u|2Hs(Γ) =
∑

[α]=[s]

∫

Γ

∫

Γ

|Dαu(x)−Dαu(y)|2
|x− y|2σ+n−1

dxdy

with σ = s− [s], α = (α1, . . . , αN ) is a multi-index with |α| =∑n
i=1 αi,

αi > 0 and

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn

If |α| = (0 . . . , 0), than Dαu = u. The following two lemmas hold:

Lemma 4.3.2. Let Ω be a Lipschitz region and s > 1/2. Then, the opera-

tor

γ : C∞(Ω) → C∞(Γ)

mapping a function into its restriction on Γ, can be extended continuously

to an operator

γ0 : Hs(Ω) → Hs−1/2(Γ).

Lemma 4.3.3. With the same assumptions of the previous lemma, there

exist a continuous lifting operator

R0 : Hs−1/2(Γ) → Hs(Ω)

such that γ0(R0u) = u with u ∈ Hs−1/2(Γ).

Even if Γ is a proper subset of ∂Ω, Hs
0 (Γ) (the space defined by the

kernel of γ0) coincides with Hs(Γ) for s ≤ 1/2; on the other hand, the

extension by zero of functions in H
1/2
0 (Γ) do not, in general, belong to

H1/2(∂Ω). We thus define the space

H
1/2
00 (Γ) = {u ∈ H1/2(Γ) | Eu ∈ H1/2(∂Ω)}

where Eu is the extension by zero of u to ∂Ω. The latter space coincides
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with the interpolation space [H1
0 (Γ), L

2(Γ)]1/2 defined by

{u ∈ L2(Γ)]1/2 | t−1K(t, u;H1
0 (Γ), L

2(Γ)) ∈ L2(0,∞)}

where

K(t, u;L2(Γ), H1
0 (Γ))

2 = inf
u0+u1=u

{||u0||2L2(Γ) + t2||u1||2H1
0 (Γ)

}.

The interpolation space can be equipped with the norm

||u||
H

1/2
00 (Γ)

= ||u||2L2(Γ) +

∫ ∞

0

t−2K(t, u;L2(Γ), H1
0 (Γ))

2dt.

Remark 4.3.4. If u ∈ H1/2(∂Ω) vanishes almost everywhere on ∂Ω \ Γ,

then it can be shown that the two norms ||u||H1/2(∂Ω) and ||u||
H

1/2
00 (Γ)

are

equivalent norms.

The following lemma relates the H1 seminorm of a finite element

function in u ∈ H1(Ω) with the seminorm of its trace on Γ.

Lemma 4.3.5. There exist two constantC1 andC2, depending only on the

shape of Ω and not on its size, such that

C1|uΓ|H1/2(Γ) ≤ |u|H1(Ω) ≤ C2|uΓ|H1/2(Γ)

for every uΓ ∈ H1/2(Γ) which is the trace on Γ of a finite element function

u ∈ H1(Ω).

We note that the proof of the following lemma relates for the first in-

equality on the trace theorem given in lemma 4.3.2 and some scaling ar-

guments; for the second inequality, some regularity results for the Laplace

problem with appropriate boundary conditions must be employed. In par-

ticular, an H3/2(Ω) regularity for the Laplace problem with non homoge-

nous Dirichlet boundary conditions is needed when Γ coincides with ∂Ω;

otherwise, if Γ is a proper subset of ∂Ω, an H3/2(Ω) regularity result

for the Laplace problem with mixed Dirichlet (on Γ) and Neumann (on
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∂Ω \ Γ) boundary conditions is needed. A suitable result for the mixed

problem for three dimensional polyhedral domains can be found in [24]

or in [25]. For the proof of the latter lemma, see Lemma 4.6 in [140] and

references therein.

The following lemma is known in literature as Poincaré-Friedrichs in-

equality. For simplicity, we will only present the results for three dimen-

sional domains.

Lemma 4.3.6. Let Ω ⊂ R
3 be Lipschitz continuous with diameter H and

u ∈ H1(Ω). Then, there exist a constant C that depend only on the shape

of Ω but not on its size such that:

||u||2L2(Ω) ≤ CH2|u|2H1(Ω)

if u has vanishing mean value on Ω or vanishes on a two dimensional

subset Γ of ∂Ω with non-vanishing measure.

Finally, in order to give estimates for the condition number of the pre-

conditioned Schur system, we need results which relates the norm of a

conforming finite element solution of an elliptic second order problem on

the faces and edges of the subdomains plus estimates for the dofs on the

vertices. Unless otherwise stated, their proofs can be found in [140]. We

first proceed with face terms. The following Lemma can be found in [13].

Lemma 4.3.7. For any face F of a parallelepipedal domain Ω, there exist

a finite element function ϑF ∈ V h(Ω) that equals 1 at the nodal points of

F , vanishes on ∂Ω \ F and satisfies for any u ∈ V h(Ω)

||Ih(ϑFu)||2H1/2
00 (F)

≤ C(1 + log(H/h))2
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

and

||Ih(ϑF (u− uF ))||2H1/2
00 (F)

≤ C(1 + log(H/h))2|u|2H1(Ω)

where uF is the average value of u on F .
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Lemma 4.3.8. Let E be an edge of Ω; then there exist a constant C, inde-

pendent of h and H , such that for any u ∈ V h(Ω)

||u||2L2(E) ≤ C(1 + log(H/h))
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

and

||u− uE ||2L2(E) ≤ C(1 + log(H/h))|u|2H1(Ω)

where uE is the average value of u on E .

Given an edge E of Ω, let ϑE ∈ V h(Ω) be the finite element function

that vanishes at all nodes of Ω except on the nodes of E where it takes the

value 1. Then the following will hold:

Lemma 4.3.9. Let E be an edge of Ω and u any finite element function in

V h(Ω). Then there exist a constant C, independent of h and H , such that

|Ih(ϑEu)|2H1/2(Γ) ≤ C||u||2L2(E)

Finally, we need a result for a vertex V of Ω. As for the edges, we

introduce a finite element cut-off function ϑV ∈ V h(Ω) which vanishes at

all nodes of Ω except on the vertex V where it takes the value 1. Then the

following result will hold:

Lemma 4.3.10. Let V be a vertex of Ω and let u ∈ V h(Ω). Then there

exist a constant C independent of h and H such that

|u(V)ϑV |2H1/2(Γ) ≤ C
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

4.4 Neumann-Neumann preconditioner for

Monodomain model

In this Section we will introduce the basic ingredients of a Neumann-

Neumann preconditioner for the Monodomain problem. Recall (see Sec-
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tion 2.4) that the local bilinear forms ai(·, ·) are given in this case by

ai(u, v) =

∫

Ωi

Dm∇u · ∇v + γ

∫

Ωi

uv

where γ = 1/δt. By subassembly, they define the assembled elliptic form

amono(·, ·) given in formula (2.22): the resulting Schur symmetric elliptic

bilinear form on ŴΓ is obtained restricting the bilinear form amono(·, ·)
on the subspace of piecewise discrete harmonic functions as in eq. (4.13).

Neumann-Neumann (NN) domain decomposition methods are a widely

used family of preconditioners for Schur complement matrices in two and

three dimensions. From a computational viewpoint, these precondition-

ers solve a Neumann problem on each subdomain (see section 4.8), and

hence the name; in addition a Dirichlet problem must be solved on each

subdomain in the application of the Schur matrix. From the viewpoint

of Schwarz subspace methods (see e.g. [130]), a Neumann-Neumann pre-

conditioner has the structure of an additive Schwarz preconditioner for ŜΓ.

An abstract additive Schwarz preconditioner is specified by a decomposi-

tion of the space ŴΓ into the subspaces W
(i)
Γ and by symmetric elliptic

bilinear forms s̃i(·, ·) defined on W
(i)
Γ as

s̃i(u
(i)
Γ , v

(i)
Γ ) = si(δiu

(i)
Γ , δiv

(i)
Γ ); (4.14)

in an abstract Schwarz framework we are using inexact local solvers on

each subdomain. Clearly, from definition (4.13)

S(uΓ, vΓ) =
N∑

i=1

s̃i(R
(i)
D,ΓuΓ, R

(i)
D,ΓvΓ).

For the Monodomain discretization, each subdomain bilinear form s̃i
is continuous and positive definite: therefore each local variational prob-

lem defined by s̃i(·, ·) will be well defined and it will have a unique so-

lution due to the Lax-Milgram Lemma. The Schwarz framework then
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introduces a projection-like operator on each subdomain

Pi = R
(i)T

Γ P̃i

given by the local problem

s̃i(P̃iuΓ, v
(i)
Γ ) = S(uΓ, R(i)T

Γ v
(i)
Γ ), ∀ v(i)Γ ∈ W

(i)
Γ . (4.15)

It can be easily proved (see [140]) that each Pi can be written in matrix

form as

Pi = RT
D,Γ(i)S

(i)−1

RD,Γ(i) ŜΓ (4.16)

and then the partition of unity Neumann-Neumann abstract Schwarz oper-

ator can be defined by:

PNN =

N∑

i=1

Pi. (4.17)

Moreover, each Pi will be selfadjoint with respect to the scalar product

induced by S(·, ·). Taking into account the Schur complement operator

defined on the product space WΓ as in equation (4.8), the action of the

standard one-level Neumann-Neumann preconditionerMNN on the resid-

ual can be represented by:

M−1
NN = RT

D,ΓS
−1RD,Γ =

N∑

i=1

RT
D,Γ(i)S

(i)−1

RD,Γ(i) , (4.18)

and thus

PNN =M−1
NN ŜΓ.

The use of the scaling means that we partition the residual on the interface

and then, after solving the local problems, we restore the continuity across

the interface averaging the resulting values.

Remark 4.4.1. Test results for the one-level Neumann-Neumann precondi-

tioner applied to the conjugate gradient solution of the Schur complement

of the Monodomain model are shown in Table 4.2, together with the re-
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subd it ||r||2 ||e||2

2x2x2 (BJ) 15 1.4E-13 3.7E-9

2x2x2 (AS) 9 3.1E-13 8.7E-9

2x2x2 (NN) 4 4.8E-14 2.7E-11

8x1x1 (NN) 4 3.7E-15 3.1E-12

1x8x1 (NN) 4 3.3E-15 2.6E-12

1x1x8 (NN) 2 2.6E-15 1.5E-12

Table 4.2: Comparison between different solvers for the Monodomain model. Test case

considered: h =1E-2, global grid 17x17x17, random right-hand side, null initial guess and

absolute residual tolerance 1E-8. Subdomains subdivision in the three dimensions is showed

on the left. For each solver, number of iteration, euclidean residual ||r||2 and exact error

||e||2 norms are shown.

sults of other one-level preconditioners such as Block Jacobi (BJ) and the

Additive Schwarz (AS) applied to the global system, in order to give a

comparison among widely used one-level preconditioners. NN precon-

ditioner performs better than the other two preconditioners considered,

either in terms of number of iterations or of accuracy. Moreover, since

the conductivity coefficients are constants on all the slab and the principal

axes of conduction are constant on plane parallel to the (x, y)−axis, the

strip-like decomposition performs better than the other type of decompo-

sitions as expected, due to the layer structure of the modeled conduction

system (see [88] Section 3.8.6).

4.5 Monodomain theoretical estimates

In the Schwarz framework, bounds for the condition number of the addi-

tive operator PNN given in eq. (4.17) are derived by considering the linear
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system

PNNuΓ =M−1
NN ĝΓ

which is equivalent to system (4.10), and estimating the minimum λm and

maximum λM eigenvalue for the Rayleigh quotient associated to PNN in

the inner product generated by the Schur complement, i.e.

λmS(uΓ, uΓ) ≤ S(PNNuΓ, uΓ) ≤ λMS(uΓ, uΓ), ∀uΓ ∈ ŴΓ, uΓ 6= 0
(4.19)

since PNN is self-adjoint with respect to S(·, ·). We will adopt the ab-

stract Schwarz results only for the minimum eigenvalue. The maximum

eigenvalue will be estimated directly as in [140]. The next Lemma states a

property known in the Schwarz framework as stable decomposition which

gives a lower bound for the minimum eigenvalue λm.

Lemma 4.5.1. Assume that there exist a constantC0 such that every uΓ ∈
ŴΓ admits a decomposition

uΓ =

N∑

i=1

R
(i)T

Γ v
(i)
Γ

that satisfies
N∑

i=1

s̃i(v
(i)
Γ , v

(i)
Γ ) ≤ C2

0S(uΓ, uΓ) (4.20)

with v
(i)
Γ ∈ W

(i)
Γ . Then

S(PNNuΓ, uΓ) ≥ C−1
0 S(uΓ, uΓ)

that is λm ≥ C−1
0 .

Proof. See Lemma 2.5 in [140].

Recalling that

PNNuΓ =M−1
NN ŜΓuΓ = RT

D,ΓS
−1RD,ΓŜΓuΓ
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we can define w ∈ WΓ locally as

wi = S(i)−1
D(i)R

(i)
Γ ŜΓuΓ. (4.21)

Then, it follows easily that

EDw = PNNuΓ (4.22)

where ED is the average operator introduced in eq (4.3). Define also the

Schur seminorm on WΓ as

|w|2S =

N∑

i=1

|wi|2S(i) , ∀w ∈ WΓ

where

|wi|2S(i) = si(wi, wi).

Note that, if w ∈ ŴΓ, than by subassembly we will have |w|2S = S(w,w).
An auxiliary result for the upper bound of PNN is given by the follow-

ing Lemma. We will write u . w whenever u ≤ Cw with C independent

of h, H , δt, the conductivity coefficients and the number N of subtruc-

tures. In order to simplify the notations and the discussion, we will assume

that the conductivity coefficients have no jumps across substructures. The

jumping coefficients case will be analyzed later in Remark 4.5.4.

Lemma 4.5.2. Let w ∈ WΓ be defined as in formula (4.21). Then for the

Monodomain model

|EDw|2S .
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

where σM and σm are the maximum and minimum eigenvalue of the dif-

fusion tensor given in eq. (2.11) and δt is the time step.

Proof. As in [140], we will give bounds for each substructure contribution
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to EDw: more precisely we will estimate each contribution |vi|2S(i) where

vi(x) = (EDw(x))i =
∑

j∈Nx

Ih(δj(x)
†wj(x))

Using the cut-off functions ϑ• ( • = F , E ,V ) introduced in Section 4.3,

we can split the boundary vector vi in a sum of face, edge and vertex

components:

vi =
∑

F⊂Γ(i)

Ih(ϑFvi) +
∑

E⊂Γ(i)

Ih(ϑEvi) +
∑

V⊂Γ(i)

Ih(ϑVvi).

Since each si(·, ·) is positive definite, it follows that

|vi|2S(i) .
∑

•=F ,E,V⊂Γ(i)

|Ih(ϑ•vi)|2S(i) .

We will estimate the contribution of faces, edges and vertices separately.

The coercivity and continuity for the local Schur bilinear forms of the

Monodomain model yields (see Remark 2.4.4):

si(u
(i)
Γ , u

(i)
Γ ) ≥ σm|Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

si(u
(i)
Γ , u

(i)
Γ ) ≤ σM |Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

(4.23)

where σm and σM are the minimum and maximum eigenvalue for the

diffusion tensor and γ = 1/δt. For each of the functions Ih(ϑ•vi) the

Poincaré-Friedrichs inequality (see Lemma 4.3.6) holds since these func-

tions vanish on a subset of ∂Ω:

||HiI
h(ϑ•vi)||2L2(Ωi)

. H2|HiI
h(ϑ•vi)|2H1(Ωi)

and thus, for Lemma 4.3.5

|Ih(ϑ•vi)|2S(i) . (σM +H2γ)|Ih(ϑ•vi)|2H1/2(Γ(i)). (4.24)
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Face terms. For the face terms, noting that ∀x ∈ Γ(i)

δ†i (x) ≤ 1 ∀i ∈ {1, . . . , N}

we can use Remark 4.3.4 and Lemma 4.3.7 and obtain

|Ih(ϑFvi)|2H1/2(Γ(i))

. ||Ih(ϑFvi)||2H1/2
00 (F)

. ||Ih(ϑFwi)||2H1/2
00 (F)

+ ||Ih(ϑFwj)||2H1/2
00 (F)

. (1 + log(H/h))2
(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

+ (1 + log(H/h))2
(
|Hjwj |2H1(Ωj)

+H−2||Hjwj ||2L2(Ωj)

)
.

Therefore, if H2γ ≤ σm

(1 + log(H/h))−2|Ih(ϑFvi)|2S(i)

.
σM +H2γ

H2γ

(
H2γ|Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

+
σM +H2γ

H2γ

(
H2γ|Hjwj |2H1(Ωj)

+ γ||Hjwj ||2L2(Ωj)

)

and thus

|Ih(ϑFvi)|2S(i) .
σM +H2γ

H2γ
(1 + log(H/h))2

(
|wi|2S(i) + |wj |2S(j)

)
.

Otherwise, if H2γ ≥ σm

(1 + log(H/h))−2|Ih(ϑFvi)|2S(i)

.
σM +H2γ

σm

(
σm|Hiwi|2H1(Ωi)

+H−2σm||Hiwi||2L2(Ωi)

)

+
σM +H2γ

σm

(
σm|Hjwj |2H1(Ωj)

+H−2σm||Hjwj ||2L2(Ωj)

)
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and thus

|Ih(ϑFvi)|2S(i) .
σM +H2γ

σm
(1 + log(H/h))2

(
|wi|2S(i) + |wj |2S(j)

)

Therefore, for the face terms, we will have

|Ih(ϑFvi)|2S(i) .
σM +H2γ

min{H2γ, σm} (1 + log(H/h))2
(
|wi|2S(i) + |wj |2S(j)

)

(4.25)

Edge terms. For the edges, we can proceed as in [140] using Lemmas

4.3.9 and a triangle inequality to bound

|Ih(ϑEvi)|2H1/2(Γ(i)) .
∑

k∈KE

||wk||2L2(E)

where KE is the set of subdomain indices sharing edge E . Now, using eq.

(4.24), Lemma 4.3.8 and the same arguments on the interaction between

H2γ and σm as before we find

|Ih(ϑEvi)|2S(i) .
σM +H2γ

min{H2γ, σm}(1 + log(H/h))
∑

k∈KE

|wk|2S(i) (4.26)

Vertex terms. Similarly, using Lemma 4.3.10 we bound also the vertex

components as

|Ih(ϑVvi)|2S(i) .
σM +H2γ

min{H2γ, σm}
∑

k∈KV

|wk|2S(i) (4.27)

where KV is the set of subdomain indices sharing vertex V .

Therefore the thesis follows using estimates (4.25), (4.26) and (4.27)

and summing over faces, edges and vertices of Ωi and then over the sub-

structures noting that

σM +H2γ

H2γ
=
σMδt +H2

H2
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and
σM +H2γ

σm
=
σMδt +H2

σmδt

We are then ready to prove the main theorem for the one-level Neumann-

Neumann preconditioner applied to the Schur complement of the Mon-

odomain model.

Theorem 4.5.3. The condition number of the preconditioned Schur com-

plement system of the Monodomain model satisfies:

κ2(M
−1
NN ŜΓ) .

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2 (4.28)

Proof. Lower Bound. A partition of unity NN preconditioner has the

advantage that a stable decomposition is immediately available with C0 =
1. In fact, choosing

v
(i)
Γ = δ†iR

(i)
Γ uΓ

in Lemma 4.5.1, we will have

uΓ =
N∑

i=1

R
(i)T

Γ v
(i)
Γ

and by subassembly

N∑

i=1

s̃i(v
(i)
Γ , v

(i)
Γ ) =

N∑

i=1

si(R
(i)
Γ uΓ, R

(i)
Γ uΓ) = S(uΓ, uΓ).

This implies that λm in (4.19) is exactly one.

Upper Bound. Using the definitions of w given in eq. (4.21) and of
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the operators P̃i given in eq. (4.15) we have

|w|2S =
N∑

i=1

si(wi, wi) =
N∑

i=1

si(D
(i)−1

P̃iwi, D
(i)−1

P̃iwi)

=

N∑

i=1

S(uΓ, R(i)T

Γ P̃iuΓ) = S(PNNuΓ, uΓ).

(4.29)

Therefore using the latter result, eq. (4.22) and Lemma 4.5.2 we have

S(PNNuΓ, PNNuΓ) = |PNNuΓ|2S = |EDw|2S

.
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

=
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2S(PNNuΓ, uΓ)

and thus, since for the Cauchy-Schwarz inequality holds that

S(PNNuΓ, uΓ) ≤ S(PNNuΓ, PNNuΓ)
1/2S(uΓ, uΓ)1/2

we will have, canceling a common term and squaring,

S(PNNuΓ, uΓ) .
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2S(uΓ, uΓ)

and thus the maximum eigenvalue of the Rayleigh quotient (4.19) can be

bounded by

λM .
σM δt +H2

min{H2, σmδt}
(1 + log(H/h))2.

Remark 4.5.4. In Lemma 4.5.2, we assumed that the conductivity coeffi-

cients were constants among the substructures to simplify the notations.

Now, we will analyze the case of discontinuous conductivity coefficients
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with jumps aligned with the interface. Before we didn’t use any particular

choice of the partition of unity coefficients but we only used the coeffi-

cients were all less than one; now we will use as partition of unity

δ†i (x) =
σ
(i)
M∑

j∈Nx
σ
(j)
M

where σ
(i)
M is the maximum eigenvalue of the diffusion tensor of the i-th

substructure. We did not explore the possibility of using representative

values which includes terms with δt since the time step is the same for

all substructures. For the choice made for partition of unity, the following

property holds (see [140])

σ
(i)
M δ†

2

j ≤ min{σ(i)
M , σ

(j)
M } ∀i, j ∈ {1, . . . , N}. (4.30)

Coercivity and continuity for the local Schur bilinear forms now reads

si(u
(i)
Γ , u

(i)
Γ ) ≥ σ(i)

m |Hiu
(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

si(u
(i)
Γ , u

(i)
Γ ) ≤ σ

(i)
M |Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

where σ
(i)
m is the minimum eigenvalue for the diffusion tensor of the i-th

substructure and γ = 1/δt. We proceed similarly to Lemma 4.5.2 using

the Poincaré-Friedrichs inequality and the trace theorem 4.3.5 bounding

from above the local Schur seminorm

|Ih(ϑ•vi)|2S(i) . (σ
(i)
M +H2γ)|Ih(ϑ•vi)|2H1/2(Γ(i))

= σ
(i)
M (1 +

H2γ

σ
(i)
M

)|Ih(ϑ•vi)|2H1/2(Γ(i)).

We will only present the algebra related to the face terms: edges and ver-

tices can be treated similarly. For the face terms we proceed as before and
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use in addition eq. (4.30)

σ
(i)
M |Ih(ϑFvi)|2H1/2(Γ(i))

. σ
(i)
M ||Ih(ϑFvi)||2H1/2

00 (F)

. σ
(i)
M δ†

2

i ||Ih(ϑFwi)||2H1/2
00 (F)

+ σ
(i)
M δ†

2

j ||Ih(ϑFwj)||2H1/2
00 (F)

. σ
(i)
M (1 + log(H/h))2

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

+ σ
(j)
M (1 + log(H/h))2

(
|Hjwj |2H1(Ωj)

+H−2||Hjwj ||2L2(Ωj)

)
.

Now consider only the i-th term of the previous summation disregarding

the (1 + log(H/h))2 factor. If H2γ ≤ σ
(i)
m

σ
(i)
M

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

.
σ
(i)
M

H2γ

(
H2γ|Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

.
σ
(i)
M

H2γ

(
σ(i)
m |Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

=
σ
(i)
M

H2γ
|wi|2S(i)
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Otherwise, if H2γ ≥ σ
(i)
m

σ
(i)
M

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

.
σ
(i)
M

σ
(i)
m

(
σ(i)
m |Hiwi|2H1(Ωi)

+H−2σ(i)
m ||Hiwi||2L2(Ωi)

)

.
σ
(i)
M

σ
(i)
m

(
σ(i)
m |Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

=
σ
(i)
M

σ
(i)
m

|wi|2S(i)

For the j-th term we can do the same and, supposing that σ
(i)
m ≤ σ

(j)
m , and

denoting by

M1 = max
•=i,j

{σ
(•)
M

σ
(•)
m

+
H2γ

σ
(•)
m

}

M2 =
max•=i,j{σ(•)

M }
H2γ

M3 = max{M1,M2}
we obtain

|Ih(ϑFvi)|2S(i) .





CM1

(
|wi|2S(i) + |wj |2S(j)

)
if σ

(j)
m ≤ H2γ

CM3

(
|wi|2S(i) + |wj |2S(j)

)
if σ

(i)
m ≤ H2γ ≤ σ

(j)
m

CM2

(
|wi|2S(i) + |wj |2S(j)

)
if σ

(i)
m ≥ H2γ

where C = (1 + log(H/h))2. Since for edges and vertices we will ob-

tain the same qualitative estimates, we conclude that for the Monodomain

model with discontinuous coefficients it will hold

|EDw|2S . max{M1,M2}(1 + log(H/h))2|w|2S .

Remark 4.5.5. We note that, for very small δt, the Monodomain opera-

tor is dominated by the L2 term, and thus no preconditioning is needed
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at all. The estimates developed in this Section have a leading term of

H2/(σmδt), which can get very large for small δt, coming from the in-

equality (4.24) which is needed to work with trace seminorms.

4.6 Balancing Neumann-Neumann

preconditioner for Bidomain model

In this section we will construct Balancing Neumann-Neumann precon-

ditioners for the Bidomain model. Recall (see Section 2.4) that the local

bilinear forms aj(·, ·) are given by

aj(u, v) =

∫

Ωj

D
(j)
i ∇ui·∇vi+

∫

Ωj

D(j)
e ∇ue·∇ve+γ

∫

Ωj

(ui−ue)(vi−ve).

where γ = 1/δt and D
(j)
i,e are the anisotropic diffusion tensors (see eq.

(2.1)) of the jth substructure with associated conductivity coefficients

σi,e(j)

l , σi,e(j)

t , σi,e(j)

n .

In case of constant conductivity coefficients, the local bilinear forms de-

fine by subassembly the assembled elliptic form abido(·, ·) given in for-

mula (2.25): since the resulting Schur symmetric elliptic bilinear form

on ŴΓ is obtained restricting the bilinear form abido(·, ·) on the subspace

of piecewise discrete harmonic functions as in eq. (4.13), from the def-

inition of piecewise discrete harmonic extensions and Remark 4.2.7, we

must choose the finite element space as

Ŵ = Vh(Ω)× Vh(Ω)/R.

in order to make S(·, ·) an inner product on ŴΓ. While the one-level

Neumann-Neumann preconditioner PNN has the structure of an additive

Schwarz preconditioner, a Balancing Neumann-Neumann (BNN) precon-

ditioner can be viewed as an hybrid Schwarz preconditioner for ŜΓ. It is
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specified by the same additive decomposition of the space ŴΓ into the

subspaces defined for the Neumann-Neumann preconditioner combined,

in a multiplicative way, to a coarse space W
(0)
Γ (see e.g. [130]). The

latter plays a special role, providing a mechanism of global transport of

information between the subdomains and assuring the well posedness of

Neumann-Neumann additive Schwarz operator PNN , providing compat-

ible right hand sides in the case of singular local problems; moreover, a

suitable choice of coarse space will provide quasi-optimal bounds for the

condition number of the preconditioned Bidomain operator as a function

of the subtructures’ diameter H .

For the Bidomain model each local projection-like operator P̃juΓ as

in eq. (4.15) can be defined only for those uΓ ∈ ŴΓ for which

S(uΓ, R(j)T

D,Γ 1Γ(j) ) = 0

since the local Schur systems are singular with a null space spanned by

the constant vectors (see Remark 4.2.7). A right hand side for the local

problems (4.15) satisfying these compatibility conditions is said to be bal-

anced. Then a solution will exist for each local problem, though it will not

be unique, as any scalar multiple of the null space may be added to. The

non-uniqueness of the local solutions can be formalized using the pseudo-

inverses S(j)† of S(j) (see e.g. [43]) and the action of the local operators

can be written as

Pj = RT
D,Γ(j)S

(j)†RD,Γ(j) ŜΓ.

As pointed out in [140], the choice of this local solution will not affect

the algorithm at all; it will be only required for the analysis. See Lemmas

4.7.3 and 4.7.4 for additional details.

In order to assure balancing, we must include in the coarse space the

local constant vectors scaled with the partition of unity; thus a minimal

coarse space for the Bidomain model is

W
(0)
Γ,n = span{R(j)T

D,Γ 1Γ(j) | j = 1, . . . , N}. (4.31)
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In the following, we will refer to the space W
(0)
Γ,n as natural coarse space.

A natural coarse function u(0) ∈ W
(0)
Γ,n will thus be identified by a vector

α = (α1, . . . , αN ) having one component for each substructure and we

will write

u(0) =

N∑

j=1

αjR
(j)T

D,Γ 1Γ(j) =

N∑

j=1

R
(j)T

D,Γ αj1Γ(j) .

In order to obtain quasi-optimal bounds for the condition number as a

function of the substructures diameterH (see Lemma 4.7.4 for details) we

will also consider an enriched coarse space given by

W
(0)
Γ,e = span{R(j)T

D,Γ 1Γ(j) , R
(j)T

D,Γ 1∗Γ(j) | j = 1, . . . , N}, (4.32)

where 1∗
Γ(j) ∈ W

(j)
Γ is the vector which equals one for the intracellu-

lar component and minus one for the extracellular component. An en-

riched coarse function u(0) ∈ W
(0)
Γ,e will be identified by a vector α =

(α1,1, α1,2, . . . , αN,1, αN,2) with two components for each substructure

(one for each vector defining the coarse basis functions) and we will write

u(0) =

N∑

j=1

R
(j)T

D,Γ (αj,11Γ(j) + αj,21∗
Γ(j)) .

Given a coarse space, either the natural W
(0)
Γ,n or the enriched W

(0)
Γ,e

coarse space, the Schwarz framework than construct the coarse bilinear

form by projecting the Schur bilinear form on the coarse basis functions

s0(α, β) = S(R(0)T

Γ α,R
(0)T

Γ β)

where α and β are coarse vectors, or in matrix form as

S(0) = R
(0)
Γ ŜΓR

(0)T

Γ (4.33)
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where R
(0)T

Γ is the matrix formed columnwise by the coarse basis func-

tions. Note that we must use an exact solver for matrix (4.33) in order to

assure balancing and make the resulting coarse operator a projection.

Remark 4.6.1. Using the fundamental property of the partition of unity

given in eq. (4.2), we can easily show that the Bidomain coarse problem

will be singular. Consider for simplicity the natural coarse space (4.31)

and the coarse constant vector 1, it will hold

S(0)1 = R
(0)
Γ ŜΓR

(0)T

Γ 1 = R
(0)
Γ ŜΓ1Γ = R

(0)
Γ 0Γ = 0.

The same will hold also for the enriched coarse space (4.32), which will

have a null space spanned by the coarse vector

(1, 0, . . . , 1, 0)
T
.

Remark 4.6.2. The choice of the partition of unity can enlarge the null

space of the resulting coarse problem. Take for example the usual counting

function as partition of unity for both the intra- and extracellular compo-

nents, i.e. formula (4.1) with ai,ej (x) = 1 ∀ j = 1, . . . , N and ∀x ∈ Γ(j)

and, for simplicity, the natural coarse space (4.31). Then the coarse vec-

tor with a checkerboard pattern of +1 and -1 values will generate the null

interface vector, and thus it will span the null space of the coarse prob-

lem. In order to guarantee that the null space of the coarse problem will

be generated only by the null space of the Schur system and, therefore,

that the coarse problem will be solvable, we must choose a representative

value for node x which will yield a different coefficient of partition of

unity at least on the vertices of the substructures. A possible choice for the

representative values of the intra- and extra-cellular components is

aij(x) =

∫

Ωj

D
(j)
i ∇φx · ∇φx

aej(x) =

∫

Ωj

D(j)
e ∇φx · ∇φx

(4.34)
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where φx is the finite element function which is zero elsewhere unless at

x where it takes on the value 1.

Remark 4.6.3. For the definition of the representative values ai,ej (x) given

in eq. (4.34), it follows easily that

σi,e(j)

M δi,ek

†
(x)2 . min{σi,e(j)

M , σi,e(k)

M } ∀x ∈ Γ(j), (4.35)

where σi,e(j)

M are the maximum eigenvalues of the tensors D
(j)
i,e . In fact, it

is possible to show that the representative values given in formula (4.34)

can be estimated for linear finite elements as

cσi,e(j)

M h ≤ ai,ej (x) ≤ Cσi,e(j)

M h (4.36)

with positive constants c and C independent from the discretization step h
and the conductivity coefficients of the tensors. In details, since ∀ x ∈ Ωj

we can split the gradient

∇φx = βlal(x) + βtat(x) + βnan(x)

using the orthonormal triplet of the fibers {al(x), at(x), an(x)} (see Sec-

tions 2.1.1 and 2.4 for additional details), due to the definition of the con-

ductivity tensors given in eq. (2.1), we will have

D
(j)
i,e∇φx · ∇φx = σi,e(j)

l β2
l + σi,e(j)

t β2
t + σi,e(j)

n β2
n.

Thus estimate (4.36) follows, since

σi,e(j)

M = max
•=l,t,n

σi,e(j)

•

and there exist positive constants c and C independent from h such that

ch−2 ≤ β2
l,t,n ≤ Ch−2.
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Then, using (4.36) we obtain

σi,e(j)

M δi,ek

†
(x)2 ≤ σi,e(j)

M

(
Cσi,e(k)

M h
∑

l∈Nx
cσi,e(l)

M h

)2

. σi,e(j)

M

(
σi,e(k)

M∑
l∈Nx

σi,e(l)

M

)2

and thus eq. (4.35) follows using formula (4.30) for each component.

The projection operator P0 can be written as

P0 = R
(0)T

Γ S(0)†R
(0)
Γ ŜΓ (4.37)

where we employed a pseudo-inverse to take into account the singularity

of the coarse problem. The following properties will hold for P0, either

with natural or enriched coarse space. We provide their proofs since in

domain decomposition literature (see e.g. [140]) they have been proved

for nonsingular coarse matrices.

Lemma 4.6.4. The operator P0 is the ŜΓ-orthogonal projection on the

space W
(0)
Γ and it holds:

P 2
0 = P0

S(P0uΓ, vΓ) = S(uΓ, P0vΓ)

S(P0uΓ, vΓ) = S(P0uΓ, P0vΓ)

Proof. For the first equality, a fundamental property of pseudoinverses

(see e.g. [43]) states

S(0)†S(0)S(0)† = S(0)†
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thus for the definition of S(0) given in eq. (4.33)

P 2
0 = R

(0)T

Γ S(0)†R
(0)
Γ ŜΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓ

= R
(0)T

Γ S(0)†S(0)S(0)†R
(0)
Γ ŜΓ = P0.

For the second equality

S(P0uΓ, vΓ) = uTΓP
T
0 ŜΓvΓ = uTΓ Ŝ

T
ΓR

(0)T

Γ S(0)†
T

R
(0)
Γ ŜΓvΓ.

Since pseudoinversion commutes with the transposition (see e.g. [133])

and the matrix ŜΓ is symmetric, we deduce that

S(0)† = S(0)†
T

and thus

S(P0uΓ, vΓ) = uTΓ ŜΓR
(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ = S(uΓ, P0vΓ).

Regarding to the third equality, using the definition of S(0) and the funda-

mental property of the pseudoinverses we obtain

S(P0uΓ, P0vΓ) = uTΓP
T
0 ŜΓP0vΓ

= uTΓ Ŝ
T
ΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ

= uTΓ Ŝ
T
ΓR

(0)T

Γ S(0)†S(0)S(0)†R
(0)
Γ ŜΓvΓ

= uTΓ Ŝ
T
ΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ

= S(P0uΓ, vΓ).

The Balancing Neumann-Neumann abstract hybrid Schwarz operator

PBNN can then be stated as (see [140] and [88])

PBNN = P0 + (I − P0)PNN (I − P0). (4.38)
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or equivalently

PBNN =M−1
BNN ŜΓ.

where M−1
BNN is the preconditioner.

Remark 4.6.5. Because of the definition of the projection operator P0

given in eq. (4.37), at each application of the BNN preconditioner the

right hand side of the coarse problem will result compatible to the singular

coarse matrix since for any vector vΓ ∈ range(ŜΓ) it will hold

1TΓvΓ = 0.

Remark 4.6.6. Due to the second application of (I −P0) in eq. (4.38), we

can add any linear combination of the coarse basis functions to the output

of the additive operator PNN without affecting the Balancing Neumann-

Neumann operator PBNN , which can thus be equivalently expressed with

the enriched coarse space as

P ∗
BNN = P0 + (I − P0)P

∗
NN (I − P0), (4.39)

with

P ∗
NNvΓ = PNNvΓ +

N∑

j=1

R
(j)T

D,Γ (αj,11Γ(j) + αj,21∗
Γ(j)) .

For the theoretical analysis of the next Section, we will need only αj,2 6= 0
and we will thus write

P ∗
NNvΓ = PNNvΓ +

N∑

j=1

R
(j)T

D,Γ αj1∗Γ(j) . (4.40)

Remark 4.6.7. First test results for the BNN preconditioner with the natu-
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subd CG Schur PCG-BNN Schur

it ||e||2 ||e||∞ it ||e||2 ||e||∞

2x2x2 73 1.1E-3 5.1E-5 19 4.2E-9 3.5E-10

8x1x1 111 1.7E-3 8.7E-5 34 4.3E-9 1.7E-10

1x8x1 112 2.1E-3 7.5E-5 36 4.5E-9 2.1E-10

1x1x8 101 2.7E-3 1.1E-4 7 1.2E-9 3.9E-11

Table 4.3: Comparison between different solvers for the Schur complement of the Bido-

main model. Test case considered: h =1E-2, global grid 17x17x17, random right-hand side,

null initial guess and absolute residual tolerance 1E-8. Subdomains subdivision in the three

dimensions is showed on the left. For each solver, number of iteration, euclidean exact error

||e||2 norm and infinity norm of the exact error ||e||∞ are shown.

ral coarse space applied to the Schur complement of the Bidomain model

are shown in Table 4.3, together with the results of the unpreconditioned

Schur complement. As for the NN preconditioner, the strip-like decompo-

sition performs better than the other type of decompositions as expected,

due to the layer structure of the modeled conduction system (see [88] Sec-

tion 3.8.6).

4.7 Bidomain theoretical estimates

As for the additive PNN operator introduced for the Monodomain model

we will consider the solution of the equivalent preconditioned systems

PBNNuΓ =M−1
BNN ĝΓ
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for the natural coarse space (4.31) and

P ∗
BNNuΓ =M∗−1

BNN ĝΓ

for the enriched coarse space (4.32); since both PBNN and P ∗
BNN are self-

adjoint in the inner product S(·, ·) generated by ŜΓ on ŴΓ, their condition

numbers κ2 and κ∗2 can be estimated as previously as the ratio of the largest

and smallest eigenvalues of their generalized Rayleigh quotient, i.e. for the

natural coarse space

λmS(uΓ, uΓ) ≤ S(PBNNuΓ, uΓ) ≤ λMS(uΓ, uΓ), (4.41)

and for the enriched coarse space

λ∗mS(uΓ, uΓ) ≤ S(P ∗
BNNuΓ, uΓ) ≤ λ∗MS(uΓ, uΓ), (4.42)

∀uΓ ∈ ŴΓ, uΓ 6= 0
ŴΓ

.

We will need some auxiliary results; the next Lemma (borrowed from

[88]) states that we can estimate the lower and upper bounds of the opera-

tor PNN (4.17) on the subspace range(I −P0) in order to give bounds for

the operator PBNN .

Lemma 4.7.1. Suppose that exists positive real numbers cm and cM such

that

cm ≤ S(PNN (I − P0)uΓ, (I − P0)uΓ)

S((I − P0)uΓ, (I − P0)uΓ)
≤ cM

∀ uΓ ∈ ŴΓ. Then λm ≥ min{cm, 1} and λM ≤ max{cM , 1}.

Proof. Using the definition of PBNN given in eq (4.38) and the properties

of P0 given in Lemma 4.6.4, we have

S(PBNNuΓ, uΓ) = S(P0 + (I − P0)PNN (I − P0)uΓ, uΓ)

= S(P0uΓ, uΓ) + S((I − P0)PNN (I − P0)uΓ, uΓ)

= S(P0uΓ, P0uΓ) + S(PNN (I − P0)uΓ, (I − P0)uΓ)
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and

S(uΓ, uΓ) = S(P0uΓ, P0uΓ) + S((I − P0)uΓ, (I − P0)uΓ).

Thus from the hypothesis the thesis follows.

Remark 4.7.2. Due to Remark 4.6.6, in order to perform the theoretical

analysis of the BNN preconditioner with the enriched coarse space we

will consider the operator P ∗
NN given in eq. (4.40). The results of Lemma

4.7.1 still hold; moreover

P ∗
NN (I − P0)uΓ = PNN (I + P0)uΓ +

N∑

j=1

R
(j)T

D,Γ αj1∗Γ(j)

= EDw + EDα1∗

= ED(w + α1∗),

(4.43)

where

α = (α1, . . . , αN ), αj ∈ R,

and 1∗ ∈ WΓ is the vector with local components 1∗
Γ(j) .

As previously done for the Monodomain model, we can define w ∈
WΓ locally as

wj = S(j)†D(j)R
(j)
Γ ŜΓ(I − P0)uΓ. (4.44)

An equality similar to eq. (4.22) holds by using the fundamental properties

of the pseudoinverses (see [88] for further details), and thus we can write

EDw = PNN (I − P0)uΓ. (4.45)

We then proceed estimating the upper bound of the average operator.

In order to simplify the notations, we will first assume that the conductivity

coefficients have no jumps across substructures. We note that with the

natural coarse space (4.31) we cannot obtain a general bound in case of
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jumping coefficients with jumps aligned with the interface due to more

complicated nature of the Bidomain problem. However, we will derive

such bounds using the enriched coarse space (4.32).

Lemma 4.7.3. Let w ∈ WΓ be defined as in formula (4.44). Then for the

Bidomain model with natural coarse space (4.31) it will hold

|EDw|2S .
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

where σM = max{σi
M , σ

e
M} and σm = min{σi

m, σ
e
m} with σi,e

M and σi,e
m

the maximum and minimum eigenvalues of the intra- and extracellular

diffusion tensors given in eq. (2.1), and δt is the time step.

Proof. As already done in Lemma 4.5.2, we will estimate each contribu-

tion |vj |2S(j) where

vj(x) = (EDw)j(x)

=

(
∑

k∈Nx

Ih(δik
†
(x)wi

k(x)),
∑

k∈Nx

Ih(δek
†(x)we

k(x))

)

where δik and δek are the partition of unity coefficients and wi
k and we

k

are the the intra- and extra-cellular components of wj . Using splitting

functions for each component of the solution given by

Θ•vj = (ϑ•v
i
j , ϑ•v

e
j ),

where the cut-off functions ϑ• are given in Section 4.3, we can split (with

an abuse of notation on the lagrangian interpolator) the boundary vector

vj in a sum of faces, edges and vertices components, for both the intra and

extracellular components:

vj =
∑

F⊂Γ(j)

Ih(ΘFvj) +
∑

E⊂Γ(j)

Ih(ΘEvj) +
∑

V⊂Γ(j)

Ih(ΘVvj)
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Noting that each sj(·, ·) defines a seminorm, it follows that

|vj |2S(j) .
∑

•=F ,E,V⊂Γ(j)

|Ih(Θ•vj)|2S(j) .

Denoting the intra- and extra-cellular components of Bidomain discrete

harmonic operator as

Hjvj = (Hi
jvj ,He

jvj), (4.46)

cooercivity and continuity for the local Schur bilinear forms yields (see

Remark 2.4.4):

sj(vj , vj) ≥ σi
m|Hi

jvj |2H1 + σe
m|He

jvj |2H1 + γ||Hi
jvj −He

jvj ||2L2

sj(vj , vj) ≤ σi
M |Hi

jvj |2H1 + σe
M |He

jvj |2H1 + γ||Hi
jvj −He

jvj ||2L2

where norms and seminorms are defined over Ωj , σi
m, σi

M (respectively

σe
m, σe

M ) are the minimum and maximum eigenvalues for the intracellular

(extracellular) diffusion tensors and γ = 1/δt. Noting that the function

Hi
j(I

h(Θ•vj))−He
j(I

h(Θ•vj))

vanishes on a two-dimensional subset of Γ(j), we can use a Poincaré-

Friedrichs inequality (see Lemma 4.3.6) and obtain:

||Hi
j(I

h(Θ•vj))−He
j(I

h(Θ•vj))||2L2 .

H2|Hi
j(I

h(Θ•vj))|2H1 +H2|He
j(I

h(Θ•vj))|2H1

and thus we can work with the H1/2(Γ(j)) seminorm using Lemma 4.3.5:

|Ih(Θ•vj)|2S(j) .

(σM +H2γ)
(
|Ih(ϑ•vij)|2H1/2(Γ(j)) + |Ih(ϑ•vej )|2H1/2(Γ(j))

)

where σM = max{σi
M , σ

e
M}. As done previously in Lemma 4.5.2, we
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can estimate the contribution of faces, edges and vertices separately.

Face terms. For the face terms we obtain as previously done for the Mon-

odomain model in Lemma 4.5.2 using Remark 4.3.4 and Lemma 4.3.7:

|Ih(ϑFvij)|2H1/2(Γ(j)) .

(1 + log(H/h))2
(
|Hi

jwj |2H1(Ωj)
+H−2||Hi

jwj ||2L2(Ωj)

)
+

(1 + log(H/h))2
(
|Hi

kwk|2H1(Ωk)
+H−2||Hi

kwk||2L2(Ωk)

)

|Ih(ϑFvej )|2H1/2(Γ(j)) .

(1 + log(H/h))2
(
|He

jwj |2H1(Ωj)
+H−2||He

jwj ||2L2(Ωj)

)
+

(1 + log(H/h))2
(
|He

kwk|2H1(Ωk)
+H−2||He

kwk||2L2(Ωk)

)

and summing over two cellular components

(1 + log(H/h))−2
[
|Ih(ϑFvij)|2H1/2(Γ(j)) + |Ih(ϑFvej )|2H1/2(Γ(j))

]
.

|Hi
jwj |2H1(Ωj)

+ |He
jwj |2H1(Ωj)

+ |Hi
kwk|2H1(Ωk)

+ |He
kwk|2H1(Ωk)

+

1

H2

(
||Hi

jwj ||2L2(Ωj)
+ ||He

jwj ||2L2(Ωj)
+ ||Hi

kwk||2L2(Ωk)
+ ||He

kwk||2L2(Ωk)

)
.

(4.47)

Edge terms. For edge terms we can proceed as in [140] using Lemma

4.3.9, a triangle inequality and then Lemma 4.3.8, to obtain a bound for
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each local component

|Ih(ϑEvij)|2H1/2(Γ(j)) .

(1 + log(H/h))2
∑

k∈KE

(
|Hi

kwk|2H1(Ωk)
+

1

H2
||Hi

kwk||2L2(Ωk)

)

|Ih(ϑEvej )|2H1/2(Γ(j)) .

(1 + log(H/h))2
∑

k∈KE

(
|He

kwk|2H1(Ωk)
+

1

H2
||He

kwk||2L2(Ωk)

)

where KE is the set of subdomain indices sharing edge E . Summing over

the two cellular components we will find a bound similar to that given in

formula (4.47).

Vertex terms. Similarly, using Lemma 4.3.10 we bound also the vertex

components as

|Ih(ϑVvij)|2H1/2(Γ(j)) .

(1 + log(H/h))2
∑

k∈KV

(
|Hi

kwk|2H1(Ωk)
+

1

H2
||Hi

kwk||2L2(Ωk)

)

|Ih(ϑVvej )|2H1/2(Γ(j)) .

(1 + log(H/h))2
∑

k∈KV

(
|He

kwk|2H1(Ωk)
+

1

H2
||He

kwk||2L2(Ωk)

)

where KV is the set of subdomain indices sharing vertex V obtaining a

bound similar to (4.47) summing the two cellular components.

Now consider only the L2 contribution from one substructure to for-

mula (4.47) (the contributions from other substructures can be treated

similarly): since the intra- and the extra-cellular components of the lo-

cal Schur complements solutions are unique modulo a constant and the

discrete harmonic function of a constant is a constant function itself (see
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Remark 4.2.7), we can choose wj such that

∫

Ωj

(Hi
jwj +He

jwj) = 0; (4.48)

In fact, let wj = w̃j + βj with βj ∈ R and

∫

Ωj

He
jw̃j = 0

a solution of the local discrete harmonic Bidomain problem; denoting with

|Ωj | the volume of Ωj we can write

∫

Ωj

(Hi
jwj +He

jwj) = 2βj |Ωj |+
∫

Ωj

(Hi
jw̃j +He

j w̃j)

which is equal to zero by choosing

βj = − 1

2|Ωj|

∫

Ωj

Hi
jw̃j .

Thus for the parallelogram identity of Hilbert spaces and Lemma 4.3.6, it

follows that

1

H2

(
||Hi

jwj ||2L2(Ωj)
+ ||He

jwj ||2L2(Ωj)

)

.
1

H2

(
||Hi

jwj −He
jwj ||2L2(Ωj)

+ ||Hi
jwj +He

jwj ||2L2(Ωj)

)

.
1

H2

(
||Hi

jwj −He
jwj ||2L2(Ωj)

+H2|Hi
jwj +He

jwj |2H1(Ωj)

)

.
1

H2
||Hi

jwj −He
jwj ||2L2(Ωj)

+ |Hi
jwj |2H1(Ωj)

+ |He
jwj |2H1(Ωj)

.
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We thus obtain for the face terms

(1 + log(H/h))−2
[
|Ih(ϑFvij)|2H1/2(Γ(j)) + |Ih(ϑFvej )|2H1/2(Γ(j))

]

.|Hi
jwj |2H1(Ωj)

+ |He
jwj |2H1(Ωj)

+
1

H2
||Hi

jwj −He
jwj ||2L2(Ωj)

+

|Hi
kwk|2H1(Ωk)

+ |He
kwk|2H1(Ωk)

+
1

H2
||Hi

kwk −He
kwk||2L2(Ωk)

Therefore, if H2γ ≤ σm, with σm = min{σi
m, σ

e
m}

H2γ

σM +H2γ
(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.γ(H2|Hi
jwj |2H1(Ωj)

+H2|He
jwj |2H1(Ωj)

+ ||Hi
jwj −He

jwj ||2L2(Ωj)
+

H2|Hi
kwk|2H1(Ωk)

+H2|He
kwk|2H1(Ωk)

+ ||Hi
kwk −He

kwk||2L2(Ωk)
)

and thus

|Ih(ΘFvj)|2S(j) . (1 + log(H/h))2
σM +H2γ

H2γ

(
|wj |2S(j) + |wk|2S(k)

)

Otherwise, if H2γ ≥ σm

σm
σM +H2γ

(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.σm(|Hi
jwj |2H1(Ωj)

+ |He
jwj |2H1(Ωj)

+H−2||Hi
jwj −He

jwj ||2L2(Ωj)
+

|Hi
kwk|2H1(Ωk)

+ |He
kwk|2H1(Ωk)

+H−2||Hi
kwk −He

kwk||2L2(Ωk)
)

and thus

|Ih(ΘFvj)|2S(j) . (1 + log(H/h))2
σM +H2γ

σm

(
|wj |2S(j) + |wk|2S(k)

)

Therefore, for the face terms we will have

|Ih(ΘFvj)|2S(j) . (1+log(H/h))2
σM +H2γ

min{H2γ, σm}
(
|wj |2S(j) + |wk|2S(k)

)
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We can proceed similarly for edge and vertex terms bounding L2 contri-

butions from each subtructure using the same wj = w̃j + βj ; the thesis

then follows by summing over faces, edges and vertices of Ωj and then

over the substructures.

Lemma 4.7.4. Let w ∈ WΓ be defined as in formula (4.44). Then for the

Bidomain model with enriched coarse space (4.32) exists α = (α1, . . . , αN )
such that

|ED(w+α1∗)|2S . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1+log(H/h))2|w|2S

where σi,e(j)

M and σi,e(j)

m are the maximum and minimum eigenvalues of the

intra- and extracellular diffusion tensors for the jth substructure and δt is

the time step.

Proof. We can proceed as before in Lemma 4.7.3 and obtain

|Ih(Θ•vj)|2S(j) .(σi(j)

M +H2γ)|Ih(ϑ•vij)|2H1/2(Γ(j))+

(σe(j)

M +H2γ)|Ih(ϑ•vej )|2H1/2(Γ(j)),
(4.49)

where now

vj(x) = (ED(w + α1∗))j(x)

=

(
∑

k∈Nx

Ih(δik
†
(x)(wi

k(x) + αk)),
∑

k∈Nx

Ih(δek
†(x)(we

k(x) − αk))

)
.

As before, we can estimate the face, edge and vertex contributions sepa-

rately. We explicitly develop the algebra related to the face terms; edge

and vertex terms can be treated similarly as already done in Lemma 4.7.3

using in addition the same arguments developed in the following. For the
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face terms we first obtain using Remark 4.3.4

|Ih(ϑFvij)|2H1/2(Γ(j)) .||Ih(ϑFvij)||2H1/2
00 (F)

.δ
i†

2

j ||Ih(ϑF (wi
j + αj))||2H1/2

00 (F)
+

δ
i†

2

k ||Ih(ϑF (wi
k + αk))||2H1/2

00 (F)

|Ih(ϑFvej )|2H1/2(Γ(j)) .||Ih(ϑFvej )||2H1/2
00 (F)

.δ
e†

2

j ||Ih(ϑF (we
j − αj))||2H1/2

00 (F)
+

δ
e†

2

k ||Ih(ϑF (we
k − αk))||2H1/2

00 (F)
,

where

δ
i,e†

k = max
x∈Γ(j)

δi,e
†

k (x).

Using Lemma 4.3.7 we can bound from above each of theH
1/2
00 (F) norms

by

|Hi
j,k(wj,k + αj,k)|2H1(Ωj,k)

+
1

H2
||Hi

j,k(wj,k + αj,k)||2L2(Ωj,k)

|He
j,k(wj,k − αj,k)|2H1(Ωj,k)

+
1

H2
||He

j,k(wj,k − αj,k)||2L2(Ωj,k)

plus a (1 + log(H/h))2 factor in front of them. Since the discrete Bido-

main harmonic extension of a constant function is a constant itself, we can

replace the arguments of the H1 seminorm in the latter expressions by

|Hi
j,k(wj,k + αj,k)|2H1(Ωj,k)

= |Hi
j,kwj,k|2H1(Ωj,k)

|He
j,k(wj,k − αj,k)|2H1(Ωj,k)

= |He
j,kwj,k|2H1(Ωj,k)

.

We then sum over the two cellular components as previously done in

Lemma 4.7.3; as before, we thus need only to analyze the L2(Ωj,k) con-
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tributions, i.e.

1

H2
(||Hi

j(wj + αj)||2L2(Ωj)
+ ||He

j(wj − αj)||2L2(Ωj)
),

1

H2
(||Hi

k(wk + αk)||2L2(Ωk)
+ ||He

k(wk − αk)||2L2(Ωk)
)

We then use the parallelogram identity in Hilbert spaces and the fact that

the Bidomain discrete harmonic function of a constant is a constant func-

tion itself (see Remark 4.2.7) to bound from above each contribution by

||Hi
jwj +He

jwj ||2L2(Ωj)
+ ||Hi

jwj −He
jwj + 2αj ||2L2(Ωj)

,

||Hi
kwk +He

kwk||2L2(Ωk)
+ ||Hi

kwk −He
kwk + 2αk||2L2(Ωk)

.
(4.50)

As done before in Lemma 4.7.3, first terms of each contribution shown in

eq. (4.50) can be bounded from above by the sum of the H1 seminorms

using a Poincaré inequality and a triangle inequality; since we can add a

suitable constant function to wj,k, i.e. we can choose wj,k = w̃j,k + βj,k
with ∫

Ωj,k

He
j,kw̃j,k = 0

and

βj,k = − 1

2|Ωj,k|

∫

Ωj,k

Hi
j,kw̃j,k.

For the second terms of eq. (4.50), we can proceed similarly choosingαj,k

such that

0 =

∫

Ωj,k

(Hi
j,kwj,k −He

j,kwj,k + 2αj,k)

=

∫

Ωj,k

(Hi
j,k(w̃j,k + βj,k)−He

j,k(w̃j,k + βj,k) + 2αj,k)

= 2αj,k|Ωj,k|+
∫

Ωj,k

(Hi
j,kw̃j,k −He

j,kw̃j,k)
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i.e.

αj,k = − 1

2|Ωj,k|

∫

Ωj,k

Hi
j,kw̃j,k.

We thus end up with the estimate for the face terms

(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.δ
i†

2

j (σi(j)

M +H2γ)|Hi
jwj |2H1(Ωj)

+ δ
e†

2

j (σe(j)

M +H2γ)|He
jwj |2H1(Ωj)

+δ
i†

2

k (σi(j)

M +H2γ)|Hi
kwk|2H1(Ωk)

+ δ
e†

2

k (σe(j)

M +H2γ)|He
kwk|2H1(Ωk)

.(σi(j)

M +H2γ)|Hi
jwj |2H1(Ωj)

+ (σe(j)

M +H2γ)|He
jwj |2H1(Ωj)

+(σi(k)

M +H2γ)|Hi
kwk|2H1(Ωk)

+ (σe(k)

M +H2γ)|He
kwk|2H1(Ωk)

where we have used formula (4.35) to obtain the last inequality. Thus, we

can finally bound the face terms

|Ih(ΘFvj)|2S(j) . C(|w|2S(j) + |w|2S(k)),

with

C = max
•=i,e

(
max
l=j,k

σ•(l)

M δt +H2

σ•(l)

m δt

)
(1 + log(H/h))2

The thesis then follows proceeding similarly for edge and vertex terms

using the same wj , and then summing over faces, edges and vertices and

finally over the subtructures.

We are then ready to prove the main theorems for the condition number

of the preconditioned Bidomain model.

Theorem 4.7.5. The condition number of the preconditioned Schur com-

plement system of the Bidomain model with natural coarse space (4.31)
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satisfies:

κ2(M
−1
BNN ŜΓ) .

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2. (4.51)

Proof. Lower Bound. A lower bound of one for the Rayleigh quotient

of the additive operator PNN , and thus for Rayleigh quotient of PBNN

(4.41) using Lemma 4.7.1, can be deduced by the existence of a stable de-

composition of the bilinear form S(·, ·) in terms of s̃j(·, ·) with a constant

C0 equal to one.

Upper Bound. The equality stated in formula (4.29) still holds (see

e.g. [140]) with a slight modification, that is

|w|2S = S(PNN (I − P0)uΓ, (I − P0)uΓ) (4.52)

where w is given as in eq. (4.44). Proceeding as before in Theorem 4.5.3

using eq. (4.45) and the estimate given in Lemma 4.7.3, we obtain

S(PNN (I − P0)uΓ, (I − P0)uΓ)

S((I − P0)uΓ, (I − P0)uΓ)
.

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2

and thus the thesis follows using Lemma 4.7.1.

As for the one-level Neumann-Neumann preconditioner for the Mon-

odomain model analyzed in Section 4.5, the estimates for the Bidomain

model with a balancing preconditioner possess a leading term proportional

to H−2 for very large values of δt using the natural coarse space. We next

show that augmenting the coarse space of the Balancing preconditioner

considering the enriched coarse space (4.32) will give us quasi-optimal

bounds.

Theorem 4.7.6. The condition number of the preconditioned Schur com-

plement system of the Bidomain model with enriched coarse space (4.32)
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satisfies:

κ2(M
∗−1

BNN ŜΓ) . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

Proof. We first estabilish the same equality of (4.52) for the operatorP ∗
NN

using the fact that P0 is an orthogonal projection (see Lemma 4.6.4):

S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ) =

= S(PNN (I − P0)uΓ, (I − P0)uΓ) + S(
N∑

j=1

αjR
(j)T

D,Γ 1∗
Γ(j) , (I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ) +
N∑

j=1

αjS(R(j)T

D,Γ 1∗
Γ(j) , (I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ) +

N∑

j=1

αjS(R(j)T

D,Γ 1∗
Γ(j) , P0(I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ)

for all possible values of the constants αj . Thus, using eq. (4.52) we have

S(P ∗
NN (I−P0)uΓ, (I−P0)uΓ) = S(PNN (I−P0)uΓ, (I−P0)uΓ) = |w|2S .

(4.53)

Lower Bound. A lower bound for the additive operator P ∗
NN on the

subspace range (I−P0), and therefore for P ∗
BNN using Lemma 4.7.1, can

be obtained using the lower bound of the operator PNN on the subspace

range (I − P0) and eq. (4.53):

S((I − P0)uΓ, (I − P0)uΓ)

≤ S(PNN (I − P0)uΓ, (I − P0)uΓ)

= S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ)

and thus the minimum eigenvalue of the Rayleigh quotient (4.42) for the
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enriched coarse space is equal to one.

Upper Bound. For the upper bound, we can proceed as in Theorem

4.5.3 using eq. (4.43), Lemma 4.7.4 and eq. (4.53) to obtain

S(P ∗
NN (I − P0)uΓ, P

∗
NN (I − P0)uΓ)

= |P ∗
NN (I − P0)uΓ|2S

= |ED(w + α1∗)|2S
. C|w|2S
= CS(P ∗

NN (I − P0)uΓ, (I − P0)uΓ)

with

C = max
•=i,e

(
max
l=j,k

σ•(l)

M δt +H2

σ•(l)

m δt

)
(1 + log(H/h))2.

Thus, using a Cauchy-Schwarz inequality, canceling a common term and

squaring as in Theorem 4.5.3, we obtain

S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ)

. CS((I − P0)uΓ, (I − P0)uΓ),

and thus, using Lemma 4.7.1, the maximum eigenvalue of the Rayleigh

quotient (4.42) for the enriched coarse space can be bounded by

λ∗M . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.
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4.8 Implementational details and numerical re-

sults

The code has been written in Fortran 90 and the MPI library has been used

for parallelization, assigning one subdomain to one MPI process. The

PETSc library has been used to manage local data structures such as sparse

matrices and vectors in order to assure portability of the code. The actions

of the assembled matrices on given vectors are evaluated exploiting the

subassembling relations and an exchanging subroutine with non-blocking

MPI sends and receives using derived MPI datatypes to avoid additional

copies and fully exploit the local cache.

Each local Dirichlet problem involved in the computation of the Schur

matrix vector product is factorized in a preprocessing step using LU fac-

torization provided by the serial library UMFPACK [142]; forward and

backward substitutions are then used whenever local Schur matrices must

be applied on some vectors. The Neumann problems involved in the ap-

plication of the additive part of the NN preconditioners, i.e. M−1
NN given

in eq. (4.18), are solved using the LU factorizations of the local stiffness

matrices A(j) since the vector

u
(j)
Γ = S(j)−1

r
(j)
Γ

can be found by solving the local system

A(j)

(
u
(j)
I

u
(j)
Γ

)
=

(
0

r
(j)
Γ

)
.

In order to minimize the bandwidth of the local stiffness matrices and re-

duce the amount of fill-in of the local LU factorizations, we have reordered

the unknowns and have written for every node the intra- and extra-cellular

components consecutively.

For the application of the Balancing preconditioner to the Bidomain

model, we use the algorithm 3.7.2 given in Section 3.7 of [88]. The coarse

problem of the Balancing operator is evaluated in the preprocessing step;

169



it is assigned to one MPI process and it is solved using serial factoriza-

tion for sparse matrices provided by UMFPACK [142]. Usual MPI scatter

and gather operations are then used for the communications involved in

assembling the coarse right hand side and distributing the coarse solution.

Numerical tests were performed on Linux clusters Ulisse (84 cores)

and Nemo (48 cores) located at the University of Milan and IBM clusters

BCX (power5) and SP6 (power6) located at CINECA.

Monodomain H/h dependence.
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Figure 4.2: Condition number of PCG-NN solver for the Schur complement of the Mon-

odomain model as a function of H/h with different sets of conductivity coefficients. Test

case with 3 × 3 × 3 subdomains, h =1E-2, δt =1E-2, random right-hand side and null

initial guess; PCG iteration is stopped when the absolute preconditioned residual is lower

then 1E-8. Details for the values of the conductivity coefficients are given in the text.

Numerical results on the estimated condition number, evaluated using

the usual Lanczos’ method, of the Monodomain system preconditioned

with M−1
NN are shown in Table 4.4 and Figure 4.2. Figure 4.2 shows the

condition number as a function ofH/h considering a cubic 3x3x3 decom-

position of the spatial domain Ω; we note that, since we kept constant the

domain decomposition, in the test case considered the dimension of Ω in-
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creases as the ratio H/h increases. We considered two different sets of

conductivity coefficients: the first set of conductivity coefficients, whose

results are shown in Panel A of Figure 4.2, is that normally used in our

cardiac simulations (see Table 2.1.1 and Remark 2.4.4); the second set of

conductivity coefficients (panel B) is given by σM =1, σm=1E-2 with the

intermediate eigenvalue equal to 1E-1. With the former set, the condition

number increases as the number of subdomain elements (i.e. H/h) in-

creases and the dependence of the condition number frommin{H2, σmδt}
is masked by the small values of the conductivity coefficients. The depen-

dence from H−2 is indeed evident in Panel B, where the condition num-

ber decreases as the number of subdomain elements increases and it grows

rapidly as the number of elements decreases under ten. We note that we

can drop the H−2 dependence of the Monodomain condition number us-

ing a natural balancing operator for the Monodomain model.

NN preconditioner Scaled Speedup, Monodomain model.

Table 4.4 shows the scalability (scaled speedup) of the NN precon-

ditioner for the conductivity coefficients usually used for cardiac simula-

tions. In this type of test, we fix the local sizes of the substructures and

progressively increase the number of substructures, thus let growing the

dimension of Ω keeping fixed h and H . As predicted by the theory, the

minimum eigenvalue of the preconditioned system is exactly one, whereas

the maximum eigenvalue, and thus the condition number, remains almost

constant as the number of the substructures increases. We note that, in-

stead of increasing the number substructures only in two directions, we

could also increase it uniformly in all three directions but this strategy

would have quickly exceeded our computational resources.

Monodomain with jumping coefficients.

To validate the results in Remark 4.5.4, we will consider a 3x3x3 de-

composition of the whole domain and a checkerboard pattern (see Figure
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Scalability PCG-NN Schur Monodomain

subd Ŵ dofs ŴΓ dofs iter λmin λmax κ2

2x2x1 30’420 1’540 4 1.000 1.165 1.165

4x4x1 118’580 9’060 4 1.000 1.170 1.170

6x6x1 264’500 22’500 4 1.000 1.172 1.172

8x8x1 468’180 41’860 4 1.000 1.173 1.173

10x10x1 729’620 67’140 4 1.000 1.173 1.173

12x12x1 1’048’820 98’340 4 1.000 1.174 1.174

14x14x1 1’425’780 135’460 4 1.000 1.174 1.174

16x16x1 1’860’500 178’500 4 1.000 1.174 1.174

Table 4.4: Monodomain Schur complement scaled speedup test for PCG-NN solver. Test

case with h =1E-2, H/h = 20, δt =1E-2, random right-hand side and null initial guess;

PCG iteration is stopped when the initial preconditioned residual is reduced by a factor 1E-

6. For each run, subdomain subdivision in the three dimensions, number of global grid and

interface dofs, number of iterations, extreme eigenvalues and condition number are shown.

4.3) of discontinuities in the conductivity coefficients such that the ratio

(
max

j=1,...,N

σ
(j)
M

σ
(j)
m

)
.

will remain constant. We initially set the eigenvalues of the diffusion ten-

sor as σM =1, σm =1E-2 with the intermediate eigenvalue equal to 1E-1;

then we fix a factor p and multiply each eigenvalue by p in the black sub-

domains and by 1/p in the others. Since the term H2γ and the ratio be-

tween the extreme eigenvalues remain constants varying the factor p, the

condition number should depend only on the maximum among the local

maximum eigenvalues (see Remark 4.5.4). Numerical results confirm the
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Figure 4.3: CheckerBoard pattern for discontinuous coefficients test case. See text for

details.

theoretical estimates, showing an asymptotical linear dependence of the

condition number of the Monodomain operator P−1
NN ŜΓ on the factor p

(see Table 4.5).

BNN preconditioner H/h dependence, Bidomain model.

Numerical results on the H/h the dependence of the BNN precon-

ditioner for the Bidomain model with natural coarse space are shown in

Figure 4.4; as already noted for the same test on the additive NN precon-

ditioner for the Monodomain model, the dimension of Ω increases as the

ratio H/h increases. A typical (1 + log(H/h))2 behavior of the condi-

tion number has been observed for conductivity values usually used for

our cardiac simulations and a time step of the order 1E-2 (see figure 4.4);

we don’t show the computational results using the enriched coarse space

since it doesn’t improve the results with this set of parameters. On the

other hand, the robustness of the enriched coarse space with respect to the

substructure diameter H is indeed evident in Table 4.6, where a different

set of parameters has been used; δt =1E1 and conductivity coefficients

such that σi,e
M =1E1, σi,e

m =1E-1 with the intermediate eigenvalues equal
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PCG-NN Schur Monodomain

Jumping Coefficients

p 1 1E1 1E2 1E3 1E4

κ2 7.41 21.93 105.76 976.24 9686.64

Table 4.5: Monodomain Schur complement dependence from jumps in the conductivity

coefficient. Test case with 3x3x3 subdomains, h = 0.01, H/h = 15, δt =1E-2, random

right-hand side and null initial guess; PCG iteration is stopped when the initial residual is

reduced by a factor of 1E-6. For each run, jumping factor p (see text for details) and condition

number for the preconditioned P−1

NN
ŜΓ Monodomain operator are shown.

to 1.

Bidomain Scaled speedup.

Table 4.7 shows the scalability (scaled speedup) of the BNN precondi-

tioner for the conductivity coefficients usually used for cardiac simulations

and natural coarse space. As predicted by the theory, the minimum eigen-

value of the preconditioned system is exactly one, whereas the maximum

eigenvalue, and thus the condition number, initially grows and finally re-

mains almost constant as the number of the substructures increases, being

thus independent from the number of substructures. We obtained the same

results using the enriched coarse space (data not shown).

Bidomain δt dependence.

Finally, we compare the performance of natural and enriched coarse

spaces testing the dependence of the condition number of BNN precondi-

tioner from the time step δt, using physiological conductivity coefficients

(see Table 2.1.1) and keeping fixed the local size. The estimated depen-
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Figure 4.4: Condition number of PCG-BNN solver for the Schur complement of the

Bidomain discretization as a function of H/h. Coarse space as natural coarse space (4.31).

Test case with 3 × 3 × 3 subdomains, h =1E-2, δt =1E-2, conductivity coefficients as in

Table 2.1.1, random right-hand side and null initial guess; PCG iteration is stopped when the

preconditioned residual is lower then 1E-8.

dence of the condition number from δt is in agreement (see Theorems

4.7.5 and 4.7.6) with the numerical results listed in Table 4.8, since for the

natural coarse space we will have

σMδt +H2

min{H2, σmδt}
≈





O (δt) δt → ∞

O
(
δ−1
t

)
δt → 0

whereas for the enriched coarse space we will have

max
•=i,e

(
σ•
Mδt +H2

σ•
mδt

)




O (1) δt → ∞

O
(
δ−1
t

)
δt → 0

.
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PCG-BNN Schur Bidomain

H/h dependence

H/h 5 10 15 20

κ2 5.93E4 (453) 1.81E4 (408) 8.96E3 (406) 5.43E3 (374)

κ∗2 18.91 (37) 28.83 (47) 34.91 (55) 39.39 (58)

Table 4.6: Condition number (number of iterations in parenthesis) of PCG-BNN solver

for the Schur complement of the Bidomain discretization as a function of H/h. Coarse

space as natural coarse space (4.31) and enriched coarse space (4.32). Test case with 3 ×
3 × 3 subdomains, h =1E-2, δt =1E1, random right-hand side and null initial guess; PCG

iteration is stopped when the preconditioned residual is lower then 1E-4. For the values of

the conductivity coefficients see text.

Bidomain with jumping coefficients.

To analyze the jumping coefficients case, we will consider a 3x3x3 de-

composition of the whole domain and a checkerboard pattern (see Figure

4.3) of discontinuities in the conductivity coefficients, with two different

sets of discontinuities, but such that the ratio

max
•=i,e

(
max

j=1,...,N

σ•(j)

M

σ•(j)

m

)
.

will remain constant. We initially set conductivity coefficients σi,e
l =1E1,

σi,e
t =1 and σi,e

n =1E-1, then we consider a first test case, fixing a factor

p and then multiplying each conductivity coefficient, either intra- or ex-

tracellular, by p in the black subdomains and by 1/p in the others. In the
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Scalability PCG-BNN Schur Bidomain

subd Ŵ dofs ŴΓ dofs iter λmin λmax κ2

2x2x1 120’050 4’850 11 1.00 3.63 3.63

4x4x1 470’450 28’650 14 1.00 5.08 5.08

6x6x1 1’051’250 71’250 15 1.00 5.53 5.53

8x8x1 1’862’450 132’650 15 1.00 5.75 5.75

10x10x1 2’904’050 212’850 16 1.00 5.86 5.86

12x12x1 4’176’050 311’850 16 1.00 5.91 5.91

14x14x1 5’678’450 429’650 16 1.00 5.78 5.78

16x16x1 7’411’250 566’250 16 1.00 5.84 5.84

18x18x1 9’374’450 721’650 16 1.00 5.89 5.89

20x20x1 11’568’050 895’850 16 1.00 5.93 5.93

22x22x1 13’992’050 1’088’850 16 1.00 5.97 5.97

24x24x1 16’646’450 1’300’650 16 1.00 5.99 5.99

Table 4.7: Bidomain Schur complement scalability test for PCG-BNN solver with natural

coarse space. Test case with h = 0.01, H/h = 25, random right-hand side and null initial

guess; PCG iteration is stopped when the initial preconditioned residual is reduced by a

factor of 1E-6. For each run, subdomain subdivision in the three dimensions, global grid and

interface dofs, number of iterations, extreme eigenvalues and condition number are shown.
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PCG-BNN Schur Bidomain δt dependence

δt 1E-5 1E-4 1E-3 1E-2 1E2 1E3 1E4

κ2 2.71E2 29.17 5.26 3.79 19.45 1.27E2 1.23E3

κ∗2 2.71E2 29.17 5.26 3.79 12.50 14.20 14.44

Table 4.8: Bidomain Schur complement δt dependence test for PCG-BNN solver with

natural (κ2) and enriched (κ∗

2) coarse space. Test case with 2x2x2 subdomains, h = 0.01,

H/h = 15, conductivity coefficients as in Table 2.1.1, random right-hand side and null ini-

tial guess; PCG iteration is stopped when the initial preconditioned residual is reduced by a

factor of 1E-6. For each run, time step δt and condition numbers are shown.

second test case, we multiply differently the intracellular and extracellular

coefficients in the two coloured regions: in the black subdomains we mul-

tiply the intracellular conductivity coefficients by p and the extracellular

ones by 1/p. In the white subdomains we will do the viceversa. Numer-

ical results are summarized in Table 4.9 using the natural and enriched

coarse spaces: columns labelled by A refer to the first type of disconti-

nuity, whereas columns B refer to the second one. For the natural coarse

space, in case A the condition number depends linearly on the factor p
and the preconditioned system diverges for large values of p. On the other

hand, in case B the condition number with natural coarse space remains

almost constant while varying largely p. As predicted by the theory, the

enriched coarse space is robust for the jumping coefficients case and gives

optimal results with respect to both cases considered.
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PCG-BNN Schur Bidomain

Jumping Coefficients

A B

p κ2(PBNN ) κ2(P
∗
BNN ) κ2(PBNN ) κ2(P

∗
BNN )

1 34.89 34.89 34.89 34.89

1E1 58.98 27.50 29.67 29.05

1E2 491.79 27.11 29.32 28.67

1E3 4840.13 27.11 29.30 28.65

1E4 48317.41 27.11 29.30 28.65

Table 4.9: Bidomain Schur complement dependence from jumps in the conductivity coef-

ficient for PCG-BNN solver with natural and enriched coarse spaces. Test case with 3x3x3

subdomains, h = 0.01, H/h = 15, δt =1E-2, random right-hand side and null initial guess;

PCG iteration is stopped when the initial residual is reduced by a factor of 1E-6. For each run,

jumping factor p (see text for details) and condition number for the preconditioned P−1

BNN
,

P ∗
−1

BNN operators are shown.
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Chapter 5

Balancing by Constraints

(BDDC) preconditioner for

Bidomain model

5.1 Introduction

In this chapter we will introduce and analyze the Balancing Domain De-

composition by Constraints (BDDC) preconditioner for the Bidomain prob-

lem. BDDC methods can be regarded as an evolution of BNN methods

where all local and coarse problems are treated additively and a proper set

of primal continuity constraints across the interface of the subdomains is

selected. These primal constraints can be point (vertex) constraints and

averages over edges and/or faces of the subdomains. We will show that

appropriate sets of primal constraints can be associated with the subdo-

main vertices, edges, and faces, so that the resulting BDDC methods have

a fast convergence rate and we will prove that the condition number of the

BDDC preconditioned operator of the cardiac Bidomain model depends

only on the ratio H/h of subdomain to element diameters, while being
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independent of the number of subdomains. Parallel numerical results will

confirm the theoretical estimates and illustrate the effects of the choice

of the primal constraints. Numerical results will also show the indepen-

dence of the condition number of the preconditioned Bidomain problem

from large jumps in the conductivity coefficients aligned with the inter-

face. We remark that the results obtained in this chapter will also apply to

the related FETI-DP algorithms (see e.g. [36]) defined by the same set of

primal constraints, since it is known that the BDDC and FETI-DP oper-

ators have the same eigenvalues with the exception of at most two ([79],

[87], [11]). The BDDC algorithm has been extended to a variety of cases,

including Gauss-Lobatto-Legendre (GLL) spectral elements in the scalar

elliptic case ([103], [69]), mortar discretizations ([65], [66]), discontinu-

ous Galerkin methods [32], advection-diffusion [141], indefinite problems

[80], Reissner-Mindlin plates [8] and incompressible Stokes [77]. We also

developed a BDDC method for the three dimensional linear elasticity sys-

tem in the almost incompressible case and discretized with GLL spec-

tral elements [105]. For BDDC application to biomechanics problems see

[70].

5.2 Dual and primal finite element spaces

An interface is defined similarly to Section 4.1 with a different treatment

of the nodal values on the Neumann boundary of the global problem; in

details, the nodal values defining the interface will remain the same but

we will treat as edges the subdomain edges on the Neumann boundary and

then define the vertices as endpoints of edges; figure 5.1 shows edges and

vertices for this configuration (compare it with Figure 4.1).

A finite element space W̃Γ, intermediate between ŴΓ and WΓ, and

constituted by partially continuous variables, can be defined by

W̃Γ = W∆

⊕
ŴΠ

where ŴΠ is the continuous primal variable space, typically spanned by

the discrete harmonic extensions with respect to a certain Schur comple-
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Ω

Figure 5.1: Edges nodes (blue circles) and vertices (green circles) for a 2x2x2 decopom-

position of Ω and H/h = 5

ment SΠΠ acting on subdomain corner nodal basis functions and/or se-

lected edge and face averages. For details see Section 5.4. W∆ is the

product space of the subdomain dual variable spaces

W∆ =
N∏

j=1

W
(j)
∆

which consist of functions with zero values at the primal degrees of free-

dom. The functions in the space W̃Γ will be continuous at the coarse

primal level and discontinuous elsewhere across the subdomain interface.

Additional restriction and extension operators between the interface

spaces need to be defined. R
(j)
∆ is the restriction operator that extracts

the subdomain part W
(j)
∆ from the dual space W∆ and R∆ is the direct

sum of the R
(j)
∆ operators. Similarly, R

(j)
Π extracts the subdomain com-

ponent W
(j)
Π from the assembled primal space ŴΠ, with RΠ the direct
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sum of the R
(j)
Π operators. Furthermore, RΓ∆ is the restriction operator

from the space WΓ onto the subspace W∆. For the analysis of the BDDC

preconditioner, we will also need a jump operator PD , complementary of

the average operator already introduced in equation (4.3), defined as (see

Lemma 6.10 in [140])

PD = I − ED. (5.1)

Since ∑

k∈Nx

δi,ek

†
(x) = 1, x ∈ Γ(i)

for both the intra- and the extra-cellular components of the partition of

unity, the local action of the jump operator an a given vector w ∈ WΓ can

be written as

(PDw(x))j =

(
∑

k∈Nx

δik
†
(wi

j(x) − wi
k(x)) ,

∑

k∈Nx

δek
†(we

j (x)− we
k(x))

)

(5.2)

∀x ∈ Γ(j).

5.3 Original formulation of BDDC method

In this section we will briefly introduce the BDDC preconditioner as orig-

inally formulated in [30]. It is a two-level preconditioner such as the BNN

preconditioner, but with BDDC the coarse (often referred to also as pri-

mal) and local problems are treated additively; the balancing procedure is

performed by imposing a set of constraints on each substructure in order

to guarantee existence and uniqueness of the local problems involved in

the application of the preconditioner. The coarse-level problem is assem-

bled from a special set of coarse basis functions, which are the minimum

energy extension on the subdomains subject to sets of primal constraints:

they usually represent continuity at the substructures corners plus common

edge or face averages across the interface.
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The action of the BDDC preconditioner can be written in the form:

M−1
BDDC = RT

D,Γ [Plocal + Pcoarse]RD,Γ. (5.3)

The coarse correction operator Pcoarse is defined by

Pcoarse = Ψ
(
ΨTSΨ

)−1
ΨT

where the coarse basis function matrix

Ψ =




Ψ(1)

...

Ψ(N)




is determined by solving individual subdomain problems

Ψ = argmin
Cw=I,w∈WΓ

wTSw (5.4)

where S is the unassembled Schur complement acting on the space WΓ

introduced in eq. (4.7) and I is a boolean matrix whose number of rows is

the sum of the number of local constraints and whose number of columns

is the global number of constraints. The non-zero values of a fixed column

of I locally represents the constraint, since one global constraint corre-

sponds to a set of constraints applied on different substructures. Therefore,

the number of columns of the coarse basis function matrix Ψ equals the

number of global constraints imposed. The local constraints are imposed

through the matrix

C =



C(1)

. . .

C(N)




withC(j) a rectangular matrix representing the primal constraints imposed

on Γ(j); the number of rows of C(j) equals the number of local constraints
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and the number of columns equals the number of nodes on Γ(j).

Remark 5.3.1. Here we will construct the local constraint matrices C(j).

Only a few values of a row of C(j) will be non-zero, namely those as-

sociated with the local constraint. For simplicity, we will consider only

a single scalar component of the PDE: a generalization to vector valued

PDEs is straightforward. We first reorder the local interface variables with

faces first, then edges and last the vertex variables, i.e.

u
(j)
Γ = (uF1 , . . . , uFNF , uE1 , . . . , uENE , uV1 , . . . , uVNV )

T

where NF , NE and NV are the number of local faces, edges and vertices

respectively. If we require vertex constraints only, we will choose the

matrix C(j) as

C(j) =
(
0 INV

)

with INV the identity matrix of size NV . If we also require edge average

constraints, then

C(j) =

(
0 CNE 0
0 0 INV

)

where CNE is a rectangular matrix with NE rows and
∑

k nEk columns,

with nEk the number of edge nodes for the k-th edge. Let αk
i be the

quadrature weights defined by the discretization of the one dimensional

edge integral by the following nodal quadrature rule

∫

Ek

f ≈
n
Ek∑

i=1

αk
i f(x

k
i )

where xki are the nodes of the k-th edge. Each row of matrix CNE impose

the average constraints if we set it as

(
0, . . . , 0, αk

1 , . . . , α
k
n
Ek
, 0, . . . , 0

)
.

Analogous arguments can be used to build the rows of matrix C(j) associ-

ated to the face averages.
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The minimization problem (5.4) can be solved using the method of La-

grange multipliers introducing an equivalent saddle point formulation; the

latter can be solved in parallel by solving individual subdomain problems

with multiple right hand sides of type

(
S(j) C(j)T

C(j) 0

)(
Ψ(j)

Λ(j)

)
=

(
0

I(j)

)
(5.5)

where Λ(j) is a local matrix with columns made by the Lagrange multipli-

ers and I(j) the submatrix of I which has as many rows as the number of

local constraints and as many columns as the number of global constraints.

The subdomain correction operator is defined by

Plocal =
N∑

j=1

(R
(j)T

Γ 0)
(
S(j) C(j)T

C(j) 0

)−1
(
R

(j)T

Γ

0

)
(5.6)

and it gives subdomain corrections for which all primal constraints vanish.

Additional details on the solution of the saddle point problems appearing

in formulas (5.5) and (5.6) will be given in the next chapter. Here we will

adopt a different strategy, proposed in [79] to impose the primal constraints

on the subdomains.

Remark 5.3.2. It must be noted that the choice of the primal constraints

must guarantee the solvability of local saddle point problems given in

(5.5). For the Bidomain system, vertex constraints are enough to guar-

antee existence and uniqueness of their solutions; the set of primal con-

straints must be enriched with additional averages on edges and faces in

order to obtain a good bound on the condition number as a function of the

substructures diameter.
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5.4 BDDC with a change of basis

In this section we will introduce a reformulation of the BDDC precondi-

tioner adopting the strategy proposed in [67]: we will perform a change of

basis so that each primal constraint will correspond to an explicit degree

of freedom; in this way we can work in the coarse primal space without

enforcing any saddle point problem for the Lagrange multipliers as in eq.

(5.5). We will briefly present how such a reformulation can be performed,

and then we will reformulate the main ingredients of the BDDC precondi-

tioner.

Consider the unknowns uE on an edge E of a single scalar compo-

nent of the PDE, and define a transformation matrix TE that performs the

change of basis from the coefficients in the new basis ûE to the coefficients

in the original nodal basis uE

TE ûE = uE .

To make explicit the edge average, we can choose matrix TE as

TE =




1 0 . . . 0 1
. . .

...

1 1
. . .

...

−α1

αn
. . . . . . −αn−1

αn
1




where n is the number of edge nodes and αi the quadrature weights of the

one dimensional nodal quadrature rule of the edge integral. We will thus

have

uE = ûn



1
...

1


+




û1
...

ûn−1

−∑n−1
i=1

αi

αn
ûi



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splitting the dofs of the original basis in a sum of a constant function (rep-

resented by the last coefficient of the edge ûn in the new basis) and another

function with vanishing average. For structured equispaced grids like that

generated by usingQ1 elements, the quadrature weights are the same, that

is
αi

αn
= 1 ∀i = 1, . . . , n− 1.

Analogous transformation matrices TF can be defined for the implemen-

tation of the face constraints. As for the edges, the last element of the dual

part of each scalar component on a face can be chosen as primal, and face

averages can be obtained with a transformation matrix structurally similar

to TE : the elements on the main diagonal and in the last column are equal

to one, while the other values are all zero except for the last row, associ-

ated with the new primal degrees of freedom, which are given by the ratios

αi/αn with αi the quadrature weights of the two-dimensional quadrature

rule employed and n the number of nodes of F .

All the transformations introduced can be constructed separately for

each component of the solution on each face and edge of the substructure

interface Γ(j): since this is a local procedure it can be carried out face by

face and edge by edge, as long as the sets of variables being transformed

do not contain any common degrees of freedom, a condition satisfied by

definition of the interface points. Denoting with T (j) the resulting trans-

formation of basis, a local linear system for the j-th substructure

A(j)u(j) = f (j)

can be equivalently written as

A
(j)
û(j) = T (j)TA(j)T (j)û(j) = T (j)T f (j)

with

A
(j)

=




A
(j)
II A

(j)

I∆ A
(j)

IΠ

A
(j)T

I∆ A
(j)

∆∆ A
(j)

∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)

ΠΠ


 .
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Here the superscript Π defines the new explicit dofs representing vertex

constraints, edge and faces averages. The resulting matrix A
(j)

will be

denser than the original stiffness matrix A(j) but only the blocks related

to the interface degrees of freedom will be affected by the transformation,

while the block corresponding to the subdomain interior degrees of free-

dom will not. From now on, in this chapter we will assume that the sub-

domain variables have been changed when primal vertices, edges or faces

are used and we will drop the bar superscript in the following formulas.

For additional details see [67].

Once we have changed the local variables, the Lagrange multipliers

are no longer needed to enforce the primal continuity constraints and no

saddle point problems must be solved in practice (see also [79]). Equation

(5.5) is thus replaced by a Schur complement argument on the local primal

nodes



A

(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ






w

(j)
I

Ψ
(j)
∆

R
(j)
Π


 =




0
0

S
(j)
ΠΠR

(j)
Π


 (5.7)

where the coarse basis functions spanning ŴΠ are the columns of the

matrix

Ψ =




Ψ(1)

...

Ψ(N)




which are given subdomainwise by

Ψ(j) =

(
Ψ

(j)
∆

R
(j)
Π

)
.

The number of columns of each Ψ(j) is the same as the number of global

coarse-level degrees of freedom. Only a few columns of each Ψ(j) are

non-zero namely those supported in Γ(j). To compute a non-zero column

of Ψ(j), a subdomain Neumann problem is solved subject to the given

189



primal constraint, which corresponds to a non-zero column of the matrix

R
(j)
Π . We can see from equation (5.7), that each non-zero column of Ψ(j)

is the minimum energy extension to the substructure Ωj setting one of the

primal constraints equal to 1 and all others equal to 0. The dual part of

the local matrices Ψ(j) can thus be compactly written as the following

problem with multiple right hand sides

Ψ
(j)
∆ =

(0 −I(j)∆ )
(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)−1(
A

(j)
IΠ

A
(j)
∆Π

)
R

(j)
Π .

The subdomain contribution S
(j)
ΠΠ to the operator SΠΠ, the Schur comple-

ment assembled at the primal nodes, can be written

S
(j)
ΠΠ = A

(j)
ΠΠ − (AT

IΠ AT
∆Π)

(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)−1(
A

(j)
IΠ

A
(j)
∆Π

)
.

Moreover, since from eq. (5.7) and the definition of the local Schur com-

plement S(j) given in Lemma 4.2.3 follows that

S(j)Ψ(j) =

(
0

S
(j)
ΠΠR

(j)
Π

)
,

it can be shown that

ΨTSΨ =
N∑

j=1

Ψ(j)T S(j)Ψ(j) =
N∑

j=1

R
(j)T

Π S
(j)
ΠΠR

(j)
Π = SΠΠ. (5.8)

Since, changing variables, we can enforce zero primal constraints by sim-

ply restricting the operators to the dual interface space W∆, the subdomain

correction operator given in eq. (5.6) can be equivalently expressed as

Plocal = RT
Γ∆S

−1
∆ RΓ∆ (5.9)

190



where the action of the Schur complement S∆ on the product space W∆

S∆ =




S
(1)
∆

. . .

S
(N)
∆




is defined by




A
(1)
II A

(1)
I∆

A
(1)
I∆

T
A

(1)
∆∆

. . .

A
(N)
II A

(N)
I∆

A
(N)
I∆

T
A

(N)
∆∆







w
(1)
I

w
(1)
∆
...

w
(N)
I

w
(N)
∆




=




0

S
(1)
∆ w

(1)
∆

...

0

S
(N)
∆ w

(N)
∆



.

(5.10)

Remark 5.4.1. The primal problem of the BDDC operator will be singular

for the Bidomain model using vertex and/or edge averages and/or face

averages primal constraints. In fact, let 1Π(j) be the vector of local primal

constraints equal to one and suppose to use only vertex constraints for both

the components of the solution. Then Ψ(j)1Π(j) will be a vector of W
(j)
Γ

with all ones at the vertices. Therefore, since each local contribution S
(j)
ΠΠ

to the primal problem is the Schur complement of S(j) at the local primal

nodes we will have

1TΠ(j)S
(j)
ΠΠ1Π(j) = 1TΠ(j)Ψ

(j)T S(j)Ψ(j)1Π(j) ≤ 1T
Γ(j)S

(j)1Γ(j) = 0

and thus S
(j)
ΠΠ will be singular with a null space spanned by the constant

vectors. Analogous arguments will be valid if we use the same set of edge

and/or face averages, even without vertex constraints, noting that a func-

tion with constant average on an edge (or a face) and zero values at the

dual nodes will represent the constant function on that edge (or face) in

the original dof basis. It must be noted that the singularity of the primal

problem is not harmful for the BDDC operator as long as the primal sys-
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tem is consistent, that is, the primal right-hand side does not have any

component onto the null space of SΠΠ.

Using eqs. (5.9) and (5.8), the action of the BDDC preconditioner

given in eq. (5.3) can than be reformulated as

M−1
BDDC = RT

D,Γ

[
RT

Γ∆S
−1
∆ RΓ∆ + ΨS†

ΠΠΨ
T
]
RD,Γ (5.11)

where we use the pseudoinverse of SΠΠ taking into account its singularity.

5.5 Bidomain theoretical estimates

In this section we will estimates preconditioned operator M−1
BDDC ŜΓ. As

for the Neumann-Neumann preconditioners, we will estimate its condi-

tion number κ2 as the ratio of the largest and smallest eigenvalues of the

generalized Rayleigh quotient

λmS(uΓ, uΓ) ≤ S(M−1
BDDC ŜΓuΓ, uΓ) ≤ λMS(uΓ, uΓ).

We will follow the approach of [87]: the following Lemmas can be found

in the latter reference.

Lemma 5.5.1. The local partially continuous space W̃
(j)

Γ = W
(j)
∆

⊕
W

(j)
Π

is sj-orthogonal, that is

sj(w
(j)
∆ , w

(j)
Π ) = 0

with w = w
(j)
∆ + w

(j)
Π , where w

(j)
Π = Ψ(j)wc with wc a vector of primal

dofs, or equivalently

sj(w,w) = sj(w
(j)
∆ , w

(j)
∆ ) + sj(w

(j)
Π , w

(j)
Π ).
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Proof. Using eq. (5.7), we obtain

sj(w
(j)
∆ ,Ψ(j)wc) =

(0 w
(j)T

∆ 0)



A

(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ






w

(j)
I

Ψ
(j)
∆

R
(j)
Π


wc

=
(0 w

(j)T

∆ 0)



0
0

S
(j)
ΠΠR

(j)
Π


wc = 0.

Lemma 5.5.2. The preconditioned operator M−1
BDDC ŜΓ satisfies ∀uΓ ∈

ŴΓ

M−1
BDDCŜΓuΓ = RT

D,Γw

with w ∈ W̃Γ defined by

vTSw = vTRD,ΓŜΓuΓ = S(uΓ, RT
D,Γv)

∀v ∈ W̃Γ.

Proof. Using eq. (5.11), we can see that the action of the BDDC precon-

ditioner on a given residual vector r can be obtained as

M−1
BDDCr = RT

D,Γ(R
T
Γ∆w∆ + wΠ)

where wΠ = Ψwc with

ΨTSΨwc = ΨTRD,Γr

S∆w∆ = RΓ∆RD,Γr.
(5.12)

Let v ∈ W̃Γ, v = RT
Γ∆v∆+vΠ with vΠ = Ψvc; using the sj-orthogonality
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of local subspaces W
(j)
∆ and W

(j)
Π given in Lemma 5.5.1 it follows that

vTSw =

N∑

j=1

sj(v
(j)
∆ +Ψ(j)vc, w

(j)
∆ +Ψ(j)wc)

=

N∑

j=1

(
sj(v

(j)
∆ , w

(j)
∆ ) + sj(Ψ

(j)vc,Ψ
(j)wc)

)

= vT∆RΓ∆SR
T
Γ∆w∆ + vTΠSwΠ.

Letting r = ŜuΓ, from the first equation in (5.12) it follows

vTΠSwΠ = vTΠRD,ΓŜΓuΓ. (5.13)

For the second equation we can deal with the subdomain component of

w∆ and, recalling the definition of S
(j)
∆ given in eq (5.10) we obtain:

(v
(j)T

∆ 0)S(j)

(
w

(j)
∆

0

)

=
(0 v

(j)T

∆ 0)



A

(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ






w

(j)
I

w
(j)
∆

0




=
(0 v

(j)T

∆ 0)




0

S
(j)
∆ w

(j)
∆

A
(j)T

IΠ w
(j)
I +A

(j)T

∆Π w
(j)
∆




= v
(j)T

∆ S
(j)
∆ w

(j)
∆

and thus from the second equation of (5.12) and the fact that S∆ = RΓ∆SR
T
Γ∆

we obtain

vT∆RΓ∆SR
T
Γ∆w∆ = vT∆S∆w∆ = vT∆RΓ∆RD,ΓŜΓuΓ. (5.14)
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The thesis then follows by summing the contributions (5.13) and (5.14).

Remark 5.5.3. Since

EDuΓ = RT
ΓRD,ΓuΓ = uΓ ∀uΓ ∈ ŴΓ,

we can assert that the average operator is a projector on W̃Γ, i.e.

E2
D = ED.

As in [87], we will use an additional result between complementary pro-

jectors which can be found in [57], which assures that

|EDw|2S = |(I − ED)w|2S (5.15)

∀w ∈ W̃Γ, noting that the Bidomain seminorm | · |2S is actually and inner

product on W̃Γ, since the latter space doesn’t contain any local constant

function. For additional properties of average and jump operators, see

[140] and [87].

Remark 5.5.4. For BDDC estimates we will consider discontinuous con-

ductivity coefficients for both the intra- and extracellular diffusion tensors,

with jumps aligned with the substructures interface. As partition of unity,

we will use

δij
†
(x) =

σi(j)

M∑
k∈Nx

σi(k)

M

, δej
†(x) =

σe(j)

M∑
k∈Nx

σe(k)

M

where σi(j)

M is the maximum eigenvalue of the intracellular diffusion tensor

for the j-th substructure; clearly the same notation will hold for the extra-

cellular part of the partition of unity. We will use an elementary result

proved in [140], that is

σi,e(j)

M δi,ek

†2 ≤ min{σi,e(j)

M , σi,e(k)

M }. (5.16)
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Finally, we will need an estimate of the norm of the jump operator PD

defined in (5.2) on the subspace W̃Γ.

Lemma 5.5.5. If edge and face averages are included in the primal space

ŴΠ for both the intra- and extracellular components together with vertex

constraints, the jump operator PD satisfies:

|PDw|2S . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2|w|2S

∀w ∈ W̃Γ.

Proof. As already done in the previous chapter, we will estimate the con-

tribution of each substructure, namely

v(x)j := (PDw(x))j

where the j-th component of jump operator is given by

(
∑

k∈Nx

Ih(δik
†
(x)(wi

j(x)− wi
k(x))),

∑

k∈Nx

Ih(δek
†(x)(we

j (x) − we
k(x)))

)

=
∑

F⊂Γ(j)

Ih(ΘFvj) +
∑

E⊂Γ(j)

Ih(ΘEvj).

where Θ•vj = (ϑ•v
i
j , ϑ•v

e
j ), with the definitions of the cutoff functions

ϑ• provided in Section 4.3. Note that the vertex component of the previ-

ous summation vanishes; in fact, since we consider vertex constraints in

the primal space, it will hold that wi
j(x) = wi

k(x) and we
j (x) = we

k(x)
∀x ∈ V and j, k ∈ Nx. Therefore, we need to bound only the face and

edge components.

Face terms. Using the same arguments used in Lemmas 4.5.2 and 4.7.3
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we can bound

|Ih(ΘFvj)|2S(j) . σi(j)

M |Ih(ϑFvij)|2H1/2(Γ(j)) +H2γ|Ih(ϑFvij)|2H1/2(Γ(j))

+ σe(j)

M |Ih(ϑFvej )|2H1/2(Γ(j)) +H2γ|Ih(ϑFvij)|2H1/2(Γ(j))

. σi(j)

M ||Ih(ϑFvij)||2H1/2
00 (F)

+H2γ||Ih(ϑFvij)||2H1/2
00 (F)

+ σe(j)

M ||Ih(ϑFvej )||2H1/2
00 (F)

+H2γ||Ih(ϑFvej )||2H1/2
00 (F)

. σi(j)

M δik
†2||Ih(ϑF (wi

j − wi
k))||2H1/2

00 (F)

+H2γδik
†2||Ih(ϑF (wi

j − wi
k))||2H1/2

00 (F)

+ σe(j)

M δek
†2||Ih(ϑF (we

j − we
k))||2H1/2

00 (F)

+H2γδek
†2||Ih(ϑF (we

j − we
k))||2H1/2

00 (F)

Let wi,e
F be the face average values common between the j-th and k-th

substructure of the intra- and the extracellular component. From the hy-

pothesis, the faces averages are included in the primal space, thus for the

triangle inequality

||Ih(ϑF (wi,e
j − wi,e

k ))||2
H

1/2
00 (F)

= ||Ih(ϑF (wi,e
j − wi,e

F − wi,e
k + wi,e

F ))||2
H

1/2
00 (F)

. ||Ih(ϑF (wi,e
j − wi,e

F ))||2
H

1/2
00 (F)

+ ||Ih(ϑF (wi,e
k − wi,e

F ))||2
H

1/2
00 (F)

We will thus have for the face terms using the second equation of Lemma
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4.3.7 and eq. (5.16)

(1 + log(H/h))−2|Ih(ΘFvj)|2S(j) . (σi(j)

M +H2γ)|(Hjwj)
i|H1(Ωj)

+ (σe(j)

M +H2γ)|(Hjwj)
e|H1(Ωj)

+ (σi(k)

M +H2γ)|(Hkwk)
i|H1(Ωk)

+ (σe(k)

M +H2γ)|(Hkwk)
e|H1(Ωk).

Therefore, for the face terms, we obtain an upper bound of

max
•=i,e

(
max
l=j,k

σ•(l)

M δt +H2

σ•(l)

m δt

)
(1 + log(H/h))2

(
|w|2S(j) + |w|2S(k)

)
.

(5.17)

Edge terms. We can prooced as in Lemma 4.5.2, and, since the edge

averages are included in the primal space, we can exploit the same argu-

ments used before for the face terms. Therefore, from the second equation

of Lemma 4.3.8 we conclude that

|Ih(ΘFvj)|2S(j) . max
•=i,e

(
max
k∈KE

σ•(k)

M δt +H2

σ•(k)

m δt

)
(1+log(H/h))

∑

k∈KE

|w|2S(k)

(5.18)

where KE is the set of subdomain indices sharing edge E .

The thesis then follows by summing over faces and edges of Ωj and

then over the substructures.

We are then ready to prove the following:

Theorem 5.5.6. If edge and face averages are included in the primal

space ŴΠ for both the intra- and extracellular components together with

vertex constraints, the condition number of the preconditioned operator
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M−1
BDDC ŜΓ for the Bidomain model satisfies:

κ2(M
−1
BDDC ŜΓ) . max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

(5.19)

Proof. Lower bound. Since

RT
ΓRD,ΓuΓ = RT

D,ΓRΓuΓ = uΓ ∀uΓ ∈ ŴΓ,

we have by using Lemma 5.5.2, with w defined in Lemma 5.5.2 and v =
RΓuΓ ∈ W̃Γ,

S(uΓ, uΓ) = S(uΓ, RT
D,ΓRΓuΓ)

= uTΓR
T
ΓSw

≤ (wTSw)1/2(uTΓR
T
ΓSRΓuΓ)

1/2

= |w|S |RΓuΓ|S

(5.20)

where we have used the Cauchy-Schwarz inequality applied to the inner

product generated by the Schur complement S acting on the product space

WΓ. Setting v = w ∈ W̃Γ and using again Lemma 5.5.2 we can rewrite

|w|2S = S(uΓ, RT
D,Γw) = S(uΓ,M−1

BDDC ŜΓuΓ). (5.21)

By subassembly, we also get

|RΓuΓ|2S = S(uΓ, uΓ). (5.22)

Substituting (5.21) and (5.22) into (5.20), canceling the common terms

and squaring we obtain

S(uΓ, uΓ) ≤ S(uΓ,M−1
BDDCŜΓuΓ)

and thus λmin ≥ 1.
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Upper bound. For the upper bound, since by subassembly it holds

S(M−1
BDDC ŜΓuΓ,M

−1
BDDCŜΓuΓ) = |RΓM

−1
BDDCŜΓuΓ|2S

using the definition of | · |S , w and eq. (5.21) we get

|RΓM
−1
BDDC ŜΓuΓ|2S = |RΓR

T
D,Γw|2S = |EDw|2S ≤ |w|2S sup

w∈W̃Γ

|EDw|2S
|w|2S

. sup
w∈W̃Γ

|EDw|2S
|w|2S

S(uΓ,M−1
BDDCŜΓuΓ).

Now, using eq. (5.15), the definition of the jump operator (5.1) and Lem-

mma 5.5.5 we obtain

|RΓM
−1
BDDCŜΓuΓ|2S

. max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2 S(uΓ,M−1

BDDCŜΓuΓ).

Since for the Cauchy-Schwarz inequality it holds that

S(uΓ,M−1
BDDCŜΓuΓ) ≤ S(uΓ, uΓ)1/2S(M−1

BDDC ŜΓuΓ,M
−1
BDDC ŜΓuΓ)

1/2

using subassembly relations and little algebra (see [87] for additional de-

tails) we can prove

S(uΓ,M−1
BDDCŜΓuΓ)

. max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2S(uΓ, uΓ)

and thus

λmax . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.
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5.6 Numerical results

In this section we will give additional details on the implementation of the

BDDC preconditioner and some numerical results to confirm our theoret-

ical estimates. Regarding to the implementational aspects, many details

have been already given in Section 4.8; here we will only treat the imple-

mentational aspects related to the primal elements of the BDDC precon-

ditioner. The coarse basis functions are first assembled locally, then the

local part of the coarse matrix is evaluated using eq. (5.8) and a paral-

lel matrix is assembled summing properly the local contributions. Local-

to-global and global-to-local operations associated to the parallel coarse

vectors are performed using the VecScatter objects provided by PETSc;

we then use the parallel LU factorization provided by the MUMPS library

[92] in order to solve exactly the primal problem at each application of the

preconditioner. We note that we can also use a different solving approach

to the coarse problem, replicating the coarse matrix and then solving the

coarse problem on each processor without using the parallel LU factoriza-

tion; collective MPI communications will be needed. See Section 6.4 for

the computational comparison of this two primal approaches.

BDDC dependence from H/h.

Figure 5.2 shows the H/h dependence of the condition number of the

BDDC preconditioner with only vertex and edges averages constraints, a

set of constraints poorer than that required for the analysis. Results for ver-

tex constraints plus edge and faces averages does not improve substantially

these results. It must be noted that, also with this set of primal constraints,

BDDC outperforms the BNN preconditioner with the Bidomain model on

the same test case. A least squares fitting of the data shows that the power

of the factor (1 + log(H/h)) is approximatively 2 for both the precondi-

tioners; their fittings differ only for a constant coefficient which multiplies

the latter factor. Table 5.1 shows the results with only vertex constraints,
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Figure 5.2: Comparison of the condition number of PCG-BDDC (with vertex and edge

averages constraints) and PCG-BNN solver for the Schur complement of the Bidomain dis-

cretization as a function of H/h. Test case with 3× 3× 3 processors, h =1E-2, δt =1E-2,

conductivity coefficients as in Table 2.1.1, random right-hand side and null initial guess; PCG

iteration is stopped when the preconditioned residual is lower then 1E-8.

which suggest an additional linear dependence of the condition number

from H/h as expected by the theory (see e.g. [140])

We then reproduce the numerical test performed to enlight the depen-

dence of the condition number of BNN preconditioned Bidomain problem

with natural coarse space fromH−2 (see Section 4.8) in order to compare

with the performances of the BDDC method. Results (compare them with

the results listed in Table 4.6) for the BDDC preconditioner are shown

in Table 5.2 using δt =1E1 and conductivity coefficients σi,e
M =1E1,

σi,e
m =1E-1 with the intermediate eigenvalues equal to 1. With this set of

parameters, BDDC outperforms BNN preconditioner with enriched coarse

space.

BDDC scaled speedup.

In Table 5.3 we show the scalability of the BDDC preconditioner with

vertices and edge averages as primal constraints. If we add faces averages

to the primal space we will obtain slightly better results but without a sub-
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PCG-BDDC Schur Bidomain H/h dependence

Vertex constraints only

H/h 5 10 15 20 25

κ2 6.93 22.68 42.97 66.15 91.24

Table 5.1: Bidomain Schur complement H/h dependence test for PCG-BDDC solver

with only vertex constraints as primal variables. Test case with 3x3x3 processors, h =1E-2,

δt =1E-2, conductivity coefficients as in Table 2.1.1, random right-hand side and null initial

guess; PCG iteration is stopped when the preconditioned residual is lower then 1E-8.

H/h 5 10 15 20

κ2 2.61 4.91 7.07 9.02

Table 5.2: Bidomain Schur complement H/h dependence test for PCG-BDDC solver with

vertex and edges averages constraints as primal variables. Test case with 3x3x3 processors,

h =1E-2, δt =1E1, random right-hand side and null initial guess; PCG iteration is stopped

when the preconditioned residual is lower then 1E-8. For the conductivity coefficients, see

text.

stantial improvement (data not shown).

BDDC dependence from δt.

Next, we tested the estimated dependence of the condition number by

the time step δt and we collected the results in Table 5.4 using vertex and

edge averages as primal space: differently from the BNN preconditioner

(see Section 4.8) the experimental condition numbers show a sigmoidal
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dependence from δt of the form

c1
δmt + 1

δmt + c2

with m > 0. The same qualitative behavior was observed adding also

the faces averages. The theoretical estimates thus overestimate the depen-

dence of the condition number form δt when it approaches zero. Figure

5.3 shows the comparison between the values of the condition number pro-

vided in Table 5.4 and their least square fitting with a sigmoidal curve with

c1 = 6.372± 0.28, c2 = 2.425± 0.18 and m = 0.8574± 0.41 with 95%
confidence to validate the experimental findings.
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log(δt)
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2

 

 

Figure 5.3: Bidomain Schur complement δt dependence test for PCG-BDDC solver with

vertices and edge average constraints as primal variables. Condition number as a function of

log(δt): the triangles are the experimental values and the continuous curve represents their

fitting. Test case with 2x2x2 subdomains, h = 0.01, H/h = 15, conductivity coefficients as

in Table 2.1.1, random right-hand side and null initial guess; PCG iteration is stopped when

the initial preconditioned residual is reduced by a factor of 1E-6.

BDDC with jumping coefficients.

From Theorem 5.5.6 we infer that the condition number of the Bido-
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main operatorM−1
BDDCŜΓ will be independent of jumps in the conductiv-

ity coefficients aligned with the interface; it will depend on the conductiv-

ity coefficients at most through the factor

max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
. (5.23)

To validate this finding, as for the Neumann-Neumann preconditioners

in the previous chapter, we will consider a 3x3x3 decomposition of the

whole domain and a checkerboard pattern (see Figure 4.3) of discontinu-

ities in the conductivity coefficients, with two different sets of discontinu-

ities. We initially set the conductivity coefficients as σi,e
l =1E1, σi,e

t =1

and σi,e
n =1E-1, then we consider a first test case, fixing a factor p and

then multiplying each conductivity coefficient, either intra- or extracellu-

lar, by p in the black subdomains and by 1/p in the others. In the second

test case, we multiply differently the intracellular and extracellular coeffi-

cients in the two coloured regions: in the black subdomains we multiply

the intracellular conductivity coefficients by p and the extracellular ones

by 1/p. In the white regions we will do the viceversa. Numerical results

are summarized in Table 5.5: column labelled by A refers to the first type

of discontinuity, whereas column B refers to the second one. In either

case, the condition number and the number of iterations remains almost

constants varying largely the factor p: note that the theoretical results are

not sharp in the case of jumping coefficients due to the presence of the H2

addendum in (5.23) introduced by the Poincaré-Friedrichs inequalities for

the L2 norms. In fact, without the H2 addendum, the factor (5.23) will be

independent of jumps in the conductivity coefficients.

An heartbeat with BDDC preconditioner and different initial guesses.

We then test the BDDC preconditioner in a heartbeat simulation. We

consider a global grid 43 × 43 × 43 decomposed with 3 × 3 × 3 subdo-

mains (H/h = 15) and we simulate an heartbeat with the Bidomain model

for 350 ms stimulating the lower left (endocardial) corner of the slab us-
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ing HHRd as ionic cellular model (see Chapter 1) and the adaptive time

stepping strategy (see Chapter 2). We note that with this configuration, the

repolarization wave ends after 335 ms from the stimulus injection. Results

for the Lagrangian choice of the PCG initial guess are shown in Table 5.6

whereas for the POD-Galerkin technique in Table 5.7 using the notation

adopted in Chapter 3. Note that the case with PCG initial guess as the

solution at the previous time step is contained in the Lagrangian case as a

zero order polynomial approximation.

For POD-Galerkin, the choice of inner products to build the correlation

matrices needs some discussion since we don’t assemble the Schur matrix.

At each time step, we need to solve the full order Schur symmetric linear

system, which can be reordered as

ŜΓ =

(
Sii
Γ Sie

Γ

SieT

Γ See
Γ

)

splitting the Schur degrees of freedom in intra- end extra-cellular dofs, and

thus the lower order POD-Galerkin system becomes (see Section 3.4)

(
ΨiTSii

ΓΨ
i ΨiTSie

Γ Ψe

ΨeTSieT

Γ Ψi ΨeTSee
Γ Ψe

)

where the matrix of POD basis elements is

Ψ =

(
Ψi 0
0 Ψe

)
.

Next, in order to reduce the computational costs of assembling the lower

order POD system (see Remark 3.4.6), we can choose as inner products

Sii
Γ and See

Γ for the intra- and extracellular components respectively and

thus obtain a lower dimensional matrix which has the diagonal blocks

equal to identity matrices of appropriate sizes. Splitting the jth snapshot

vector in intra- and extracellular component, i.e.

yj =

(
yi
j

ye
j

)

206



it holds (
Sii
Γ Sie

Γ

SieT

Γ See
Γ

)(
yi
j

0

)
=

(
Sii
Γ yi

j

SieT

Γ yi
j

)

(
Sii
Γ Sie

Γ

SieT

Γ See
Γ

)(
0
yej

)
=

(
Sie
Γ yej

See
Γ yej

)
;

therefore, the action of Sii
Γ (resp. See

Γ ) on a given intracellular (extracellu-

lar) interface snapshot vector can be obtained extending by zero the vector

in the extracellular (intracellular) part, multiplying the resulting vector by

the Schur matrix and then restrict the result on the intracellular (extracel-

lular) part. Therefore, we need to perform only two Schur matrix-vector

multiplications in order to assemble the correlation matrix at each time

step. In addition, for the lower dimensional system we don’t need to per-

form any additional matrix vector multiplication involving the off diagonal

block Sie
Γ ; in fact, consider to compute the general entry of the lower di-

mensional off-diagonal block

(ΨiTSie
Γ Ψe)km = ψi

k

T
Sie
Γ ψ

e
m.

Using eq. (3.11) and denoting by superscripts i, e the eigenvalues and

eigenvectors of the intra- and extra-cellular correlation matrices, we obtain

ψi
k
T
Sie
Γ ψ

e
m =

1√
λikλ

e
m

(

N∑

j=1

vj,ik yij)
TSie

Γ (

N∑

j=1

vj,ek yej)

=
1√
λikλ

e
m

N∑

j,l=1

vj,ik vl,em yij
T
Sie
Γ ye

l .

Thus, if we store the vectors Sie
Γ ye

j for all j = 1, . . . , N already computed

during the correlation matrices assembling, we need to perform only some

additional dot products to assemble the lower order POD-Galerkin system

with the result that additional expensive Schur matrix-vector products can

be avoided.

Results show efficiency for both approaches in all AP phases but the
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activation phase, in which the reduction of the number of iterations sat-

urates increasing either the interpolation degree, or the dimension of the

POD snapshot ensemble N . In other AP phases, POD shows the best re-

sults, either in terms of average number of iteration per time step, or taking

into account the admissible solutions; moreover, the approximation prop-

erties of POD are better than the lagrangian approach when considering

the same number of stored snapshots (compare the columns for whose the

lagrangian degree is equal to N − 1 POD snapshots). As noted in Chapter

5, the dimension of the snapshot ensemble for POD need not to be large,

and for this test case 5 snapshots are enough to obtain a satisfactory reduc-

tion of the number of iterations per time step.
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PCG-BDDC Schur Bidomain Scalability

Vertex and edge averages constraints

subd Ŵ dofs ŴΓ dofs ŴΠ dofs iter λmin λmax

2x2x1 120’050 4’850 46 10 1.00 3.09

4x4x1 470’450 28’650 222 12 1.00 3.33

6x6x1 1’051’250 71’250 509 12 1.00 3.46

8x8x1 1’862’450 132’650 910 13 1.00 3.51

10x10x1 2’904’050 212’850 1’422 13 1.00 3.55

12x12x1 4’176’050 311’850 2’046 14 1.00 3.56

14x14x1 5’678’450 429’650 2’782 14 1.00 3.58

16x16x1 7’411’250 566’250 3’630 14 1.00 3.59

18x18x1 9’374’450 721’650 4’589 14 1.00 3.59

20x20x1 11’568’050 895’850 5’662 14 1.00 3.59

22x22x1 13’992’050 1’088’850 6’846 14 1.00 3.60

24x24x1 16’646’450 1’300’650 8’141 14 1.00 3.60

Table 5.3: Bidomain Schur complement scalability test for PCG-BDDC solver with ver-

tices and edge average constraints as primal variables. Test case with h = 0.01, H/h = 25,

δt = 1e − 2, conductivity coefficients as in Table 2.1.1, random right-hand side and null

initial guess; PCG iteration is stopped when the initial preconditioned residual is reduced by

a factor of 1E-6. For each run, subdomain subdivision in the three dimensions, number of

global, interface and primal dofs, number of iterations and extreme eigenvalues are shown.
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PCG-BDDC Schur Bidomain δt dependence

δt 1E-4 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4

κ2 2.73 2.74 2.75 2.88 3.78 5.45 6.19 6.35 6.37

iter 10 10 10 10 12 14 16 16 16

Table 5.4: Bidomain Schur complement δt dependence test for PCG-BDDC solver with

vertices and edge average constraints as primal variables. Test case with 2x2x2 subdomains,

h = 0.01, H/h = 15, conductivity coefficients as in Table 2.1.1, random right-hand side

and null initial guess; PCG iteration is stopped when the initial preconditioned residual is

reduced by a factor of 1E-6. For each run, time step δt, condition number and number of

iterations are shown.

PCG-BDDC Schur Bidomain

Jumping Coefficients

A B

p it κ2 it κ2

1 18 7.16 18 7.16

1E1 19 8.51 18 8.11

1E2 19 8.61 18 8.52

1E3 20 8.71 18 8.52

1E4 20 9.05 18 8.52

Table 5.5: Bidomain Schur complement dependence from jumps in the conductivity co-

efficient. PCG-BDDC solver with vertices and edge average constraints as primal variables.

Test case with 3x3x3 subdomains, h = 0.01, H/h = 15, δt =1E-2, random right-hand side

and null initial guess; PCG iteration is stopped when the initial residual is reduced by a fac-

tor of 1E-6. For each run, jumping factor p (see text for details), number of iteration and

condition number for the preconditioned M−1

BDDC
ŜΓ operator are shown.
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BDDC and lagrangian initial guesses

degree 0 1 2 3 4

Iterations per time step

phase 0 5.73 4.17 3.73 3.73 3.91

phase 1-2 4.04 1.79 1.36 1.99 2.55

phase 3 5.52 2.22 1.47 2.11 4.35

Admissible Solutions

phase 0 0 0 0 0 0

phase 1-2 0 17 9 0 0

phase 3 0 0 10 0 0

Table 5.6: An heartbeat with BDDC preconditioner and different choice of the polyno-

mial order for Lagrangian initial guesses. For each Lagrangian degree, average number of

iterations per time step and number of admissible solutions for the linear solver are shown

for different AP phases. See text for further details.
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BDDC and POD initial guesses

N 2 3 4 5 10

Iterations per time step

phase 0 4.35 3.77 3.54 3.47 3.56

phase 1-2 1.54 1.18 1.02 0.89 0.68

phase 3 1.52 1.21 0.97 0.80 0.60

Admissible Solutions

phase 0 0 1 3 6 13

phase 1-2 7 55 109 139 210

phase 3 42 51 90 151 215

Table 5.7: An heartbeat with BDDC preconditioner and POD initial guess for different

number of snapshots np. For each np, average number of iterations per time step and number

of admissible solutions for the linear solver are shown for different AP phases. See text for

further details.
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Chapter 6

Approximate BDDC for the

Bidomain model

6.1 Introduction

The local problems of the BDDC preconditioner can be computational

bottlenecks if the subdomains’ sizes are large. In fact, one of the short-

comings of BDDC is that the direct solutions for the local Dirichlet and

Neumann problems used by the method may require too much time and

memory if the number of degrees of freedom Ndof in any substructure

is too large. For example, in three dimensions the floating point opera-

tions needed to factor and solve, through backward and forward substitu-

tions, either of the local problems for the discrete Laplacian and an opti-

mal Nested Dissection ordering are indeed asymptotical to O(N2
dof) and

0(N
4/3
dof ) respectively (see [33]). One technique for removing these dif-

ficulties consists in using multigrid preconditioners as inexact solvers for

these problems, since multigrid computational costs are asymptotical to

O(Ndof), still maintaining the scalability of the preconditioner and a good

rate of convergence with respect to the spatial discretization. An inexact

approach to the FETI-DP methods can be found in [68]
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The Dirichlet solver is used to obtain the action of the Schur comple-

ment matrix on the interface unknowns: we will thus end up solving a

different system if we just replace it by an inexact solver in the Schur ma-

trix application. In order to overcome this issue, we must iterate on the

assembled matrix Â given in formula (4.6) instead of ŜΓ and construct a

BDDC preconditioner for the operator Â. The Neumann solver is involved

in the computation of the coarse basis functions and thus in the resulting

coarse problem during the preprocessing step; moreover, we need it also in

the application of the BDDC preconditioner during the conjugate gradient

iterations. Inexact Neumann solvers should thus be chosen to guarantee

the positive semidefiniteness of the Bidomain coarse matrix and preserve

the null space during the conjugate gradient iterations.

Here we will follow the algebraic approach proposed by Dohrmann

[31]. We will deal with the original formulation of the BDDC precon-

ditioner (see Section 5.3 for the details) without imposing the change of

variables since it would guaranties that multigrid preconditioners, used as

black-boxes for the inexact solvers, will be spectrally equivalent to the

exact problems (see the next section for details). A different inexact ap-

proach to BDDC with change of basis can be found in [78]. To explain the

construction of such an approximate BDDC, we first need some additional

restriction operators: let

RI : Ŵ → WI

the operator which extracts the interior dofs from Ŵ and letRD the scaled

restriction operator from Ŵ to W using a suitable partition of unity. We

can then define an equivalent BDDC preconditioner for matrix Â as:

M−1 =M−1
I + (I −M−1

I Â)M−1
BDDC(I − ÂM−1

I ) (6.1)

where

M−1
I = RT

I A
−1
II RI

and M−1
BDDC is, with a little abuse of notation, given similarly to its for-

mulation given in eq. (5.3)

M−1
BDDC = RT

D [Pcoarse + Plocal]RD
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assuming that now the BDDC operators Pcoarse and Plocal act on W. The

coarse parts of the preconditioner can be defined by

Pcoarse = ΨA−1
c ΨT , Ac = ΨTAΨ

with the coarse basis function matrix given by the solution of the following

minimization problem posed on W

Ψ = argmin
Cw=I,w∈W

wTAw. (6.2)

where A is the unassembled stiffness matrix and C is the block matrix

imposing the local constraints. The action of the additive part of the pre-

conditioner is then given by

(
A CT

C 0

)(
Plocal g
µ

)
=

(
g
0

)
.

See eq. (5.6) for a comparison.

Remark 6.1.1. Due to the Schur complement definition given in Lemma

4.2.3, problem (5.4) is equivalent to problem (6.2). The matrixC is similar

to the matrix built in Remark 5.3.1 except that now the number of columns

of each C(j) equals the number of nodes on W(j), and thus the number of

rows of Ψ (i.e. the support of the coarse basis functions) equals the number

of dofs of W. The same arguments hold true also for the matrix I. See

Remark 5.3.1 for the construction of such matrices.

Remark 6.1.2. As it can be seen, the same block saddle point problem

needed for the additive part of the preconditioner and also involved in the

computation of the coarse basis function and the resulting coarse problem

can be generalized as

(
A CT

C 0

)(
w
µ

)
=

(
g
h

)
. (6.3)

Here we will illustrate how problem (6.3) can be solved directly as de-

scripted in [31]. Suppose to have an ordering of W with the vertex nodes
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(denoted with a subscript v) ordered last, i.e.

A =

(
Arr Arv

Arv Avv

)

with

Arr =




A
(1)
rr

. . .

A
(N)
rr


 , Arv =




A
(1)
rv

. . .

A
(N)
rv




and

Avv =




A
(1)
vv

. . .

A
(N)
vv


 .

In turn, nodes reordering induces a reordering of the constraints matrix

C =

(
Cr 0
0 I

)
.

The number of rows of Cr is the sum of averages imposed on each sub-

structure and the size of the identity matrix is the number of unassembled

vertex constraints; using the latter splitting of the dofs, the solution of the

saddle point system (6.3) is given by

µr =
(
CrArrC

T
r

)−1 [
CrA

−1
rr (gr −Arvhv)− hr

]

wr = A−1
rr

(
gr −Arvhv − CT

r µr

)

wv = hv

µv = gv −AT
rvwr −Avvhv.

(6.4)

The action of operator Plocal is thus calculated by setting h = 0. Denoting

with nc the global number of constraints imposed, the matrix of coarse ba-

sis function Ψ can be obtained solving nc problems of the type (6.3) with
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g = 0 and µ a vector of all zeros except for the indices which represent

one global constraints where it takes on the value 1. The w solution of the

latter problem will thus represent the columns of the coarse matrix. Once

the coarse basis function matrix has been calculated, the coarse problem

Ac can be efficiently obtained as

Ac = ΨTAΨ = −ΨTCTΛ

where Λ is the matrix formed columnwise by the µ solutions obtained

by calculating the coarse basis function matrix: expensive matrix-vector

products involving matrix A are thus not needed. Additional details can

be found in [30] and [31].

Remark 6.1.3. Solving problem (6.3) requires the solution of two local

problems, one sparse and given by A−1
rr , and a second small and dense

problem given by (CrArrC
T
r )

−1. Therefore, in order to solve problem

(6.3) we will need only the action of A−1
rr . With the inexact approach

proposed in [31], we substitute matrix A−1
rr with the action of multigrid

preconditioners.

The following theorem holds:

Theorem 6.1.4. The BDDC operator M−1 given in eq. (6.1) satisfies

M−1Â =

(
I A−1

II AIΓ(I −M−1
BDDC)ŜΓ

0 M−1
BDDC ŜΓ

)

and thus the preconditioned operator M−1Â has the same eigenvalues of

M−1
BDDC ŜΓ plus some additional eigenvalues, whose number equals the

number of interior dofs, equal to 1.

Proof. See [31].

6.2 Approximate BDDC

In this section we will expose in details the construction of the approx-

imate BDDC preconditioner using inexact solvers for problems AII and
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Arr. Let A♭ be the assembled matrix which is equal to the assembled

matrix Â except for the coupling of the interior dofs, i.e.

A♭ =

(
A♭

II AIΓ

AT
IΓ AΓΓ

)
,

and let A♯ be the unassembled matrix which is similar to A except for the

block related to the Neumann problem of the BDDC preconditioner (see

Remark 6.1.3), i.e.

A♯ =

(
A♯

rr Arv

AT
rv Avv

)
.

Matrices A♭
II and A♯

rr must be suitable chosen to construct the approxi-

mate BDDC preconditioner; they are not known explicitly and represents

an approximation of the exact matrices corresponding to using inexact

Dirichlet and Neumann solvers respectively. The inexact approach pro-

posed in [31] requires two basic assumptions on such inexact matrices:

• Null space property: The null space of matrices A♭ and A♯ must

be the same of Â and A respectively.

• Spectral equivalence: Matrices A♭ and A♯ must be spectrally

equivalent to Â and A respectively; we thus need the existence of

positive real numbers 0 < γ1 ≤ γ2 and 0 < α1 ≤ α2, indepen-

dent of the characteristic sizes of the spatial discretizations h and

H , such that

γ1g
T Âg ≤ gTA♭g ≤ γ2g

T Âg ∀g ∈ Ŵ

α1g
TAg ≤ gTA♯g ≤ α2g

TAg ∀g ∈ W
(6.5)

Null space property

The null space property for the Dirichlet solver of the Bidomain model
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requires that

(
A♭

II AIΓ

AT
IΓ AΓΓ

)(
1I

1Γ

)
=

(
AII AIΓ

AT
IΓ AΓΓ

)(
1I
1Γ

)
=

(
0
0

)

where 1I , and 1Γ are identity vectors of appropriate sizes. A simple cal-

culation reveals that

A♭−1

II AII1I = 1I

must be satisfied. Now let P−1
II be a candidate preconditioner for A♭−1

II .

The following correction of P−1
II was proposed in [31] to obtain a pre-

conditioner A♭−1

II for the Dirichlet problem that satisfies the null space

property:

A♭−1

II = 1I(1
T
I AII1I)

−11TI + ET
I P

−1
II EI (6.6)

where

EI = I −AII1I(1
T
I AII1I)

−11T
I

with I the identity matrix of appropriate size. The same arguments will

hold true for the Neumann problem, and thus we will use

A♯−1

rr = 1r(1
T
r Arr1r)

−11Tr + ET
r P

−1
rr Er (6.7)

where

Er = I −Arr1r(1
T
r Arr1r)

−11T
r

where P−1
rr is a candidate preconditioner for A♯−1

rr .

Spectral equivalence

A priori estimates for the constants appearing in eqs. (6.5) are difficult

to obtain directly. As noted in [31], the spectral equivalent constants can

be estimated by conjugate gradient iterations (even if they are not required
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by the implementation) as

γ1 = 1/λmax(A
♭−1

Â), γ2 = 1/λmin(A
♭−1

Â),

α1 = 1/λmax(A
♯−1

Â), α2 = 1/λmin(A
♯−1

Â).

where the action of the inverses appearing in the above formulas can be

obtained with a Schur complement argument (see eq. (4.6) ) as

A♭−1

g =

(
A♭−1

II (gI −AIΓgΓ)

S♭−1

Γ (gΓ −AT
IΓA

♭−1

II gI)

)
,

A♯−1

g =

(
A♯−1

rr (gr −Arvgv)

S♯−1

v (gr −AT
rvA

♯−1

rr gr)

)
,

with

S♭−1

Γ = AΓΓ −AT
IΓA

♭−1

II AIΓ,

S♯−1

v = Avv −AT
rvA

♯−1

rr Arv.

In [31] three inexact preconditioner were proposed: the first inexact

preconditioner uses only inexact Neumann solvers, whereas the second

generalizes the first using both inexact Dirichlet and Neumann solvers. For

both preconditioners, the inexact local solvers must satisfy the null space

and spectral equivalence properties. The third preconditioner proposed

uses both inexact problems but the null space property for the Dirichlet

problem can be relaxed. Since the second and third preconditioners gave

nearly the same results in [31], here we will deal with the second precon-

ditioner because we can bound its condition number in terms of the exact

BDDC preconditioner. The action of the second approximate BDDC pre-

conditioner proposed in [31], here denoted by M̃−1, can be defined as:

M̃−1 =M ♭−1

I + (I −M ♭−1

I A♭)M ♯−1

BDDC(I −A♭M ♭−1

I ) (6.8)
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where the superscript ♭ (resp. ♯) denote quantities obtained by replacing

matrix Â (resp. A) by A♭ (resp. A♯) in all equations where they appear.

Thus

M ♭−1

I = RT
I A

♭−1

II RI

and

M ♯−1

BDDC = RT
D

[
P ♯
coarse + P ♯

local

]
RD

with

P ♯
coarse = Ψ♯A♯−1

c Ψ♯T , A♯
c = Ψ♯TA♯Ψ♯

and the block saddle point problem (6.3) replaced by

(
A♯ CT

C 0

)(
w♯

µ♯

)
=

(
g
h

)
.

Note that we must take into account the null space property and thus we

use equations (6.6) and (6.7) in order to solve the Dirichlet and Neumann

problems respectively.

Then the following theorem will hold (see [31] for the proof) for the

condition number of the approximate BDDC.

Theorem 6.2.1. Let

ω = sup
w∈W̃Γ

|PDw|2S
|w|2S

the supremum of the jump operator (5.1) on the partially continuous space

W̃Γ with respect to the Schur complement seminorm. Then, the condition

number of the approximate BDDC preconditioner (6.8) satisfies

κ2(M̃
−1Â) ≤ ω

α2γ
3
2

α1γ31

where γ1 and γ2 are the spectral equivalence constants for the Dirichlet

problem and α1 and α2 the spectral equivalence constants for the Neu-
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mann problem given in (6.5). In other words (see Theorem 5.5.6)

κ2(M̃
−1Â)

κ2(M−1Â)
.
α2γ

3
2

α1γ31
.

Corollary 6.2.2. If we solve inexactly the inexact coarse problem A♯
c by

the action of a preconditionerA♯♯−1

c which satisfies

β1g
TA♯−1

c g ≤ gTA♯♯−1

c g ≤ β2g
TA♯−1

c g

for all primal vectors g with 0 < β1 ≤ β2, we then have

κ2(M̃
−1Â) ≤ ω

max{1, β2}
min{1, β1}

α2γ
3
2

α1γ31
.

Remark 6.2.3. The constants β1 and β2 associated to the inexact coarse

problem can be estimated directly by conjugate gradient iterations on the

preconditioned systemA♯♯−1

c A♯
c. In fact, calculating the extreme eigenval-

ues of the resulting tridiagonal Lanczos matrix, we will have

λming
T g ≤ gTA♯♯−1

c A♯
cg ≤ λmaxg

T g

for all primal vectors g. Denoting with ρ(A♯♯−1

c ) the spectrum of theA♯♯−1

c

operator, it will hold

ρ(A♯♯−1

c ) = ρ(A♯♯−1

c A♯
cA

♯−1

c ) = ρ(A♯−1/2

c A♯♯−1

c A♯
cA

♯−1/2

c )

and thus we will have

β1g
TA♯−1

c g ≤ gTA♯♯−1

c g ≤ β2g
TA♯−1

c g
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where

β1 = λmin(A
♯♯−1

c A♯
c), β2 = λmax(A

♯♯−1

c A♯
c).

6.3 Algebraic multigrid preconditioners

Multigrid methods are efficient numerical algorithms either for solving

partial differential equations or instead used as preconditioners for the dis-

cretized problem using a hierarchy of discretizations. The main idea of

multigrid is to accelerate the convergence of a basic iterative method by

the recursive smoothing and correction of the residual error through the

hierarchy of operators associated to the hierarchy of discretizations. An

extension of multigrid methods include techniques where no partial differ-

ential equation nor geometrical problem background is used to construct

the multilevel hierarchy. In contrast to other methods, Algebraic Multi-

Grid methods (AMG) (see e.g. [118]) are general in that they can treat ar-

bitrary regions and boundary conditions, moreover they do not depend on

the separability of the equations or other special properties of underlying

PDE. Such AMG methods construct their hierarchy of operators directly

from the linear system matrix, and the levels of the hierarchy are simply

subsets of unknowns without any geometric interpretation, thus becoming

true black-box solvers for sparse matrices.

To simplify the discussion we will briefly explain how a two-level

AMG method works. With AMG, fine (F ) and coarse (C) grid points

(which represent the next level of hierarchy) are selected in such a way

that the degrees of freedoms at coarse points maximally influence the dofs

at fine points using a suitable interpolation

P : C → F

between coarse and fine grid. Either the grid point subdivision or the in-

terpolation operators are constructed using solely the knowledge of the

matrix entries. The two main components of an AMG method are then
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the smoothing and the coarse-grid correction operators. The smoother is

generally a simple pointwise iterative method which eliminates all but the

smooth errors which are then transferred to the coarse-grid correction. It

must be noted that in order to use AMG as a preconditioner for the PCG,

we must use a symmetric smoother such as Gauss-Seidel to preserve the

symmetric nature of the preconditioned linear system. The most common

approach for the coarse-grid correction is to use the Galerkin projection

of the original matrix (denoted with A) onto the coarse mesh through the

interpolation operator, namely,

Ac = PTAP

which guaranties (for symmetric positive definite matrices A) that the

maximum eigenvalue of the preconditioned operator will be less or equal

1 (see e.g. [100]). The action on a given residual vector r of a one-level

AMG method used as a preconditioner can then be stated as:

Do ν1 smoothing steps on Au = r

Compute the fine grid residual rF = r −Au

Solve at the coarse grid Acec = PT rF

Correct u = u+ Pec

Do ν2 smoothing steps on Au = r

The latter method is often referred to in literature as a two-level Vν1,ν2 -

cycle. The generalization to more levels can be obtained replacing the

solve step on the coarse grid with the action of nested two-level Vν1,ν2 -

cycles using prolongation and coarse grid operators builded starting from

the matrix at the previous level of hierarchy. For the Bidomain local ma-

trices (see eq. (2.20)), the presence of negative off diagonal elements, due

to the matrix −1/δtM , and the larger weight of the diagonal entries, due

to the matrix 1/δtM , makes the coarsening procedure very effective and

results in a very efficient preconditioner. See also the numerical results

provided in [147] and [108] where AMG preconditioner has been applied

respectively to the parallel and serial solution of the Bidomain linear sys-
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tem.

Remark 6.3.1. If we apply the inexact approach to BDDC with change of

basis, we will have the same Dirichlet problem since the block diagonal

matrix AII will not change with changing the basis (see Section 5.4); the

Neumann problem will be affected by the transformation and we must

solve the block diagonal system with matrix

ANN =




A
(1)
NN

. . .

A
(N)
NN




where

A
(j)
NN =

(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)
.

Table 6.1 shows the extreme eigenvalues of block diagonal problems

AII , Arr and ANN preconditioned with AMG methods (whose actions

are denoted by P−1
II , P−1

rr and P−1
NN respectively) using boomerAMG pre-

conditioner provided by the HYPRE library [55] developed at the Lawrence

Livermore National Laboratory; in details, each local linear system is

solved until machine precision with a random right hand side and null ini-

tial guess, and then the global minimum of local minimum eigenvalues and

the global maximum of local maximum eigenvalues are collected. Results

show the effectiveness of the AMG preconditioner for the local Dirichlet

and Neumann problems with the original formulation of the BDDC pre-

conditioner; on the other hand, AMG preconditioner did not results in a

spectrally equivalent preconditioner for the Neumann problem after per-

forming the change of basis. Numerical results were obtained using one

multilevel V1,1-cycle with Gauss-Seidel smoothing and without any other

explicit settings of the other parameters offered to the user by the HYPRE

library.

Remark 6.3.2. Note that, if we want to use AMG preconditioner as a lo-

cal inexact solver for a more difficult problem than the Bidomain model,

we must assure independence of the minimum eigenvalue of the precon-
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P−1
II AII P−1

rr Arr P−1
NNANN

H/h λmin λmax λmin λmax λmin λmax

5 8.5E-1 1.00 8.3E-1 1.00 6.3E-1 1.00

10 8.3E-1 1.00 7.3E-1 1.00 1.6E-1 1.00

15 7.8E-1 1.00 6.6E-1 1.00 5.6E-2 1.00

20 7.6E-1 1.00 6.4E-1 1.00 2.5E-2 1.00

25 7.6E-1 1.00 6.7E-1 1.00 1.3E-2 1.00

30 7.2E-1 1.00 6.0E-1 1.00 6.2E-3 1.00

35 7.5E-1 1.00 7.0E-1 1.00 2.8E-3 1.00

40 6.6E-1 1.00 6.0E-1 1.00 1.1E-3 1.00

Table 6.1: Bidomain local AMG based solvers as a function of H/h. Vertices and edge

averages as primal constraints. Test case with 3 × 3 × 3 subdomains, h = 0.01, random

right-hand side and null initial guess; iterative solver is stopped when the preconditioned

residual is lower than 1E-12. For each run extreme eigenvalues of the local problems are

shown.
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ditioned operators of the local problems as in Table 6.1 from h and H and

any other parameters of the underlying PDE, otherwise the rate of conver-

gence of the inexact BDDC can deteriorate. A different inexact strategy

could be to construct local and robust BDDC preconditioners for Dirichlet

and Neumann problems; from the computational viewpoint using such a

recursive BDDC can be easier to implement than develop and implement

an ad-hoc multigrid preconditioner, since in the former case we can use an

already existing code. We are planning to apply these ideas to an inexact

formulation of the BDDC preconditioner of the system of linear elasticity

in the almost incompressible case in three dimensions where black boxes

AMG preconditioners does not give satisfactory results. Results of scal-

ability and robustness of exact BDDC methods for the latter system have

been already obtained in [105] in collaboration with Prof Olof B. Widlund

(Courant Institute, NYU) and Prof Luca F. Pavarino (University of Milan).

6.4 Implementational details and numerical re-

sults

The action of the BDDC preconditioner has been descripted in details in

the previous sections. In order to complete the description of the action of

M̃−1 on a given residual vector r, we must calculate the action of the vari-

ational corrections (I−A♭M ♭−1

) and (I−M ♭−1

A♭), needed respectively

before and after the application of M ♯−1

BDDC , and given by

(I −A♭M ♭−1

)r =

(
0 0

−AT
IΓA

♭−1

II I

)(
rI
rΓ

)

and

(I −M ♭−1

A♭)s =

(
0 −A♭−1

II AIΓ

0 I

)(
sI
sΓ

)
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M−1Â M̃−1Â

H/h λmin λmax κ2 it λmin λmax κ2 it

5 1.00 1.45 1.45 6 0.88 1.42 1.61 7

10 1.00 2.28 2.28 9 0.87 2.14 2.45 10

15 1.00 2.98 2.98 11 0.87 2.66 3.06 11

20 1.00 3.49 3.49 11 0.85 3.17 3.71 13

25 1.00 4.02 4.02 13 0.85 3.56 4.18 14

30 out of memory 0.76 3.91 5.14 15

35 out of memory 0.75 4.23 5.60 16

40 out of memory 0.70 4.43 6.27 16

Table 6.2: Inexact BDDC H/h dependence. Exact BDDC preconditioner versus inexact

BDDC with local AMG based preconditioners. Vertices and edge averages as primal con-

straints. Test case with 3x3x3 subdomains, h = 0.01, random right-hand side and null initial

guess; iterative solver is stopped when the initial preconditioned residual is reduced by a fac-

tor of 1E-6. For each run, extreme eigenvalues, condition number and number of iterations

are shown. Coarse problem is solved exactly.

where s is the output of M ♯−1

BDDC .Finally, in the following we will refer to

the ratio
κ2(M̃

−1Â)

κ2(M−1Â)

as experimental inexact factor.

Approximate BDDC H/h dependence.

First, we study the H/h dependence (fixing the time step) using in-

exact local solvers given by eqs. (6.6) and (6.7) and compare it with the

exact approach. One V1,1-cycle with Gauss-Seidel smoothing is used for
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the AMG methods. Results are listed in Table 6.2: for the inexact ap-

proach, the inexact coarse problem is solved exactly with a parallel factor-

ization. As it can be seen, using inexact local solvers spectrally equivalent

to the original ones does not deteriorate the properties of the BDDC pre-

conditioner with respect to h and H and it permits to manage larger local

problems, since the memory requirements for a multigrid preconditioner

are linear in the local size. Moreover, the minimum eigenvalue of the inex-

act preconditioned operator is worse than the exact one, but the maximum

eigenvalue is better.

Approximate BDDC scaled speedup.

Next, we reproduce the scaled speed up test performed on the exact

BDDC preconditioner (see Table 5.3) and compare the results in Table 6.3

with the inexact approach using eqs. (6.6) and (6.7) with one AMG V1,1-

cycle for the local problems. Moreover we solved inexactly the coarse

problem with one AMG V1,1-cycle. The condition number of the inexact

approach remains bounded as the number of subdomains increases as for

the exact one.

Approximate BDDC δt dependence.

From our numerical experiments we deduce that the condition num-

ber of the inexact operator will be independent of the spatial constants of

discretizations h and H ; however, the performances of the AMG methods

can depend on the time step taken. We therefore reproduce the test case for

the δt dependence of the exact BDDC operator (see Table 5.4) and list the

inexact results in Table 6.4. The sigmoidal dependence from δt remains

unaltered using two V2,2-cycles for the application of the AMG precondi-

tioner in equations (6.6) and (6.7).

Approximate BDDC with jumping coefficients.

We test the independence of the inexact approach from jumps in the

conductivity coefficients reproducing the test case described in the pre-
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PCG-BDDC Inexact Bidomain Scalability

Vertex and edge averages constraints

exact inexact

subd κ2 (it) κ2 (it) β1 β2 inex. fact.

2x2x1 3.09 (10) 3.51 (12) 0.87 1.00 1.14

4x4x1 3.33 (12) 3.71 (13) 0.80 1.00 1.15

6x6x1 3.46 (12) 3.72 (13) 0.80 1.00 1.07

8x8x1 3.51 (13) 3.79 (14) 0.80 1.00 1.08

10x10x1 3.55 (13) 3.76 (13) 0.80 1.00 1.06

12x12x1 3.56 (14) 3.87 (14) 0.79 1.00 1.08

14x14x1 3.58 (14) 3.84 (14) 0.75 1.00 1.07

Table 6.3: Inexact BDDC Scaled Speedup. PCG-BDDC inexact solver with vertices and

edge average constraints as primal variables; local and coarse problems solved with boomer-

AMG. Test case with h = 0.01, H/h = 25, random right-hand side and null initial guess;

PCG iteration is stopped when the initial preconditioned residual is reduced by a factor of

1E-6. For each run, subdomain subdivision in the three dimensions, condition number (num-

ber of iterations in parenthesis) are shown for both exact and inexact formulations. For a

comparison with the exact BDDC, extreme eigenvalues of the inexact coarse problem and

inexact experimental factor (inex. fact.) are also shown (see text for details).
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PCG-BDDC Inexact Bidomain δt dependence

δt 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3

κ2 2.76 2.86 3.60 5.98 10.43 12.97 13.40

iter 10 10 11 14 17 20 20

Table 6.4: Inexact BDDC dependence from δt. PCG-BDDC solver with vertices and

edge average constraints as primal variables. Test case with 2x2x2 subdomains, h = 0.01,

H/h = 15, conductivity coefficients as in Table 2.1.1, random right-hand side and null ini-

tial guess; PCG iteration is stopped when the initial preconditioned residual is reduced by a

factor of 1E-6. For each run, time step δt, condition number and number of iterations are

shown.

vious chapter for the exact BDDC and using one V1,1-cycle. The inex-

act coarse problem has been solved exactly with a parallel LU factoriza-

tion. The condition number of the inexact BDDC remains constant varying

largely the factor p and the experimental ratio between the condition num-

ber of inexact and exact BBDC preconditioners remains bounded. Note

that the condition number of the exact BDDC is not shown in table.

Approximate BDDC computational times.

Tables 6.6 and 6.7 collect some computational times of the inexact

BDDC code developed; results have been obtained using the Linux cluster

Matrix of CASPUR (for cluster’s details see http://hpc.caspur.it) located in

Rome. We considered two different approaches for dealing with the pri-

mal problem. Approach denoted by PP (Point-to-point Parallel) consists

in assemble and solve a parallel problem distributed across the processors,

using for the solving step the parallel LU factorization for sparse matrices

provided by MUMPS [92] and the VecScatter objects provided by PETSc

[6] to perform the point-to-point communications related to assemble the

primal right hand side and distribute the primal solution at each application
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PCG-BDDC Inexact

Jumping Coefficients

A B

p it κ2 inex. fact. it κ2 inex. fact.

1 20 10.47 1.47 20 10.47 1.47

1E1 22 12.41 1.46 21 12.12 1.49

1E2 22 12.54 1.46 24 13.70 1.60

1E3 23 13.75 1.57 24 15.13 1.78

Table 6.5: Inexact BDDC dependence from jumps in the conductivity coefficient. PCG-

BDDC solver with vertices and edge average constraints as primal variables. Test case with

3x3x3 subdomains, h = 0.01, H/h = 15, random right-hand side and null initial guess;

PCG iteration is stopped when the initial preconditioned residual is reduced by a factor of

1E-6. For each run, jumping factor p (see text for details), number of iteration and condition

number for inexact BDDC are shown. Inexact experimental factor (inex. fact.) is also shown

(see text for details).

of the preconditioner. With approach denoted by CS (Collective Serial) we

assemble the primal problem on each processor using collective MPI gath-

ering operations and then solve them with the serial package UMFPACK

[142] for sparse matrices; note that with this approach, we need only one

collective MPI operation to gather the primal right hand side to all proces-

sors at each application of the BDDC preconditioner.

Table 6.6 reports on the parallel scalability of the PCG method with ap-

proximate BDDC: we first fix the dimension of the global grid (80x80x80

corresponding to one million dofs approximatively) and then subdivide it

along each spatial dimension, assigning one subdomain to one cpu. One

V1,1 cycle has been used as AMG method for solving both the Dirichlet

(6.6) and Neumann (6.7) local problems. In both cases, the BDDC code

scales superlinearly until 64 processors since the communication costs are
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Approximate BDDC Scalability

CPUs 2x2x2 4x4x4 6x6x6 8x8x8

κ2 5.63 4.08 3.59 3.07

λM 4.02 3.50 3.12 2.69

λm 0.71 0.85 0.86 0.87

iter 15 13 12 11

TPP(s) 37.69 3.55 3.46 6.42

TCS(s) 37.92 3.24 0.75 0.61

Table 6.6: PCG scalability with approximate BDDC preconditioner with vertices and edge

average constraints as primal variables. Test case with h = 0.01, global grid 80x80x80, ran-

dom right-hand side and null initial guess; PCG iteration is stopped when the initial precon-

ditioned residual is reduced by a factor of 1E-6. For each run, number of subdomains (one

per cpu) per dimension, condition number, extreme eigenvalues and number of iterations are

shown. Computational times in seconds are reported for both primal approaches descripted

in text.

limited and the substructure diameter decreases together with the number

of iterations; the CS approach continues scaling until 512 processors even

if the scaling is not linear; on the other hand, the PP approach suffers over

64 processors since the communication costs of the parallel LU solving

step dominate the overall computational costs (data not shown).

Table 6.7 contains the computational times of the scaled speed-up of

the PCG with approximate BDDC for the PP and CS approaches described

previously. We used physiological conductivity coefficients (see Table

2.1.1) and a fixed local grid 40x40x40 for all substructures (H/h = 40);

one V1,1 cycle has been used as AMG method for solving both the Dirich-

let (6.6) and Neumann (6.7) local problems. CS approach perform better

than the PP approach also in this case; for both approaches the overall

computational costs initially increase with increasing the number of sub-

domains and then remains almost constants until 512 processors and more
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Approximate BDDC Scaled speed up

CPUs 32 72 128 200 288 392 512

κ2 4.95 4.96 4.95 5.08 5.05 5.23 5.21

λM 4.15 4.18 4.19 4.18 4.18 4.18 4.17

λm 0.73 0.84 0.84 0.82 0.82 0.80 0.80

iter 15 15 15 16 16 17 17

TPP (s) 50.60 52.03 52.85 57.44 65.85 64.13 65.88

TCS (s) 39.88 41.97 44.14 47.69 48.07 50.65 50.33

Ŵ dofs 3.9M 8.7M 15.5M 24.2M 34.8M 47.3M 61.7M

Table 6.7: Scaled speed up of PCG method and approximate BDDC preconditioner with

vertices and edge average constraints as primal variables. Test case with h = 0.01, local

grid 40x40x40, random right-hand side and null initial guess; PCG iteration is stopped when

the initial preconditioned residual is reduced by a factor of 1E-6. For each run, number of

subdomains (one per cpu), condition number, extreme eigenvalues, umber of iterations and

global number of dofs are shown. Computational times in seconds are reported for both

primal approaches descripted in text.

than 60 million dofs.
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Conclusions

In this thesis we have considered different aspects related to the mathe-

matical modeling of cardiac electrophysiology, either from the cellular or

from the tissue perspective, and we have developed novel numerical meth-

ods for the parallel iterative solution of the resulting reaction-diffusion

models.

In Chapter one, starting from a recently published ionic model for epi-

cardial cells, we have developed and validated the HHRd model, which

accounts for transmural cellular heterogeneities of the canine left ventri-

cle. The HHRd model has been developed using available published ex-

perimental data on epicardial, midmyocardial and endocardial cells, repro-

ducing numerically the same experimental conditions described in the ex-

perimental papers; numerical simulations of cellular action potentials have

shown a good agreement with experimental data on steady state action po-

tential duration, intracellular diastolic ionic concentrations and force fre-

quency relationship for each type of cell considered by the HHRd model.

Future studies should investigate the effects of specified drugs on the dif-

ferent type of cells modeled by HHRd.

Next, we have introduced the reaction-diffusion models describing the

spread of excitation in cardiac tissue, namely the anisotropic Bidomain

and Monodomain models. For their discretization, we have considered

trilinear isoparametric finite elements in space and a semi-implicit IMEX

method in time. In order to reduce the computational costs of parallel

three-dimensional cardiac simulations, in Chapter three we have consid-

ered different strategies to accelerate convergence of the Preconditioned
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Conjugate Gradient method used for the solution of the large and sparse

linear systems coming from the finite element discretization of both car-

diac models. We have considered novel choices for the Krylov initial

guess in order to reduce the number of iterations per time step, namely

lagrangian interpolants in time of the previous computed solutions, or the

projected solution, using a usual Galerkin technique, on the lower order

subspace generated by using the Proper Orthogonal Decomposition tech-

nique applied to a subset of previous computed solutions. Both approaches

were found to be very efficient only if combined with a suitable precon-

ditioner, which optimizes the rate of convergence of the preconditioned

conjugate gradient method. POD-Galerkin approach has shown the best

results in terms of reduction of total number of iterations in heartbeat sim-

ulations using only few solution vectors to generate the POD basis either

for the Bidomain or the Monodomain model. Moreover, in Chapter five

we have applied both strategies to the preconditioned Schur complement

system of the cardiac Bidomain model, providing in addition a technique

to reduce the computational costs associated to the POD-Galerkin tech-

nique. Our results suggest that future works should investigate strategies

to simulate all but the activation phase in cardiac tissue by using lower

order POD basis without solving for the full order finite element basis.

In last chapters we constructed and analyzed non-overlapping domain

decomposition methods for both cardiac reaction-diffusion models. In

Chapter four we have dealt with preconditioners of the Neumann-Neumann

type, in particular we have considered the additive Neumann-Neumann

method for the Monodomain model and the Balancing Neumann-Neumann

method for the Bidomain model. In Chapter five we have constructed and

analyzed a Balancing Domain Decomposition by Constraint method for

the Bidomain model, whereas in Chapter six we have investigated the use

of an approximate BDDC method for the Bidomain model, in order to

reduce the memory and computational requirements of the exact BDDC

approach. For all preconditioners considered, we have developed novel

theoretical estimates for the condition number of the preconditioned sys-

tems with respect to the spatial discretization, to the subdomains’ diameter

and to the time step, also in case of discontinuity in the conductivity coef-

ficients of the cardiac tissue, with jumps aligned with the interface among
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subdomains. In particular, we were able to prove scalability and quasi-

optimality for the two balancing methods considered for the Bidomain

model using suitable coarse (or primal) spaces. Using the same theoretical

framework, proofs of quasi-optimality can be easily developed for balanc-

ing methods for the Monodomain model. Parallel numerical results have

confirmed the theoretical estimates; numerical results on the parallel scal-

ability of the inexact BDDC preconditioner were also provided.

The code developed for the BDDC method was also applied to the

spectral element discretization of Almost Incompressible Elasticity in three

dimensions; a robust inexact BDDC method for this problem is under

study.

237



Bibliography

[1] L. Ambrosio, P. Colli Franzone and G. Savarı̈¿ 1
2 (2000). On the

asymptotic behaviour of anisotropic energies arising in the cardiac

bidomain model. Interfaces Free Bound. 2(3): 213-266.

[2] C. Antzelevitch, J. Fish (2001). Electrical heterogeneity within the

ventricular wall, Basic Res. Cardiol. 96: 517-527.

[3] O. M. Ascher, S. J. Ruuth and B. T. R. Wetton (1995). Implicit-

explicit methods for time-dependent partial differential equations.

SIAM J. Numer. Anal. 32 (3): 797-823.

[4] D. D. Bainov, P. S. Simeonov (1995). Impulsive differential equa-

tions: Asymptotic properties of the solutions, Singapore World Sci-

entific.

[5] B. Balati, A. Varro, J. G. Papp (1998). Comparison of the cellular

electrophysiological characteristics of canine left ventricular epi-

cardium, M cells, endocardium and Purkinje fibres, Acta Physiol.

Scand. 164: 181-90.

[6] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L.

Curfman McInnes, B. F. Smith and H. Zhang (2002). PETSc Users

Manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National

Laboratory.

238



[7] T. Banyasz, L. Fulop, J. Magyar, N. Szentandrassya, A. Varro, P. P.

Nanasia (2003). Endocardial versus epicardial differences in L-type

calcium current in canine ventricular myocytes studied by action po-

tential voltage clamp, Cardiovascular Research 58: 66-75

[8] L. Beirao da Veiga, C. Chinosi, C. Lovadina, and L. F. Pavarino

(2010). Robust BDDC preconditioners for Reissner-Mindlin plate

bending problems and MITC elements, SIAM J. Numer. Anal., 47

, pp. 4214-4238.

[9] G. Bellettini, P. Colli Franzone and M. Paolini (1997). Convergence

of front propagation for anisotropic bistable reaction-diffusion equa-

tions. Asymp. Anal., 15, 325-358.

[10] A. P. Benson, O. V. Aslanidi, H. Zhang, A. V. Holden (2008). The

canine virtual ventricular wall: A platform for dissecting pharmaco-

logical effects on propagation and arrhythmogenesis, Prog. Biophys.

Mol. Biol. 96: 187-208.

[11] S. C. Brenner and L. Y. Sung (2007). BDDC and FETI-DP without

matrices or vectors, Comput. Methods Appl. Mech. Engrg., 196, pp.

1429-1435

[12] N. F. Britton (1986). Reaction-diffusion equations and their applica-

tions to biology, Academic Press, London.

[13] M. A. Casarin (1996). Schwarz preconditioners for spectral and mor-

tar finite element methods with applications to incompressible fluids,

Ph.D. Thesis, Courant Institute of Mathematical Sciences, TR-717

Department of Computer Science.

[14] A. W. Cates and A. E. Pollard (1998). A model study of intramu-

ral dispersion of action potential duration in the canine pulmonary

conus. Ann. Biomed. Eng. 26: 567-576.

[15] J.C. Clements, J. Nenonen, P.K.J. Li, B.M. Horacek (2004), Acti-

vation dynamics in anisotropic cardiac tissue via decoupling, Ann.

Biomed. Eng. 26: 567.

239



[16] P. Colli Franzone, L. Guerri (1993). Spread of excitation in 3-D mod-

els of the anisotropic cardiac tissue. I:Validation of the eikonal ap-

proach. Math. Biosci. 113:145-209.

[17] P. Colli Franzone, L. Guerri, M. Pennacchio, and B. Taccardi (1993).

Spread of excitation in 3-D models of the anisotropic cardiac tis-

sue. II: Effects of fber architecture and ventricular geometry. Math.

Biosci. 147: 131-171.

[18] P. Colli Franzone and G. Savarı̈¿ 1
2 (2002). Degenerate evolution sys-

tems modeling the cardiac electric field at micro and macroscopic

level. In Evolution equations, Semigroups and Functional Analysis,

A. Lorenzi and B. Ruf, Editors, 49-78, Birkhauser.

[19] P. Colli Franzone and L. F. Pavarino(2004). A Parallel solver for re-

action diffusion systems in computational electrocardiology, M3AS

14: 883-911.

[20] P. Colli Franzone, L. F. Pavarino, B. Taccardi (2005) Simulating pat-

terns of excitation, repolarization and action potential duration with

cardiac Bidomain and Monodomain models Math. Biosci. 197: 35-

66

[21] P. Colli Franzone, L. F. Pavarino, B. Taccardi (2006). Effects of trans-

mural electrical heterogeneities and electrotonic interactions on the

dispersion of cardiac repolarization and action potential duration:

A simulation study, Math. Biosci. 204: 132-165.

[22] D. Colquhoun, A. G. Hawkes (1995). A Q-matrix cookbook: how to

write only one program to calculate the single-channel and macro-

scopic predictions for any kinetic mechanism, In Single Channel

Recording, 2nd Ed. B. Sakmann and E. Neher, editors. Plenum Press,

New York. 589-636

[23] J. M. Cordeiro, L. Greene, C. Heilmann, D. Antzelevitch, C. Antzele-

vitch (2003). Transmural heterogeneity of calcium activity and me-

chanical function in the canine left ventricle, Am. J. Physiol. Heart

Circ. Physiol. 286: H1471-H1479.

240



[24] M. Dauge (1988). Elliptic boundary value problems on corner do-

mains, Springer-Verlag New York.

[25] M. Dauge (1992). Neumann and mixed problems on curvilinear poly-

hedra, Integral Equations Operator Theory, 15(2), 227-261.

[26] J. W. Demmel, M. T. Heath and H. A. van der Vorst (1993). Parallel

numerical linear algebra, Acta Numerica 111-197.

[27] A. Destexhe, J. R. Huguenard (2000). Nonlinear Thermodynamic

Models of Voltage-Dependent Currents, J. Comp. Neurosci. 9: 259-

270.

[28] D. DiFrancesco, D. Noble (1985). A model of cardiac electrical ac-

tivity incorporating ionic pumps and concentration changes, Phil.

Trans. R. Soc. Lond. B 307: 353-398

[29] K. W. Dilly, C. F. Rossow, V. Scott Votaw, J. S. Meabon, J. L.

Cabarrus, L. F. Santana (2006). Mechanisms underlying variations

in excitation-contraction coupling across the mouse left ventricular

free wall, J. Physiol. 572: 227-241.

[30] C. R. Dohrmann (2003). A preconditioner for substructuring based

on constrained energy minimization, SIAM J. Sci. Comput., 25 246-

258

[31] C. R. Dohrmann (2007). An approximate BDDC preconditioner, Nu-

merical Linear Algebra with Applications 14 (2), 149-168.

[32] M. Dryja, J. Galvis, and M. Sarkis (2007), BDDC methods for dis-

continuous Galerkin discretization of elliptic problems, J. Complex-

ity, 23: 715-739.

[33] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman (1975). Applica-

tions of an element model for Gaussian elimination. In Sparse ma-

trix computations (Proc. Sympos.,Argonne Nat. Lab., Lemont, Ill.,

1975), pages 85-96. Academic Press, New York, 1976.

241



[34] G. M. Faber, Y. Rudy (2000). Action potential and contractility

changes in [Na]i overloaded cardiac myocytes: a simulation study,

Biophys. J. 78: 2392-2404.

[35] G. M. Faber, Y. Rudy (2007). Calsequestrin mutation and cate-

cholaminergic polymorphic ventricular tachycardia: A simulation

study of cellular mechanism, Cardiovascular Research 75: 79-88

[36] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen (2001).

FETI-DP: a dual-primal unified FETI method - part I. A faster al-

ternative to the two-level FETI method, Internat. J. Numer. Meth.

Engrg., 50: 1523-1544.

[37] P. F. Fischer (1993). Projection techniques for iterative solution of

Ax = b with successive right-hand sides, ICASE Report No. 93-90.

[38] S. N. Flaim, W. R. Giles, A. D. McCulloch (2006). Contributions of

sustained INa and IKv43 to transmural heterogeneity of early repo-

larization and arrhythmogenesis in canine left ventricular myocytes,

Am. J. Physiol. Heart Circ. Physiol. 291: H2617-H2629.

[39] Gaborit N., Le Bouter S., Szuts V., Varro A., Escande D., Nattel S.,

Demolombe S. (2007). Regional and tissue specific transcript sig-

natures of ion channel genes in the non-diseased human heart, J.

Physiol., 582: 675-693.

[40] P. Galan del Sastre, R. Bermejo (2008). Error estimates of proper

orthogonal decomposition eigenvectors and Galerkin projection for

a general dynamical system arising in fluid models, Numer. Math.

110:49-81

[41] J. Gao, W. Wang, I. S. Cohen, R. T. Mathias (2005). Transmural

Gradients in Na/K Pump Activity and [Na]i in Canine Ventricle, Bio-

phys. J. 89: 1700-1709.

[42] A. Garfinkel, Y-H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M-H.

Lee, H. S. Karagueuzian, J. N. Weiss and P-S. Chen (2000). Prevent-

ing ventricular fibrillation by attening cardiac restitution. Proc. Nat.

Acad. Sci. USA 97 (11): 6061-6066.

242



[43] G.H. Golub and C.F. van Loan (1996). Matrix Computations, 3rd Ed.

Johns Hopkins University Press, Baltimore.

[44] J. L. Greenstein, R. Hinch, R. L. Winslow (2006). Mechanisms of

Excitation-Contraction Coupling in an Integrative Model of the Car-

diac Ventricular Myocyte, Biophys. J. 90: 77-91

[45] H. Harman (1960). Modern Factor Analysis. University of Chicago

Press, Chicago.

[46] C. S. Henriquez, A. L. Muzikant and C. K. Smoak (1996).

Anisotropy, fiber curvature, and bath loading effects on activation

in thin and thick cardiac tissue preparations: Simulations in a three-

dimensional bidomain model. J. Cardiovasc. Electrophysiol. 7 (5):

424-444.

[47] B. Hille (1992). Ionic channels of excitable membranes, Sinauer (2nd

ed).

[48] A.L. Hodgkin nad A.F. Huxley (1952). A quantitative description of

membrane currents and its application to conduction and excitation

in nerve. J. Physiol. (Lond), 117: 500-544.

[49] P. Holmes, J. Lumley and G. Berkooz (1996). Turbulence, Coherent

Structures, Dynamical Systems and Symmetry, Cambridge Univer-

sity Press.

[50] N. Hooke (1992). Efficient simulation of action potential propaga-

tion in a bidomain. Ph. D. Thesis, Duke Univ., Dept. of Comput. Sci.

[51] N. Hooke, C. S. Henriquez, P. Lanzkrom, and D. Rose (1994). Linear

algebraic transformations of the bidomain equations: implications

for numerical methods. Math. Biosc. 120:127-145.

[52] D. A. Hooks, M. L. Trew, B. J. Caldwell, G. B. Sands, I. J. LeGrice,

B. H. Smaill (2007) Laminar Arrangement of Ventricular Myocytes

Influences Electrical Behavior of the Heart, Circ Res. 101: e103-

e112.

243



[53] T. J. Hund, J. P. Kucera, N. F. Otani, Y. Rudy (2001). Ionic charge

conservation and long-term steady state in the Luo-Rudy dynamic

cell model, Biophys. J. 81: 3324-3331.

[54] T. J. Hund, Y. Rudy (2004). Rate dependence and regulation of ac-

tion potential and calcium transient in a canine cardiac ventricular

cell model, Circulation 110: 3168-3174.

[55] HYPRE home page: http://acts.nersc.gov/hypre/

[56] S.R. Idelson and A. Cardona (1985). A reduction method for non-

linear structural dynamic analysis, Computer Methods in Applied

Mechanics and Engineering 49: 253-279.

[57] I. C. F. Ipsen, C. D. Meyer (1995). The angle between complementary

subspaces, NCSU Tech Report NA-019501.

[58] F. H. Johnson, H. Eyring, B. J. Stover (1974). The Theory of Rate

Processes in Biology and Medicine, J. Wiley, New York.

[59] M. Kahlbacher (2006), POD for parameter estimation of bilinear

elliptic problems, Master Thesis, University of Graz, Institute for

mathematics and scientific computing.

[60] K. Karhunen (1946). Zur Spektraltheorie stochastischer Prozesse.

Annales Academiae Scientarum Fennicae, 37.

[61] J. P. Keener (1991). An eikonal-curvature equation for the action

potential propagation in myocardium, J. Math Biol. 29: 629-651

[62] J.P. Keener (1996), Direct activation and defibrillation of cardiac

tissue J. Theor. Biol 178: 313.

[63] J. P. Keener and K. Bogar (1998). A numerical method for the solu-

tion of the bidomain equations in cardiac tissue. Chaos 8 (1): 234-

241.

[64] J. P. Keener, J. Sneyd, L. Sirovich, S. Wiggins, L. P. Kadanoff, J. E.

Marsden (1998). Mathematical Physiology Springer.

244



[65] H. H. Kim (2008). A BDDC algorithm for mortar discretization of

elasticity problems, SIAM J. Numer. Anal., 46: 2090-2111.

[66] H. H. Kim and X. Tu (2009). A three-level BDDC algorithm for mor-

tar discretizations, SIAM J. Numer. Anal., 47: 1576-1600.

[67] A. Klawonn and O. B. Widlund (2006). Dual-Primal FETI methods

for linear elasticty, Comm. Pure and Appled Math. 59: 1523-1572.

[68] A. Klawonn and O. Rheinbach (2007). Inexact FETI-DP methods,

Int. J. Numer. Meth. Eng. 69 (2): 284-307.

[69] A. Klawonn, L. F. Pavarino, and O. Rheinbach (2008). Spectral ele-

ment FETI-DP and BDDC preconditioners with multi-element sub-

domains, Comput. Meth. Appl. Mech. Engrg., 198, pp. 511-523.

[70] A. Klawonn and O. Rheinbach (2010). Highly scalable parallel do-

main decomposition methods with an application to biomechanics,

ZAMM-Zeitschrift fur angewandte mathematik und mechanik 90(1):

5-32.

[71] K. Kunisch, S. Volkwein (2001). Galerkin proper orthogonal decom-

position methods for parabolic problems, Numer. Math. 90: 117-

148.

[72] LAPACK home page: http://www.netlib.org/lapack

[73] K. R. Laurita, R. Katra, B. Wible, X. Wan, M. Koo (2003). Trans-

mural heterogeneity of calcium handling in canine, Circ. Res. 92:

668-675.

[74] J. Lee, B. Smaill, N. Smith (2006). Hodgkin-Huxley type ion channel

characterization: An improved method of voltage clamp experiment

parameter estimation, J. Theor. Biol. 242: 123-134.

[75] I. J. LeGrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, P. J.

Hunter (1995), Laminar structure of the heart: ventricular myocyte

arrangement and connective tissue architecture in the dog, Am. J.

Physiol. Heart Circ. Physiol. 269: H571-H582.

245



[76] G. R. Li, C. P. Lau, A. Ducharme, J. C. Tardif, S. Nattel (2002).

Transmural action potential and ionic current remodeling in ventri-

cles of failing canine hearts, Am. J. Physiol. Heart Circ. Physiol.

283: H1031-H1041.

[77] J. Li and O. B. Widlund (2006). BDDC algorithms for incompress-

ible Stokes equations, SIAM J. Numer. Anal. 44(6): 2432-2455.

[78] J. Li and O. B. Widlund (2007). On the use of inexact subdo-

main solvers for BDDC algorithms, Comp. Meth. Appl. Mech. Eng.

196(8): 1415-1428.

[79] J. Li and O. B. Widlund (2006). FETI-DP, BDDC, and block

Cholesky methods, Internat. J. Numer. Methods Engrg., 66: 250-271.

[80] J. Li and X. Tu (2009). Convergence analysis of a balancing domain

decomposition method for solving a class of indefinite linear systems,

Numer. Linear Algebra Appl., 16: 745-773.

[81] L. M. Livshitz, Y. Rudy (2007). Regulation of Ca2+ and electrical

alternans in cardiac myocytes: role of CAMKII and repolarizing cur-

rents, Am. J. Physiol. Heart Circ. Physiol. 292: H2854-H2866.

[82] D. W. Liu, G. A. Gintant, C. Antzelevitch (1993). Ionic bases for

electrophysiological distinctions among epicardial, midmyocardial,

and endocardial myocytes from the free wall of the canine left ven-

tricle, Circ. Res. 72: 671-687.

[83] D. W. Liu, C. Antzelevitch (1995). Characteristics of the delayed

rectifier current (IKr and IKs) in canine ventricular epicardial,

midmyocardial, and endocardial Myocytes. A weaker IKs contributes

to the longer action potential of the M cell, Circ. Res. 76: 351-365.

[84] M. M. Loeve (1955). Probability Theory. Van Nostrand, New Jersey.

[85] E. N. Lorenz (1956). Empirical orthogonal eigenfunctions and statis-

tical weather prediction. Technical report, MIT Report, Department

of Meteorology, Cambridge, MA.

246



[86] V. A. Maltseev, N. Silverman, H. N. Sabbah, A. I. Undrovinas

(2007). Chronic heart failure slows late sodium current in human and

canine ventricular myocytes: implications for repolarization vari-

ability, Eur. J. Heart Fail. 9: 219-227.

[87] J. Mandel, C. Dohrmann and R. Tezaur (2005). An algebraic theory

for primal and dual substructuring methods by constraints, Appl.

Numer. Math. 54(2): 167-193.

[88] T. Mathew (2008). Domain Decomposition Methods for the Numeri-

cal Solution of Partial Differential Equations, Lecture Notes in Com-

putational Science and Engineering, Springer.

[89] R. Markinovic, J. D. Jansen (2006). Accelerating iterative solution

methods using reduced-order models as solution predictors, Int. J.

Numer. Meth. Engng 68: 525-541

[90] L. S. Milescu, G. Akk, F. Sachs (2005). Maximum likelihood estima-

tion of ion channel kinetics from macroscopic currents, Biophys. J.

88: 2494-2515.

[91] C. B. Moler, C. F. Van Loan (1978). Nineteen dubious ways to com-

pute the exponential of a matrix, SIAM Rev. 20: 801-836.

[92] MUMPS home page: http://graal.ens-lyon.fr/MUMPS

[93] M. Munteanu, L. F. Pavarino and S. Scacchi (2009). A scalable

Newton-Krylov-Schwarz method for the bidomain reaction-diffusion

system, SIAM J. Sci. Comp. 5: 3861-3883.

[94] A. L. Muzikant, E. W. Hsu, P. D.Wolf and C. S. Henriquez (2002).

Region specific modeling of cardiac muscle: comparison of simu-

lated and experimental potentials. Ann. Biomed. Eng. 30: 867-883.

[95] E. Neher, B. Sakmann (1976). Single-channel currents recorded from

membrane of denervated frog muscle fibres, Nature (Lond.) 260:

799-802.

247



[96] E. Neher, B. Sakmann (1992). The patch clamp technique, Sci. Am.

266:44-51.

[97] J. M. Nerbonne, R. S. Kass (2005). Molecular physiology of cardiac

repolarization, Physiol. Rev. 85: 1205-1253.

[98] J. S. Neu, W. Krassowska (1993), Homogeneization of syncytial tis-

sues, Crit. Rev. Biomed. Eng. 21: 137-199.

[99] Noble, D., Rudy, Y. (2001), Models of cardiac ventricular action

potentials: iterative interaction between experiment and simulation,

Phyl. Trans. R. Soc. Lond. A, 359: 1127-1142.

[100] Y. Notay (2005). Algebraic multigrid and algebraic multilevel

methods: a theoretical comparison, Numer. Lin. Algebra Appl. 12:

419-451.

[101] T. Osaka, I. Kodama, N. Tsuboi, J. Toyama and K. Yamada (1987).

Effects of activation sequence and anisotropic cellular geometry on

the repolarization phase of action potential of dog ventricular mus-

cles, Circulation 76: 226-236.

[102] P. Pathmanathan, O. M. Bernabeu, R. Bordas, J. Cooper, A. Garny,

J. M. Pitt-Francis, J. P. Whiteley and D. J. Gavaghan (2010). A nu-

merical guide to the solution of the bidomain equations of cardiac

electrophysiology, Prog. Biophys. Mol. Biol. 102: 136-155.

[103] L. F. Pavarino (2007). BDDC and FETI-DP preconditioners for

spectral element discretizations, Comput. Meth. Appl. Mech. Engrg.,

196: 1380-1388.

[104] L. F. Pavarino and S. Scacchi (2008). Multilevel additive Schwarz

preconditioners for the bidomain reaction-diffusion system, SIAM J.

Sci. Comp. 31 (1): 420-445.

[105] L. F. Pavarino, O. B. Widlund and S. Zampini (2010). BDDC pre-

conditioners for spectral element discretizations of almost incom-

pressible elasticity in three dimensions, SIAM J. Sci. Comp. Ac-

cepted for pubblication.

248



[106] M. Pennacchio and V. Simoncini (2002). Efficient algebraic solu-

tion of reaction diffusion systems for the cardiac excitation process.

J. Comput. Appl. Math. 145: 49-70.

[107] M. Pennacchio, G. Savarı̈¿ 1
2 , P. Colli Franzone (2005), Multiscale

modeling for the bioelectric activity of the heart, SIAM J. Math.

Anal. 4: 1333-1370.

[108] M. Pennacchio and V. Simoncini (2009). Algebraic multigrid pre-

conditioners for the bidomain reaction-diffusion system, Appl. Nu-

mer. Math. 59: 3033-3050.

[109] L. Priebe, D. J. Beuckelmann (1998). Simulation study of cellular

electric properties in heart failure, Circ. Res. 82: 1206-1223.

[110] J. L. Puglisi, F. Wang, D. M. Bers (2004). Modeling the isolated

cardiac myocyte, Progr. Biophys. Mol. Biol. 85: 163-178.

[111] A. J. Pullan, L. K. Cheng, L.M. Buist (2005). Mathematically mod-

elling the electrical activity of the heart, World Scientific.

[112] Z. Qu and A. Garfinkel (1997). An advanced algorithm for solv-

ing partial differential equation in cardiac conduction. IEEE Trans.

Biomed. Eng. 46 (9): 1166-1168.

[113] A. Quarteroni, A. Valli (1994). Numerical Approximation of Partial

Differential Equations, Springer, Berlin.

[114] M. Reimann, V. Gurev, J.J. Rice (2009). Computational modeling

of cardica disease: potential for personalized medicine, Personalized

Medicine 6(1): 45-66.

[115] S. M. Ross (1996). Stochastic Processes (2nd ed), Wiley series in

probability and mathematical statistics

[116] B. J. Roth (1991). Action potential propagation in a thick strand of

cardiac muscle. Circ. Res. 68: 162-173.

249



[117] Y. Rudy, J. R. Silva (2006). Computational biology in the study of

cardiac ion channels and cell electrophysiology, Quart. Rev. Bio-

phys. 39: 57-116.

[118] J. W. Ruge and K. Stuben (1987). Algebraic Multigrid (AMG),

Multigrid Methods vol. 3 of Frontiers in Applied Mathematics,

SIAM Philadelphia, 73-130.

[119] Y. Saad, M. Yeung, J. Erhel and G. Guyoumarch (2000), A deflated

version of the conjugate gradient algorithm, SIAM J. Sci. Comp.

21(5): 1909-1926.

[120] F. B. Sachse (2004). Computational Cardiology. Modeling of

Anatomy, Electrophysiology, and mechanics, LNCS 2966, Springer

Verlag.

[121] S. Sanfelici (2002). Convergence of the Galerkin approximation of

a degenerate evolution problem in electrocardiology. Numer. Meth.

Part. Diff. Eq. 18 (2): 218-240.

[122] S. Scacchi (2007). Multilevel Schwarz preconditioners for the bido-

main system and applications to electrocardiology, Ph. D. Thesis,

Universitı̈¿ 1
2 degli studi di Pavia, Dipartimento di matematica.

[123] S. Scacchi (2008). A hybrid multilevel Schwarz method for the bido-

main model, Comput. Methods Appl. Mech. Engrg. 197: 4051-4061.

[124] G. Seemann, F. B. Sachse , D. L. Wei, O. Dossel (2003). Quan-

titative reconstruction of cardiac electro-mechanics in humanmy-

ocardium: Regional heterogeneity, J. Cardiovasc. Electrophysiol. 14

[125] L. Shamgar, L. Ma, N. Schmitt, Y. Haitin, A. Peretz, R. Wiener, J.

Hirsch, O. Pongs, B. Attali (2006). Calmodulin is essential for car-

diac IKs channel gating and assembly: impaired function in Long-

QT mutations, Circ. Res. 98: 1055-1063.

[126] L. F. Shampine, M. W. Reichelt (1997). The MATLAB ode suite,

SIAM J. Sci. Comp. 18: 1-22

250



[127] S. Sicouri, S. Moro, S. Litovsky, M. V. Elizari, C. Antzelevitch

(1997). Chronic amiodarone reduced transmural dispersion of re-

polarization in the canine heart, J. Cardiovasc. Electrophysiol. 8:

1269-1279

[128] L. Sirovich (1987). Turbulence and the dynamics of coherent struc-

tures, parts I-III, Quart. Appl. Math. 45: 561-590.

[129] J. Smoller (1994). Shock waves and reaction-diffusion equations.

Springer-Verlag, New York, Second ed.

[130] B. F. Smith, P. Bjorstad, and W. D. Gropp (1996). Domain Decom-

position: Parallel Multilevel Methods for Elliptic Partial Differential

Equations, Cambridge University Press.

[131] A. Soubret, G. Helmlinger, B. Dumotier, R. Bibas, A. Georgieva

(2009). Modeling and simulation of preclinical cardiac safety: to-

wards an integrative framework, Drug Metab. Pharamcokinet. 24(1):

76-90.

[132] J. Southern, J. Pitt-Francis, J. Whiteley, D. Stokeley, H. Kobashi,

R. Nobes, Y. Kadooka and D. Gavaghan (2007). Multiscale compu-

tational modelling in biology and physiology, Progr. Biophys. Mol.

Biol. 96: 60-89.

[133] J. Stoer and R. Bulirsch (2002). Introduction to Numerical Analysis

(3rd ed.). Berlin, New York: Springer-Verlag.

[134] D. Streeter (1979), Gross morphology and fiber geometry in the

heart, in R.M. Berne (Ed.), Handbook of physiology, vol. 1,

Williams and Wilkins, p.61, sect 2.

[135] J. Sundnes, G. T. Lines and A. Tveito (2003). Efficient solution of

ordinary differential equations modeling electrical activity in cardiac

cells. Math. Biosci. 172: 55-72.

[136] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal,

A. Tveito (2006). Computing the electrical activity of the heart,

Springer.

251



[137] J. Sundnes, R. Artebrant, O. Skavhaug, A. Tveito (2009). A second-

order algorithm for solving dynamic cell membrane equations, IEEE

Trans. Biomed. Eng. 56(10): 2546-2548.

[138] X. Sun, H. S. Wang (2005). Role of the transient outward current in

shaping canine ventricular action potential: a dynamic clamp study,

J. Physiol. 564: 411-419.

[139] G. Szabo, N. Szentandrı̈¿ 1
2 ssy, T. Biro, B. I. Tı̈¿ 1

2 th, G. Czifra,

J. Magyar, T. Banyasz, A. Varro, L. Kovacs, P. P. Nanasi (2005).

Asymmetrical distribution of ion channels in canine and human left-

ventricular wall: epicardium versus midmyocardium, Eur. J. Physiol.

450: 307-316.

[140] A. Toselli and O. B. Widlund (2005). Domain Decomposiiton meth-

ods - Algorithms and theory, Springer.

[141] X. Tu and J. Li (2008). A balancing domain decomposition method

by constraints for advection-diffusion problems, Commun. Appl.

Math. Comput. Sci., 3: 25-60.

[142] UMFPACK home page: http://www.cise.ufl.edu/research/sparse/umfpack

[143] C. R. Valdivia, W. W. Chu, J. Pu, J. D. Foell, R. A. Haworth, M. R.

Wolff, T. J. Kamp, J. C. Makielski (2004). Increased late sodium cur-

rent in myocytes from a canine heart failure model and from failing

human heart, J. Mol. Cell. Cardio. 38: 475-483.

[144] N. G. Van Kampen (2004). Stochastic Processes in Physics and

Chemistry, North-Holland.

[145] M. Veneroni (2006), Reaction-diffusion systems for the macro-

scopic bidomain model of the cardiac electric field, tech. report,

I.M.A.T.I.-C.N.R.

[146] B. Victorri, A. Vinet, F. A. Roberge and J. P. Drouhard (1985). Nu-

merical integration in the reconstruction of cardiac action potentials

using Hodgkin-Huxley type models. Comp. Biomed. Res. 18: 10-23.

252



[147] E. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo, G. Plank

(2008) Solvers for the cardiac bidomain equations Progr. Biophys.

Mol. Biol. 96: 3-18.

[148] P. C. Viswanathan, R. M. Shaw and Y. Rudy (1999). Effects of IKr

and IKs heterogeneity on action potential duration and its rate de-

pendence: a simulation study, Circulation 99: 2466-2474.

[149] H. S. Wang, I. S. Cohen (2003), Calcium channel heterogeneity in

canine left ventricular myocytes, J. Physiol. 547: 825-833.

[150] L. Xiao, L. Zhang, W. Han, Z. Wang, S. Nattel (2006). Sex-based

transmural differences in cardiac repolarization and ionic-current

properties in canine left ventricles, Am. J. Physiol. Heart. Circ. Phys-

iol. 291: H570-H580.

[151] W. Xiong, Y. Tian, D. DiSilvestre, G. F. Tomaselli (2005). Trans-

mural heterogeneity of NaCa exchange: evidence for differential ex-

pression in normal and failing hearts, Circ. Res. 97: 207-209.

[152] G. X. Yan, W. Shimizu, C. Antzelevitch (1998). Characteristics and

distribution of M cells in arterially perfused canine left ventricular

wedge preparations, Circulation 98(18): 1921-1927.

[153] J. Zeng, K. R. Laurita, D. S. Rosenbaum, Y. Rudy (1995). Two com-

ponents of the delayed rectifier K+ current in ventricular myocytes

of the guinea pig type: theoretical formulation and their role in re-

polarization, Circ. Res. 77:140-152.

[154] D. Zipes and J. Jalife (2009). Cardiac Electrophysiology, 5th ed.,

W. B. Sauders Co., Philadelphia.

[155] A. C. Zygmunt, R. J. Goodrow, C. Antzelevitch (2000). INaCa con-

tributes to electrical heterogeneity within the canine ventricle, Am.

J. Physiol. Heart Circ. Physiol. 278: H1671-H1678.

[156] A. C. Zygmunt, G. T. Eddlestone, G. P. Thomas, V. V. Nesterenko,

C. Antzelevitch (2000). Larger late sodium conductance in M cells

253



contributes to electrical heterogeneity in canine ventricle, Am. J.

Physiol. Heart Circ. Physiol. 281: H689-H697.

254



Mathematical Sciences 
 

 
Directed by: The Graduate School in Mathematical Sciences 

of the University of Milan. 
 
Series Editors: Vincenzo Capasso, Coordinator of the PhD 

Program in Mathematics and Statistics for Computational 
Sciences; Alfredo Lorenzi, Coordinator of the PhD Program in 
Mathematics; Bernhard Ruf, Director of the Graduate School. 
 
 

1. Chiara Guardasoni, Wave Propagation Analysis with 
Boundary Element Method - print 

2. Andrea Villa, Three Dimensional Geophysical Modeling: 
from Physics to Numerical Simulation - print 

3. Matteo Bianchi, On Some Axiomatic Extensions of the 
Monoidal T-norm Based Logic MTL: an Analysis in the 
Propositional and in the First-order Case - print 

4. Marco Maggis, On quasiconvex conditional 
maps.Duality results and applications to Finance - print 

5. Paola M.V. Rancoita, Stochastic methods in cancer 
research. Applications to genomics and angiogenesis - 
print 

6. Antonio Giuliano Zippo, Neuronal Ensemble Modeling 
and Analysis with Variable Order Markov Models – print 

7. Stefano Zampini, Non-overlapping domain 
decomposition methods for three-dimensional cardiac 
reaction-diffusion models and applications. - print 

 
 

Visit our websites: www.ledizioni.it and www.ledipublishing.com 
 
 
 

Ledizioni offers reprints and new scholarly books 
both in print and eformat 


