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Introduction

In this thesis, we study the dynamics of an elastic body whose shape
and position evolve due to the gravitational forces exerted by a point-
like planet whose position is fixed in the space. The first result of the
thesis is that, if any internal deformation of the body dissipates some
energy, then the dynamics of the system has only three possible final
behaviors:

(i) the satellite is expelled to infinity;

(ii) the satellite falls on the planet;

(iii) the satellite is captured in synchronous resonance.

By item (iii) we mean that the shape of the body reaches a final
configuration, that a principal axis of inertia is directed towards the
attracting planet and that the center of mass of satellite moves on a
circle of constant radius.
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Secondly we study the stability of the synchronous orbit. Restrict-
ing to the quadrupole approximation and assuming that the body is
very rigid, we prove that such an orbit is (locally) asymptotically
stable.

Some additional results on the dynamics of the body close to the
synchronous orbit and some new kinematic results are also present
in the thesis.

The theory of bodily tides traces its origin back to the pioneering
work by Darwin [9,10], who was actually interested in the long-time
effects on the Earth’s rotation of the tides generated by the Moon.
He studied the following situation: consider an elastic planet, whose
center of mass is fixed in space and which rotates with a fixed angular
velocity. Then, put a pointlike satellite on a fixed Keplerian orbit
around the center of mass of the planet. As a consequence, the planet
will experience tidal distortion. If the material of the planet were
perfectly inviscid, then the planet would instantaneously reach an
equilibrium configuration. To account for viscosity, Darwin assumed
that such a deformation has instead some delay called phase lag.
Using also some form of the averaging principle, Darwin obtained an
expression of an effective dissipation acting on the orbital and spin
degrees of freedom. His argument can also be used to deduce the
stability of the 1:1 resonance in the Moon-Earth system.

Darwin’s work was subsequently generalized by Kaula [20] and
many other authors (for instance, [1, 15, 25, 30]). Critical reviews of
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the work by Darwin, Kaula and followers can be found in [11–13].
In particular, Kaula has developed a theory based on the use of the
Keplerian orbital elements in order to describe the tidal forces acting
on the body and the corresponding reactions and phase lags. This
allowed him to obtain much more effective results.

In most of the subsequent studies on the spin orbit interaction
in the dynamics of a satellite, the satellite is treated as a rigid body
subject to the effective dissipative force and, moreover, most of the
times the orbit of the center of mass is fixed and the evolution of
the spin degrees of freedom is studied. The papers [4–6] take exactly
this approach. Here some KAM type results have been obtained and
furthermore analytic and numerical techniques have been used in
order to explain the spin orbit resonance in systems like Earth-Moon
or Sun-Mercury. In particular some remarkable explanation on the
3:2 resonance observed in the Sun-Mercury system has been given.

Recently Efroimsky [12] revisited the theory of Darwin and Kaula;
by using continuum mechanics he computed explicitly the expression
of the phase lags to be inserted in the equation of motion.

As described above, the point of view of this thesis is much more
fundamental: we assign neither the shape of the body nor its orbit,
instead we consider the equations of elasticity (governing the inter-
nal dynamics of the satellite) coupled with the Newton equations
governing the orbital and spin degrees of freedom and study the cor-
responding dynamics. We try to make as few assumptions as possible
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in order to understand if a general behavior appears, independently
of, possibly all, the specific features of the model.

The main result is the one explained at the beginning of this ab-
stract. The only assumption needed to get such a result pertains
the nature of the dissipation acting on the internal degrees of free-
dom. To state it, denote by σ the stress tensor and by ε the strain
tensor related to the elastic configuration of the satellite. Then, the
assumption is that the constitutive relation has the form

σ = F (ε, ε̇) .

In particular, we assume that the stress at a given time is only func-
tion of the strain and of its time derivative at that fixed time, and
that there are no memory effects.

The proof of the main result makes use of the so-called LaSalle’s
principle [23], which is a generalization of Lyapunov theorem to the
case where there is a nontrivial set N on which the Lie derivative of
a Lyapunov function vanishes. LaSalle’s principle ensures that, if the
phase space is compact, then any orbit approaches the largest invari-
ant set contained in N . For the proof we first reduce to the compact
case by eliminating escaping and colliding orbits, then we show that
the above invariant set is constituted by synchronous orbits.

Afterwards we study the stability of the synchronous resonance.
Surprisingly enough such a study is much more complicated than
the previous global one. This is essentially due to the fact that to
this end one has to explicitly write the Lagrangian of the system



CONTENTS 7

and to study the corresponding equations. So, for this study we
reduce to the quadrupole approximation, and then introduce suitable
coordinates in the configuration space. In such an approximation the
gravitational potential turns out to be a function of the position of
the center of mass of the body, of its moments of inertia and of the
orientation of the principal axes of inertia. So, it is natural to try
to use such functions as coordinates in the configuration space. We
prove that this is possible, but to this end we have to study separately
two different situations: (1) the body has a rest configuration in which
it is a sphere, (2) it has a rest configuration in which it is a triaxial
body. In case (2) the analysis is simple, while in the other case the
analysis is more difficult and requires the use of some properties of
the spaces obtained as the quotient of a Hausdorff space with respect
to the action of a finite group. The conclusion is that the wanted
coordinates are a 24 fold covering of the configuration space.

Then exploiting some general principles of mechanics we write the
Lagrangian of the system in the considered coordinates and prove
the orbital stability of the synchronous orbit. Asymptotic stability
follows by exploiting the global stability result.

It is worth mentioning that in the case of a spherical body the
result does not imply that the body eventually stops deforming, but
only that its shape is such that a principal axis of inertia always
points towards the planet. The axes of inertia could slide indefinitely
in the body.
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Chapter 1 of the thesis is devoted to a brief review about the ex-
isting theories which concern bodily tides and spin-orbit resonances.

Chapter 2 and Chapter 3 contain the original contribution to
knowledge that is present in this PhD. thesis. Chapter 2 is devoted to
the proof of the main result of this thesis, i.e. the fact that a satellite
must escape, collide or get trapped in the synchronous resonance.
The content of Chapter 2 is summarized in the paper

• E. Haus. Asymptotic behavior of an elastic satellite with fric-
tion, preprint.

Chapter 3 contains the proof of the orbital stability of the syn-
chronous resonance. The case of a triaxial body is studied in

• D. Bambusi and E. Haus. Stability of the synchronous reso-
nance for the dynamics of a viscoelastic satellite, preprint.

The result for a body with spherical symmetry is obtained in

• D. Bambusi and E. Haus. Asymptotic stability of spin orbit
resonance for the dynamics of a viscoelastic satellite,
http://arxiv.org/abs/1012.4974, submitted.



Chapter 1

The classical theories: a short
review

1.1 General facts

It has always been a well known fact that the Moon always shows
the same face to the Earth. This happens because the period of rota-
tion of the Moon about its axis equals the period of revolution of the
Moon around the Earth. The fact that the two periods are exactly
equal already suggests that it should not be a coincidence. Moreover,
in the last decades more and more data have become available thanks
to explorations of the Solar system, which have shown that most ma-
jor satellites in the Solar system always point the same face towards
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their mother planet. The heuristic explanation for this phenomenon
has been known for a very long time. The gravitational field gener-
ated by a celestial body is not constant in space. Since even solid
bodies (like many satellites are, at least as a first approximation)
are slightly deformable, the satellite experiences some deformation
due to the non-constancy of the gravitational field generated by the
planet. In particular, the satellite gets slightly stretched towards the
planet, such an elongation making the situation where the satellite
always shows the same face to the planet physically stable. Such a
deformation of the satellite is originated by the same type of effect
which generates ocean tides on the Earth. For this reason, the sit-
uation in which a celestial body always shows the same face to the
body it orbits is often referred to as “tidal locking”. In a wider con-
text, one may be interested in the so-called spin-orbit resonances. A
spin-orbit resonance occurs whenever the ratio between the period of
rotation and the period of revolution of a given celestial body is a
rational number. The situation of tidal locking therefore corresponds
to the 1:1 spin-orbit resonance (and zero inclination of the axis of
rotation), also called synchronous resonance for obvious reasons. In
the Solar system, the main body which is in a spin-orbit resonance
different from the synchronous one is Mercury, which is caught in a
3:2 resonance around the Sun, meaning that Mercury’s orbital period
equals three halves its rotational period.

If, on the one side, the heuristic explanation of the phenomenon
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of tidal locking is rather simple, on the other side the rigorous math-
ematical investigation is very complicated. In fact, what in principle
one should do is to study a complicated system of partial differential
equations describing the evolution of the internal configuration of the
bodies, coupled with ordinary differential equations describing the
evolution of the orbital and rotational parameters. Such an investi-
gation is made even more complicated by the fact the inner structure
of celestial bodies is often very complicated and never known with
absolute precision.

Since it is too difficult to find the solutions to the complete prob-
lem of motion of a deformable body in a gravitational field, the ex-
isting theories of bodily tides always make use of some relevant ap-
proximations. In the next section, we will make a brief review of
the history of the classical theory of bodily tides. The huge amount
of work which has been spent on the subject makes it impossible to
perform a complete review, so we will focus on the main aspects of
the theory, in order to clarify the distinction between the classical
approach to the theory of bodily tides and the approach that we will
follow in the present PhD. thesis.

1.2 Bodily tides: the Darwin-Kaula approach

In this section we give a brief description of the classical Darwin-
Kaula theory of bodily tides, which has set the basis on which many
authors ( [14–17, 21, 22, 25, 27–29, 32, 34]) have worked in the last
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decades, in order to understand the main effects of the tidal friction
in the Solar System. For a much more detailed review of Darwin’s
theory, see [13], whose notation we will follow in this section. A
critical review of the different techniques which have been developed
in order to explore the consequences of torques due to bodily tides
can be found in [11].

When developing his theory of tides, Darwin was actually inter-
ested in studying the long-time effects on the Earth’s rotation of the
tides generated by the Moon.

The situation studied by Darwin ( [9,10]) is the following: consider
a central, deformable body of mass m, whose center of mass is at the
origin, and an outer pointlike mass M , which is responsible for the
deformation of m. At first, m is considered to be a homogeneous and
perfect inviscid fluid, which assumes the equilibrium configuration
under its own gravity and the external gravitational forces due toM ,
which generate tides onm. Let r = (r, θ, ϕ) (spherical coordinates) be
the vector representing the position ofM . If now we neglect the polar
flattening due to the rotation of m and we consider only the main
term of the tide generating potential (i.e., if we neglect terms beyond
quadrupole in the multipole expansion of the potential generated by
M), the equilibrium configuration is a Jeans spheroid (an ellipsoid
whose three semi-axes satisfy A > B = C), whose semi-major axis A
is directed towards M and whose prolateness is given by

ε := A

B
− 1 = 15

4
M

m

(
R

r

)3
, (1.2.1)
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where R is the mean radius of m (see [33]). We note that Darwin
used the Jeans spheroid as equilibrium configuration, because at that
time Love’s theory [24] was not available yet. Using Love’s theory, it
is possible to include also polar flattening in the equilibrium config-
uration [7], but the results that one obtains are essentially the same
as for the Jeans spheroid.

Then consider an arbitrary point r∗ = (r∗, θ∗, ϕ∗) in space. The
gravitational potential generated by the prolate spheroid of equation
(1.2.1) is given by

U(r∗) = −Gm
r∗
− kfGMR5

2r3r∗
(3 cos2 Ψ− 1) , (1.2.2)

where Ψ is the angle between r and r∗ and kf is the parameter that
in the modern language is called fluid Love number. In the case of a
homogeneous sphere, kf = 3

2 .
In Darwin’s theory, the assumption is made that the body M

orbits m on a fixed Keplerian orbit of semi-major axis a, eccentric-
ity e and inclination I. Then, the position r of M is a function of
the orbital elements. Therefore, one can write the expression of the
potential generated by the deformed m as a function of the orbital
elements of M . Define the tide raising potential as

U0
2 (r∗) := U(r∗)− Gm

r∗
.

In terms of the mean anomaly l, which is a linear function of time
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(l = nt+ l0), one has, to second order in e and I,

U0
2 = −3kfGMR5

4a3r∗3

[
−2

3 − e
2 +
(

1 + 3
2e

2 − 1
2S

2
)
P 2+

+
(

1− 5
2e

2 − 1
2S

2
)
P 2 cos(2ϕ∗ − 2l − 2ω) +

+7
2eP

2 cos(2ϕ∗ − 3l − 2ω) +

−1
2eP

2 cos(2ϕ∗ − l − 2ω) + 17
2 e

2P 2 cos(2ϕ∗ − 4l − 2ω) +

−(2− 3P 2)e cos l −
(

3− 9
2P

2
)
e2 cos 2l +

+QS[sinϕ∗ − sin(ϕ∗ − 2l − 2ω)] +

+1
2P

2S2[cos 2ϕ∗ + cos(2l + 2ω)] (1.2.3)

where we have used the notation S = sin I, P = sin θ∗, Q = sin 2θ∗

and we have denoted by ω the argument of the periapsis. Observe
that such a tide raising potential is a function of time through l.

If now one is interested in the tide raising effect of the potential
U0

2 on the central body m, one has to think of the point r∗ as co-
rotating with m, i.e. such that r∗ and θ∗ are constant, while the
longitude ϕ∗ is given by ϕ∗ = Ωt+ ϕ∗0, Ω being the angular velocity
of rotation of the body m.

In this way, the expression (1.2.3) becomes a function of time
through both l and ϕ∗, where one can recognize the sum of periodic
terms with nine different frequencies.

There comes the main idea in Darwin’s work: the phase lag. Up
to now, we have assumed that the deformable body were perfectly
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inviscid and that it instantaneously reached the equilibrium config-
uration. Darwin, in order to take into account the effects related to
viscosity, made the following assumption: the deformable body reacts
to the tidal action, but it does with some delay due to its viscosity. In
particular, since the potential U0

2 is the sum of time-periodic terms
with different frequencies, a specific delay is added for each periodic
term. If Φi is a generic time-periodic argument, then the procedure
conceived by Darwin consists in replacing Φi with the “delayed” term
Φi−εi, and then considering the first order approximation in the lags
in the following way:

cos(Φi − εi) = cos Φi + εi sin Φi (1.2.4)

sin(Φi − εi) = sin Φi − εi cos Φi . (1.2.5)

Then, plugging the lags into the expression of U0
2 , one finds that

the quardupole term of the gravitational potential becomes

U2 = U0
2 + Ulag , (1.2.6)

where the correction Ulag due to the delayed response of the de-
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formable body is given by1

Ulag = −3kfGMR5

8a3r∗3
[
P 2ε0(2− 5e2 − S2) sin(2ϕ∗ − 2l − 2ω)+

+eP 2(7ε1 sin(2ϕ∗ − 3l − 2ω)− ε2 sin(2ϕ∗ − l − 2ω) +

+17e2P 2ε3 sin(2ϕ∗ − 4l − 2ω) + P 2S2ε4 sin(2ϕ∗) +

−eε5(4− 6P 2) sin l − 3e2ε6(2− 3P 2) sin(2l) +

+P 2S2ε7 sin(2l + 2ω) +

+ 2QS(ε8 cos(ϕ∗ − 2l − 2ω)− ε9 cosϕ∗)] . (1.2.7)

Then the field associated to tidal forces generated by the deformed
body in any point of the space can be easily calculated as the gradient
of the gravitational potential U2 = U2

0 + Ulag. As one expects, the
computation of the gradient of U2

0 gives a purely radial field, since
in the absence of lags one would have an equilibrium configuration
which does not involve any torque.

Then, evaluating the so-obtained tidal field in the point r =
(r, θ, ϕ) where the body M is placed, and multiplying it by its mass
M , one has the tidal force F acting on M , generated by the tide
raised on m by M itself.

Because of the presence of the lags, the tidal force F is not aligned
1When considering the effects of friction, we should also have replaced the

static Love number kf with its dynamical counterparts, in order to take into
account some attenuation of the tidal response due to viscosity. Anyway, for
simplicity, we are neglecting this aspect in this short summary of Darwin’s
theory.
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with r, a fact which generates a non-zero torque

M = r× F .

This is actually the machinery for obtaining expressions of the
tidal forces and torques, in Darwin’s theory. From these expressions,
using conservation laws and averaging the torque < M > over one
orbital period, one can get expressions for the secular variations of
the orbital elements of M and of the rotation of m, and expressions
for the energy dissipation.

We do not enter the details of these calculations, which are very
well explained in [13]. We limit ourselves to writing down the expres-
sions obtained through Darwin’s theory. Denoting by C the moment
of inertia related to the axis of rotation of m, by J the inclination
of the axis of rotation of m and by E the mechanical energy of the
system, the following expressions are obtained.

< Ω̇ >= 3kfGM2R5

8Ca6 [4ε0+e2(−20ε0+49ε1+ε2)+2S2(−2ε0+ε8+ε9)]
(1.2.8)

< J̇ >= 3kfGM2R5

4CΩa6 S(ε0 + ε8 − ε9) (1.2.9)

< ṅ > = −3n
2a < ȧ >= −9n2kfMR5

8ma5

[
4ε0 − 4S2(ε0 − ε8)

]
+

−9n2kfMR5e2

8ma5

(
20ε0 −

147
2 ε1 −

1
2ε2 + 3ε5

)
(1.2.10)
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< Ė > = 3kfGM2R5

8a6

{
n
[
4ε0 − 4S2(ε0 − ε8)

]
+

+ne2(−20ε0 + 147
2 ε1 + 1

2ε2 − 3ε5) +

−Ω
[
4ε0 + e2(−20ε0 + 49ε1 + ε2) +

+ 2S2(−2ε0 + ε8 + ε9)
]}

(1.2.11)

< ė >= −3nekfMR5

8ma5

(
2ε0 −

49
2 ε1 + 1

2ε2 + 3ε5

)
(1.2.12)

< İ >= 3nkfSMR5

4ma5 (−ε0 + ε8 − ε9) . (1.2.13)

Many decades after Darwin, Kaula [20] made a remarkable gener-
alization of Darwin’s work. Kaula computed tidal forces and torques
following Darwin’s approach; however, whereas Darwin stopped to
quadrupole terms in the multipole expansion of the tidal potential,
Kaula was able to deduce an impressive formula (see [11], equations
(20) and (21)) expressing the complete multipole expansion of the
tidal potential in terms of the orbital elements of M . Kaula’s contri-
bution has been so relevant that the theory which consists in intro-
ducing the phase lags in Kaula’s expression of the tidal potential and
deducing dynamical consequences, in a way similar to that explained
above, is commonly referred to as Darwin-Kaula theory.

1.3 Physical origin of the phase lags

The classical Darwin-Kaula approach has the advantage of being very
general, since no assumptions are done about the values that must
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be given to the phase lags εi. However, in order to make a rigorous
physical theory of bodily tides, starting from first principles, one
should do the following: (i) understand the physical origin of the
phase lags, (ii) study a realistic model of deformable body and deduce
the expressions for the phase lags as a function of the deformable
body’s rheology.

In order to understand the origin of the phase lags, it is useful
to think of the analogy with a damped harmonic oscillator, with
a periodic external forcing. If one has a damped oscillator with a
sinusoidal forcing of the type

ẍ+ 2ζω0ẋ+ ω0
2x = A sin(ωt) , (1.3.1)

then the solution is the sum of a transient solution, which depends
on the initial conditions and goes exponentially to zero, and a steady
state solution, which is independent of the initial conditions. The
steady state is

x(t) = A

Bω
sin(ωt+ φ) , (1.3.2)

where

B =
√

(2ω0ζ)2 + 1
ω2 (ω02 − ω2)2

and
φ = arctan

( 2ωω0ζ

ω2 − ω02

)
.

As we can see from these expressions, the steady state is an oscil-
lation which has the same frequency as the external forcing, but is
responding with a delay φ.
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In this trivial example, the harmonic oscillator plays the role of
the deformable body close to its equilibrium configuration, the ex-
ternal forcing corresponds to the disturbing potential generated by
the point mass M , which in the Darwin-Kaula approach is actually
a sum of infinitely many time-periodic terms (since M revolves peri-
odically on a Keplerian orbit), and the phase shift φ plays the role of
the phase lags of the Darwin-Kaula theory.

In [12] a very detailed explanation of the origin of phase lags is
given, and, using techniques from continuum mechanics, the expres-
sions of the phase lags for some relevant rheological models (namely
the Maxwell model and the Andrade model) are obtained.

1.4 Our approach

The applications that were developed starting form the Darwin-Kaula
approach turned out to be an effective tool for achieving a very good
understanding of many aspects of tidal torques and tidal dissipa-
tion in the Solar system. However, from a mathematician’s point of
view, in such an approach there are many assumptions that need to
be justified in a rigorous way. Most notably, the whole mechanism
of deduction of forces and torques in then model relies on the as-
sumption that the motion occurs on a fixed Keplerian orbit. This
is certainly “almost true” for all major bodies in the Solar system,
within certain time scales. However, there is no a-priori reason to
expect that such an approximation is good when working on much
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longer time scales, for instance comparable to the lifespan of the So-
lar system. Even computer simulations [8] seem to suggest that on
very long time scales the dynamics of the Solar system is more likely
to appear irregular and chaotic rather than steady and ordered.

For this reason, in the present thesis, we deal the problem of
stability of the synchronous resonance within a much more funda-
mental setting. Since we are interested in studying the asymptotic
stability over an infinite amount of time, we need to get rid of those
approximations which, despite being very good approximations on
time scales which are not too long, are inadequate for studying the
behavior of celestial bodies over infinite times. Since we approach
the problem of stability of the synchronous resonance, and since typ-
ically in the Solar system such a behavior is exhibited by satellites
orbiting their mother planet, we are interested in proving that the
tidal deformation of the satellite itself stabilizes the synchronous res-
onance. Therefore, since in the planet-satellite system the satellite
has a smaller mass (usually much smaller), we consider a different
setting from the Darwin-Kaula one already in the fact that in our
model the pointlike mass is supposed to be immobile, while the de-
formable body (which models the satellite) is supposed to be free to
move in space. What is most important is that we will not make any
assumption about the motion of the center of mass of the satellite
(except the fact that the motion is planar, and only for the results of
orbital stability of Chapter 3). In Chapter 3, we will make the pla-
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nar restriction, which actually corresponds to an assumption of zero
inclination of the axis of rotation of the satellite. However, we would
like to point out that such an assumption has been done in this thesis
with the only aim of simplifying the form of the equations of motion
and consequently simplifying the study of the properties of the dy-
namical system. There is no obstruction in using the same formalism
that we have developed in Chapter 3 for a system where the planar
restriction has been removed. On the contrary, the study of such a
complete 3-dimensional system is a very natural future development
of the results obtained in this thesis. Another point is that, by con-
sidering the planet as a pointlike mass, we actually neglect the effects
of tidal deformation and dissipation in the planet: again, there is no
formal obstruction to the application of our techniques for the study
of a system consisting of two deformable bodies. The introduction
of a deformable planet would only result in a complication of the
equations of motion.

It is worth making some more comments on the existing litera-
ture, in order to better explain why the results that we obtain are not
in contrast with the already existing ones. In particular, in [4–6] a se-
ries of studies is conducted about the stability of spin-orbit resonance.
The point of view that is taken here is the following: consider a rigid
body, whose center of mass revolves around an immobile pointlike
mass on a fixed Keplerian orbit. The rotational motion of this rigid
body has zero inclination and is subject to some effective friction,
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which modifies the speed of rotation of the satellite and which is cal-
culated according to some applications of the classical Darwin-Kaula
theories. In such a context, the stability of spin-orbit resonances is
investigated, and evidence is found that the eccentricity of the orbit is
a very relevant parameter in the selection of the spin-orbit resonance
in which the satellite might get trapped. For instance, on a circular
orbit the satellite will fall on a 1:1 resonance, while with eccentricity
e = 0.205 (the eccentricity of Mercury) the satellite is quite likely to
fall into the 3:2 resonance, which is (locally) asymptotically stable.
As we have anticipated in the introduction, the main result of this
thesis, which is explained in Chapter 2, rules out the possibility that
a non-synchronous resonance is asymptotically stable. Where is the
contradiction? Actually, there is no contradiction. The method used
in [4–6] imposes that the satellite moves on a fixed Keplerian orbit.
The vanishing of the effective friction in this model corresponds to
the fact that < Ω̇ >= 0, in terms of Darwin’s theory explained above.
Anyway, it may very well happen that Ω̇ = 0, but that, at the same
time, secular changes in the parameters of the Keplerian orbit occur.
After a long time, the orbit will have changed and there is no reason
for which, on the new orbit, < Ω̇ >= 0 should hold again. Therefore,
the fact that a 3:2 resonance appears as an equilibrium in a model
with fixed orbit means that, in a model where the orbit parameters
are left free to vary, the 3:2 resonance will be stable for a long time,
but not for an infinite time.
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Of course, a very interesting point is the validation of the Darwin-
Kaula theory. In particular, it would be very relevant to be able to
give an estimate of the time scale of validity of the classical theories of
bodily tides. In our language, the approximation by Darwin consists
in the assumption that the degrees of freedom corresponding to the
configuration of the deformable body adapt themselves with a delay
given by the phase lags. It is very natural to think of this problem
as an application of perturbation theory. We are currently working
at the connection of our model with the Darwin-Kaula theories and
what we are trying to prove is that our model reduces to the one by
Darwin and Kaula at the second order in perturbation theory, the
small parameter being the kinetic energy associated to the bodily
deformations.



Chapter 2

Asymptotic behavior of a
satellite

In this chapter we will refer to a dynamical system consisting of:

(i) a pointlike mass M (which we will sometimes call “planet”),
whose space coordinates are fixed;

(ii) an elastic body with internal friction, of any shape, free to move
in space (and to orbit the pointlike mass M); we will call this
extended body “satellite”.

In order to deal with the point (ii), we must set our study into
the context of the theory of elasticity.

25
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2.1 The setting

We will use the Lagrangian (or material) description of elasticity. In
this approach one defines the so called material space Ω, which is es-
sentially an abstract realization of the elastic body in some reference
configuration. We denote by m the mass of the elastic body, i.e.

m =
∫

Ω
ρ0(x)d3x , (2.1.1)

where ρ0(x0) is the density of the elastic body at the material point
x0, in the reference configuration.

The configuration of the body is a map ζ : Ω → R3, which gives
the position in space of the point x ∈ Ω.

Following the classical theory of elasticity, we define the displace-
ment vector field

u(x) := ζ(x)− x , (2.1.2)

which represents the displacement of each material point from the
position it occupies in the reference configuration. Clearly, the dis-
placement vector field cannot be identified with the deformation of
the body, since, for instance, a rigid translation or rotation of the
body produces a nonzero displacement. However, the displacement
vector field contains all the information about the position of each
material point and, therefore, it contains all the information about
the deformation of the body.

In the linear theory of elasticity, the deformation of an elastic
body is described through the strain tensor εij , which arises in the
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following way. In the neighborhood of a material point x0, the dis-
placement is given by

u(x) = u(x0) +∇u(x0) · (x− x0) (2.1.3)

in the linear approximation. In order to give a physically relevant
description of the local deformation, it is useful to split the gradient
of the displacement ∇u(x0) into its symmetric and skew-symmetric
parts. Precisely, we set

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.1.4)

and
ωij = 1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (2.1.5)

so that
∂ui
∂xj

= εij + ωij , (2.1.6)

where all the tensors and partial derivatives are understood to be
evaluated at x0. In this decomposition, ωij is the skew-symmetric
tensor which describes local rotation, while the symmetric part εij is
the strain tensor, which describes the local deformation.

Then one needs to describe the forces acting within the elastic
body. These forces are of two types: internal tractions and body
forces. The tool for describing internal tractions is given by the stress
tensor σij . Its physical meaning is that σij(x0) is the i-th component
of the internal traction acting upon the plane passing through x0 with
normal vector ej , i.e. the j-th vector of the canonical basis of R3.
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Finally, we denote by f the vector field of body forces per unit
mass acting upon the elastic body.

Imposing the conservation of linear momentum, one gets

ρ
∂2ui
∂t2

= ρfi + ∂

∂xj
σij , (2.1.7)

which is the general equation of motion in the Lagrangian description
of continuum mechanics. Here, ρ(x) is the actual density at the point
x when the body is deformed. Because of the conservation of mass,
ρ is a function of the configuration through

ρ(x) = ρ0(x)
det ∂ζ

∂x (x)
. (2.1.8)

These equations, of course, are largely underdetermined unless
one specifies:

(i) the relation between the displacement vector u and the stress
tensor σ;

(ii) the boundary conditions on the surface of the elastic body.

2.1.1 Constitutive relations

Extended bodies of different materials behave in a different way when
a stress is applied. In particular, varying the material, the same load
of applied stress can produce different deformations. Such mechanical
properties are specified by the so-called constitutive relations, which



CHAPTER 2. ASYMPTOTIC BEHAVIOR OF A SATELLITE 29

give the connection between the stress tensor σ(= σ(x)) and the
strain tensor ε.

In the theory of linear elasticity, the stress tensor is assumed to
be a linear function of the strain, so that, in the purely elastic case,
we have

σ = σel = Bε , (2.1.9)

where B is a linear operator, which may depend on the material point
x if the body is not homogeneous.

When internal friction is considered, one has to take into account
viscous effects and the stress tensor is no more a function of the strain
only, since it depends also on the time derivative of the strain ε̇. As
for the elastic stress, in the linear theories the viscous stress is given
by

σvisc = Aε̇ , (2.1.10)

where, again, A is a linear operator which may depend on the mate-
rial point x.

A simple possibility, when dealing with materials which exhibit
both an elastic and a viscous behavior, is to assume that the total
stress is simply the sum of the elastic and the viscous one, i.e.

σ = σel + σvisc = Bε+ Aε̇ . (2.1.11)

Actually, in order to prove our result, we need not assume that
(2.1.11) holds. Instead, we will make the following assumption.
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Assumption 1. At every material point x, the stress tensor σ is a
function of the strain tensor ε and of its time derivative ε̇:

σ = Fx(ε, ε̇) . (2.1.12)

Moreover, for all fixed x ∈ Ω, the function gx defined by

gx(ε) := Fx(ε, 0) (2.1.13)

is invertible.

Remark 2.1.1. Assumption 1 is satisfied if one assumes the consti-
tutive relation (2.1.11), provided that the linear operator B is invert-
ible.

Remark 2.1.2. Assumption 1 also means that we are neglecting the
possible hereditary behavior of the extended body. In order to take into
account such hereditary effects, one would have to add integral terms,
which would make the stress tensor σ depend on the time history of
the strain tensor ε.

Substituting (2.1.12) into the equation of motion (2.1.7), and pro-
vided that a suitable expression of the body force f as a function of the
body configuration is known, the equation of motion of the extended
body becomes a partial differential equation. In the case under study,
f is the force of gravitation, which is obviously a function of the body
configuration, whose explicit expression will be given in (2.4.3).
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2.1.2 Boundary conditions

In order to have a chance to obtain a well-posed problem, one has to
add suitable boundary conditions to the equation (2.1.7).

For the study of our problem, the most natural thing is to impose
the free-surface boundary condition. This means that, on the surface
of the extended body, the component of the internal traction normal
to the surface of the body vanishes.

Denoting by nx the exterior normal to the surface ζ(∂Ω) at the
point ζ(x) ∈ ζ(∂Ω), we therefore impose the following boundary
condition.

For all x ∈ ∂Ω,
σ · nx = 0 . (2.1.14)

2.2 The Cauchy problem

In the previous section, we have introduced the equation of motion
(2.1.7) of continuum mechanics, which, in particular, holds for the
motion of an elastic body. The natural subsequent step would be
that of searching for solutions to (2.1.7) (together with boundary and
initial conditions) in a suitable function space. In order to discuss
dynamics, one should in principle prove an existence and uniqueness
theorem for the solutions to the Cauchy problem and, in order to use
energy conservation (or dissipation) to prove dynamical properties,
one should also prove that the dynamics is well-posed in the energy
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space, a fact which is in general unknown. To this end, we remark
that, for a given state of the system, which is individuated in the
phase space by the configuration of the body and by its velocity
field, the energy is given by a suitable functional, which has the
structure E(u, u̇) = Ekin(u̇;u) + Epot(u). The potential energy, in
its turn, has the structure Epot(u) = Eg(u) +Esg(u) +Eel(u), where
Eg is the potential energy of the extended body in the gravitational
field generated by M , Eg is the energy of self-gravitation and Eel is
the elastic energy of deformation. In general, the elastic energy is a
nonlinear function of the strain tensor ε = {εij}3i,j=1:

Eel(u) =
∫

Ω
f(ε)d3x . (2.2.1)

In the linear theories of elasticity, this reduces to

Eel(u) =
∫

Ω

3∑
i,j,k,l=1

Bijklεijεkld
3x , (2.2.2)

where Bijkl are the elements of the stiffness tensor.
In this thesis, we will not enter such a kind of mathematical prob-

lems, so we will simply assume these well-posedness properties.

Assumption 2. There exists a function space X such that:
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(i) the Cauchy problem given by the equations
ρ ∂

2ui
∂t2 = ρfi + ∂

∂xj
σij x ∈ Ω

σ · nx = 0 x ∈ ∂Ω
u(0) = u0

u̇(0) = v0

(2.2.3)

admits a unique solution for all initial data (u0, v0) ∈ X.

(ii) The energy functional E(u, v) (as well as Ekin(u̇;u), Eg(u),
Esg(u) and Eel(u)) and its Lie derivative d

dt
E(u, v) along the

flow of (2.2.3) are defined for all (u, v) ∈ X and the inequality

d

dt
E(u, v) ≤ 0 (2.2.4)

is satisfied for all (u, v) ∈ X.
Moreover, in (2.2.4) the equality holds if and only if the sym-
metric part of the gradient of v vanishes. This implies that
d
dt
E(u, u̇) = 0 if and only if the time rate of change of the

deformation vanishes, i.e. if and only if ε̇ = 0.

2.3 LaSalle’s invariance principle

In order to study the dynamics of the system, we will make use
of the so-called LaSalle’s invariance principle. LaSalle’s principle is
a refinement of the classical Lyapunov’s theorem, which allows one
to prove results of asymptotic stability in presence of a Lyapunov
function E satisfying a nonstrict inequality of the type Ė ≤ 0.
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In order to give a formulation of this principle, we now fix some
notation and recall some basic facts and definitions.

Let
ẋ = f(x) x ∈ X (2.3.1)

be a system of differential equations. We denote by ϕ the flow of
(2.3.1), i.e. ϕ(t,x0) is the value, at the time t of the solution to
(2.3.1) with initial datum x0. The flow is a priori well-defined only
locally in time; however, there may be initial points for which the flow
is well-defined for all times, or at least for all positive times. If an
orbit is defined for all positive times, then one can investigate about
the behavior of the orbit, as t → +∞, which involves the definition
of ω-limit.

Definition 2.3.1. Let γ be the orbit of (2.3.1) with initial condition
x(0) = x0. A point y is said to be an ω-limit point of γ if there exists
a sequence of times tn → +∞ such that

lim
n→+∞

ϕ(tn, x) = y . (2.3.2)

Definition 2.3.2. The ω-limit set of an orbit γ is defined as the
union of all the ω-limit points of γ.

When trying to prove results of stability, one has to guarantee
that the ω-limit of the considered orbits is non-empty. To this end,
some compactness assumption is needed. Then, the classical version
of LaSalle’s principle may be enunciated as follows:
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Theorem 2.3.3 (LaSalle’s invariance principle). Let K be a compact
subset of the phase space X. Suppose that E is a real-valued smooth
function defined on K, whose Lie derivative satisfies Ė(x) ≤ 0 for
all x ∈ K. Let M be the largest invariant set contained in N :={

x ∈ K|Ė(x) = 0
}
. Then the ω-limit of every orbit which remains

within K for t > 0 is a non-empty subset of M , which implies that
such an orbit is asymptotic to M .

We remark that the fact that the ω-limit is an invariant set under
the flow of the system of differential equations is a standard fact,
since it is a simple consequence of the group property of the flow.
LaSalle’s principle guarantees that it must also be a set where the
Lie derivative of the function E vanishes. If one thinks of E as the
energy of a system with dissipation, the consequence of the invariance
principle is that the dynamics will lead to an asymptotic situation
where no dissipation is present.

Proof. (LaSalle’s invariance principle) Let γ := {ϕ(t,x0)|t > 0} be
a forward orbit, contained in the compact set K. To begin with,
we remark that the ω-limit of γ is non-empty. If tn is a sequence
of positive times diverging to +∞, then, by the compactness of K,
there exists a subsequence tnk such that x(tnk ) converges to some
x0 ∈ K. Moreover, since compact sets are closed, the ω-limit of γ
is a non-empty subset of K. Now, let y belong to the ω-limit of γ.
Then, to prove that the ω-limit is an invariant set one must show
that ϕ(t,y) belongs to the ω-limit of γ, for all t ∈ R. Now, since y
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belongs to the ω-limit of γ, there exists a sequence tn → +∞ such
that ϕ(tn,x0)→ y. But we have

ϕ(t,y) = ϕ(t, lim
n→+∞

ϕ(tn,x0)) = lim
n→+∞

ϕ(t+ tn,x0) .

Setting sn := t + tn and observing that sn → +∞, we have that
ϕ(t,y) belongs to the ω-limit of γ.

We still have to prove is that the ω-limit must be contained in N .
Let y0 be a point of the ω-limit of γ. Then there exists a sequence
tn → +∞ such that ϕ(tn,x0)→ y0. Now, let

c := E(y0) = lim
n→+∞

E[ϕ(tn,x0)] .

Since E[ϕ(t,x0)] is a time-nonincreasing function,

lim
n→+∞

E[ϕ(tn,x0)] = c

implies
lim

t→+∞
E[ϕ(t,x0)] = c .

Therefore, for all y in the ω-limit of γ, E(y) = c holds. Hence, the
ω-limit is an invariant set contained in a level set of the function E.
Therefore, the Lie derivative of E must vanish at every point of the
ω-limit, i.e. the ω-limit of γ is a subset of N . Since the ω-limit is an
invariant set, it must be a subset of M .

Now, since M ⊂ K, this implies that the orbit is asymptotic
to the set M . In fact, suppose by contradiction that there exist
δ > 0 and a sequence tn → +∞ such that dist(x(tn),M) ≥ δ. The
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sequence x(tn) is contained in the compact set K, therefore the set
Ω of accumulation points of x(tn) is a nonempty subset of K. Since
dist(x(tn),M) ≥ δ, we have Ω ∩M = ∅. But, reasoning exactly in
the same way as above in the proof, one can show that Ω ⊂M , which
leads to a contradiction.

This concludes the proof of the invariance principle.

The classical version of LaSalle’s principle can be slightly modified
for our aims. We first give the following definition.

Definition 2.3.4. Let S be an invariant subset of the phase space.
We say that S is stable (in the future) if the following condition is
satisfied.
For all ε > 0, there exists δ > 0 such that, if dist(x0, S) < δ, then
dist(ϕ(t, x0), S) < ε for all (positive) times.

If we replace the compactness assumption in the invariance prin-
ciple by simply requiring that the orbit encounters the compact set K
at some diverging sequence of positive times and we repeat the same
proof as for the classical version, we get the following proposition.

Proposition 2.3.5. Let K be a compact subset of the phase space
X. Suppose that E is a real-valued smooth function defined on X,
whose Lie derivative satisfies Ė(x) ≤ 0 for all x ∈ X. Let M be the
largest invariant set contained in N :=

{
x ∈ X|Ė(x) = 0

}
. Let γ :=

{ϕ(t, x0)|t > 0} be a forward orbit, such that ϕ(tn, x0) is contained in
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K for some sequence of positive times tn → +∞. Then the ω-limit
of γ is a non-empty subset of M .

The asymptotic stability, under this weaker compactness assump-
tion, is recovered when the invariant set M is stable, in the sense of
Definition 2.3.4.

Corollary 2.3.6. Let K be a compact subset of the phase space
X. Suppose that E is a real-valued smooth function defined on X,
whose Lie derivative satisfies Ė(x) ≤ 0 for all x ∈ X. Let M be
the largest invariant set contained in N :=

{
x ∈ X|Ė(x) = 0

}
. Let

γ := {ϕ(t, x0)|t > 0} be a forward orbit, such that ϕ(tn, x0) is con-
tained in K for some sequence of positive times tn → +∞. If the set
M is stable in the future, then γ is asymptotic to M in the future.

Proof. Fix ε > 0. Then, by Definition 2.3.4, there exists δ = δ(ε)
such that, if dist(x0,M) < δ, then dist(ϕ(t,x0),M) < ε for all
positive times. We apply Proposition 2.3.5 to the orbit γ and we
have that there exist y ∈ M and a sequence sn → +∞ such that
ϕ(sn,x0) → y, which implies dist(ϕ(sn,x0),M) → 0. Therefore,
there exists n0 such that dist(ϕ(sn0 ,x0),M) < δ(ε). This implies
that dist(ϕ(t,x0),M) < ε for all t > sn0 .

2.4 Characterization of non-dissipating orbits

In this section, we come back to the study of the system constituted
by a fixed pointlike massM and an elastic body whose properties are
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described in the first section of this chapter.
We will consider solutions to (2.1.7), with boundary conditions

and constitutive relations specified respectively by Assumption (2.1.14)
and by Assumption (2.1.12).

In the equation (2.1.7), we have to specify the expression of the
body force f as a function of the body configuration. In the case
under study, the only external force acting on the deformable body
is the gravitational force, which is the sum of the force exerted by
the pointlike mass M and the force of self-gravitation, i.e. the force
of gravity that on each portion of the deformable body is exerted by
the rest of the body.

Denoting by G the gravitational constant, the potential generated
by M at the material point x is given by

VM (x) := − GM

|ζ(x)| , (2.4.1)

while the potential of self gravitation is

Vsg(x) := −
∫

Ω

Gρ(y)
|ζ(y)− ζ(x)|d

3y , (2.4.2)

where it is worth noting again that the density ρ is function of the
body configuration through (2.1.8).

The body force f is the gradient of the gravitational potential and,
therefore, is given by

f = fM + fsg = ∇(VM + Vsg) . (2.4.3)
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Since the main result that we will obtain in the next section is a
consequence of LaSalle’s principle, it is crucial to give a characteri-
zation of those solutions to (2.1.7) such that there is no dissipation
of energy, i.e. d

dt
E(u, u̇) = 0 along the solution.

What we prove in this section is that the non-dissipating condi-
tion can be fulfilled only if the pointlike mass M is immobile in the
reference frame of the extended body.

The heuristic idea behind the result stated in this section is the
following: if there is no dissipation, then it means that the deforma-
tion of the body does not change in time, i.e. the motion is rigid-like.
Now, fix a reference frame co-moving with the extended body. Con-
sider the forces acting on the body: in the body frame, the stress
tensor is constant in time, and the self-gravitation force is also con-
stant, since the motion is rigid-like. The fact that the motion is
rigid-like suggests that also the gravitational force due to the body
M should not vary in time (in the body frame), otherwise there would
be some change in the deformation. Of course, this is not obvious
and it is what one really has to check.

Theorem 2.4.1. Let u(t) be a solution to (2.1.7), with constitutive
relations as in Assumption 1 and body force given by (2.4.3), such
that

d

dt
E(u, u̇) = 0 . (2.4.4)

Then, in a reference frame co-moving with the extended body, the
position of the pointlike mass M is constant in time.
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Proof. First of all, we remark that, due to Assumption 2, item (ii),
the relation (2.4.4) is equivalent to requiring that ε̇ = 0, i.e. at each
material point the strain tensor is constant in time. Note that, due
to Assumption 1, this implies that also the stress tensor σ is constant
in time at each material point. Since the strain tensor is constant
at each point, then the body moves in space like a rigid body. In
order to clarify this point, we observe that, if ε̇ = 0, then the time
derivative of the tensor of infinitesimal rotation ω̇ must be the same
for all points of the deformable body. To prove this, fix a point
x0 ∈ Ω. Then we prove that

ω̇(x) = ω̇(x0)

for all x ∈ Ω. In fact, let γ be a path connecting x0 to x in Ω.
Then, the value of ω(x) can be reconstructed from ω(x0) through
the integration of a suitable first order differential form on the path
γ:

2ωij(x) = ∂ui
∂xj

(x)− ∂uj
∂xi

(x) = (2.4.5)

= 2ωij(x0) +
∫
γ

3∑
l=1

∂2ui
∂xj∂xl

dxl −
∫
γ

3∑
l=1

∂2uj
∂xi∂xl

dxl .

Through the definition of the strain tensor, we have

∂ui
∂xl

= 2εil −
∂ul
∂xi

. (2.4.6)
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Differentiating with respect to xj , we find:

∂2ui
∂xj∂xl

= 2∂εil
∂xj
− ∂2ul
∂xj∂xi

. (2.4.7)

Exploiting (2.4.7), we can rewrite (2.4.5) as

2ωij(x) = 2ωij(x0) +
∫
γ

3∑
l=1

(
2∂εil
∂xj
− ∂2ul
∂xj∂xi

)
dxl +

−
∫
γ

3∑
l=1

(
2∂εjl
∂xi
− ∂2ul
∂xi∂xj

)
dxl =

= 2ωij(x0) + 2
∫
γ

3∑
l=1

(
∂εil
∂xj
− ∂εjl
∂xi

)
dxl . (2.4.8)

Now, differentiating with respect to time and exploiting ε̇ = 0, we
have

ω̇ij(x) = ω̇ij(x0) . (2.4.9)

The condition of rigid motion may be expressed by saying that for
all times there exists a vector ν (function of time, but independent of
the material point), which is the angular velocity of the body, such
that, for any fixed x0 ∈ Ω, the equation

ζ̇(x)− ζ̇(x0) = ν ∧ [ζ(x)− ζ(x0)] (2.4.10)

holds for all x ∈ Ω. Differentiating with respect to time, we obtain

ζ̈(x)− ζ̈(x0) = ν ∧
[
ζ̇(x)− ζ̇(x0)

]
+ ν̇ ∧ [ζ(x)− ζ(x0)] . (2.4.11)
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Substituting (2.4.10) in (2.4.11), we get

ζ̈(x)− ζ̈(x0) = ν∧{ν ∧ [ζ(x)− ζ(x0)]}+ν̇∧[ζ(x)− ζ(x0)] . (2.4.12)

Now, let us work in the physical space instead of the material
one, denoting by ξ the Cartesian coordinates of the physical space.
Denoting by a and a0, respectively, the accelerations at ξ and ξ0, the
equation (2.4.12) above can be rewritten as

ξ̈ − ξ̈0 = ν ∧ [ν ∧ (ξ − ξ0))] + ν̇ ∧ (ξ − ξ0)) . (2.4.13)

This equation holds for all times. In particular, (2.4.13) implies that,
for all times, the acceleration field is a linear function of the position
in the physical space.

If we look back at the structure of equation (2.1.7), we notice that
it is nothing else but the local form of Newton’s law: the acceleration
at each point (note that a = ü) equals the total force (which is the
sum of body forces and internal stresses) per unit mass acting on
the same point. But this observation, together with (2.4.13), implies
that for each fixed time, the total force per unit mass is a linear
function of the position inside the body. In particular, this implies
that the second (and higher order) differential with respect to the
space variables of the total force per unit mass is identically zero.

In other words, for any fixed time, we have that

d2

dξ2

(
fi + 1

ρ

∂

∂xj
σij

)
= 0 , (2.4.14)
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where the terms fi and ∂
∂xj

σij must be thought of as functions of
the ξ variables. This is a geometric property of the field of forces
acting upon the extended body, which is verified for all times and
is independent of the reference frame. In fact a change of reference
frame is not a generic change of coordinates: changing the reference
frame corresponds to making a linear change of coordinates and the
property of linearity of a vector field is conserved when applying a
linear change of coordinates.

Now, since the motion of the body is rigid, we can fix a refer-
ence frame in which the extended body is immobile. We say that
such a reference frame is co-moving with the body and we denote
by χ = L(t)(ξ) the coordinates in the co-moving frame, L(t) being
the composition of a translation and a rotation. Now, recall that the
body force is simply the sum of the external gravitational force and
the force of self-gravitation. Then, (2.4.14) can be rewritten as

d2

dχ2

(
fMi + fsgi + 1

ρ

∂

∂xj
σij

)
= 0 . (2.4.15)

Notice that the condition of rigid motion implies that, in the co-
moving frame, fsgi, ρ and ∂

∂xj
σij are constant in time. Therefore,

we have also

d

dt

[
d2

dχ2

(
fsgi + 1

ρ

∂

∂xj
σij

)]
= 0 . (2.4.16)

Then, differentiating (2.4.15) with respect to time and subtracting
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(2.4.16), we have
d

dt

(
d2

dχ2 fMi

)
= 0 . (2.4.17)

What we still have to prove is that (2.4.17) implies that the point-
like mass M must be immobile in the co-moving frame. To this end,
we have to compute the second differential of the gravitational field
generated by M . Since the gravitational field is (except for the sign)
the first differential of the gravitational potential, what we actually
have to do is to compute the third differential of the gravitational po-
tential generated byM . In a system of spherical coordinates (r, θ, φ),
centered at M , the potential has the expression

VM (r, θ, φ) = −GM
r

. (2.4.18)

At first glance, one might think that calculating the third differential
in spherical coordinates should require using the complicated expres-
sion of the third differential in spherical coordinates, but the spherical
symmetry allows us to do a straightforward computation in Carte-
sian coordinates and deduce the expression in spherical coordinates.
The expression of the gravitational potential in Cartesian coordinates
x, y, z (centered at M) is

VM (x, y, z) = − GM

(x2 + y2 + z2)
1
2
. (2.4.19)

Since the expression is symmetric in the three variables x, y, z, there
are only three third-order partial derivatives that we have to com-
pute, the other ones being obviously obtainable by symmetry. The
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computations yield

∂3VM
∂x3 (x, y, z) = 3GMx(2x2 − 3y2 − 3z2)

(x2 + y2 + z2)
7
2

(2.4.20)

∂3VM
∂x2∂y

(x, y, z) = 3GMy(4x2 − y2 − z2)
(x2 + y2 + z2)

7
2

(2.4.21)

∂3VM
∂x∂y∂z

(x, y, z) = 15GMxyz

(x2 + y2 + z2)
7
2
. (2.4.22)

The next step is simply to evaluate these partial derivatives in a point
of the form (x0, 0, 0), so that x represents the radial direction and y, z
represent any direction orthogonal to the radial one. We find

∂3VM
∂x3 (x0, 0, 0) = 6GM

x04 (2.4.23)

∂3VM
∂x∂y2 (x0, 0, 0) = ∂3VM

∂x∂z2 (x0, 0, 0) = −3GM
x04 , (2.4.24)

all the other partial derivatives being zero, when evaluated at (x0, 0, 0).
By the spherical symmetry of the potential, we deduce the general
expressions in spherical coordinates

∂3VM
∂r3 (r, θ, φ) = 6GM

r4 (2.4.25)

∂3VM
∂r∂θ2 (r, θ, φ) = ∂3VM

∂r∂φ2 (r, θ, φ) = −3GM
r4 (2.4.26)

∂3VM
∂θ3 = ∂3VM

∂φ3 = ∂3VM
∂r2∂θ

= ∂3VM
∂r2∂φ

= 0 (2.4.27)
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∂3VM
∂φ∂θ2 = ∂3VM

∂φ2∂θ
= ∂3VM
∂r∂θ∂φ

= 0 . (2.4.28)

We have said that the third differential of the potential VM must
be constant in time at any point of the extended body, in the co-
moving frame. Actually, it will be enough to impose the condition
that along the motion the third differential of the potential is con-
served at a fixed point in the extended body, which is the image
through the configuration map ζ(t) of a fixed material point x0. Now,
let us consider a reference frame with origin at the point ζ(x0) and
axes oriented along the r, θ and φ directions. A priori such a refer-
ence frame is not necessarily co-moving with the extended body. The
components of a vector X in this reference frame will be denoted by
Xr, Xθ, Xφ.

The third-order differential of VM is a trilinear form, which has
an associated cubic form

C(X) := d3VM (ζ(x0))(X,X,X) = (2.4.29)

= 3GM
|ζ(x0)|4

[
Xr
(
2Xr2 − 3Xθ2 − 3Xφ2)]

Now, the conservation of the third differential of VM implies that, in
the co-moving frame, also the cubic form C must be constant, i.e.
given any vector Xc(t) co-moving with the extended body,

d

dt
C[Xc(t)] = 0 (2.4.30)

must hold. This obviously implies that also the set of zeros of the
cubic form must be conserved in the co-moving frame. Now, the set
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of zeros of C is

Z =
{
X ∈ R3|Xr

(
2Xr2 − 3Xθ2 − 3Xφ2) = 0

}
,

which is the union of a plane orthogonal to the radial direction and a
circular cone, whose axis is oriented along the radial direction. This
argument shows that the radial direction (i.e. the direction of the
line joining the pointlike massM with ζ(x0)) must be fixed in the co-
moving frame. In other words, we can choose a co-moving frame with
origin at ζ(x0) in such a way that one of the axes is always oriented
along the radial direction: we choose this axis to be oriented from M

to ζ(x0). We denote the unit vector associated to this axis with er,
so that the unit vectors of the co-moving frame will be (er, ey, ez),
ey and ez being chosen arbitrarily. In this way, the coordinates of M
in the co-moving frame are (−|ζ(x0)|, 0, 0).

Now, observe that

C(er) = 6GM
|ζ(x0)|4 . (2.4.31)

This, together with (2.4.30), implies that |ζ(x0)| must be constant in
time. Finally, this implies that the pointlike mass M is immobile in
the co-moving frame, which ends the proof of the theorem.

In accordance with LaSalle’s principle, we define the non-dissipating
manifold and the largest invariant set contained in it.

Definition 2.4.2. The non-dissipating manifold is

ND :=
{

(u, v) ∈ X| d
dt
E(u, v) = 0

}
.
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Definition 2.4.3. We define NDinv to be the largest invariant set
contained in ND.

We remark that, if the pointlike massM occupies a fixed position
in the co-moving frame, then the extended body shows always the
same face to M , which is exactly what happens when the satellite is
in synchronous resonance.

Then, the consequence of Theorem 2.4.1 is that NDinv is a union
of orbits of constant radius such that the extended body moves rigidly
along the orbit in synchronous resonance. In non-degenerate cases,
NDinv is expected to be made up of a single orbit. In the next
chapter, we will provide an example of both non-degenerate and de-
generate cases.

2.5 The “three outcomes” theorem

In this section we exploit LaSalle’s principle in order to prove what we
call the theorem of the “three outcomes”. The meaning of the theorem
is that, in a system made up of an elastic satellite with friction and
a pointlike planet whose space coordinates are fixed, there are only
three admissible outcomes for the final behavior of the satellite:

(i) the satellite is expelled to infinity;

(ii) the satellite falls on the planet;

(iii) the satellite is captured in synchronous resonance.
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For the discussion of the present section, it is convenient to isolate
the motion of the center of mass of the satellite from the rest of the
information related to the body configuration. Therefore, we define
the center of mass

X = 1
m

∫
Ω
ζ(x)ρ(x)d3x (2.5.1)

and the “centered configuration”

v(x) := ζ(x)−X . (2.5.2)

of course, knowing X and the centered configuration v(x) is equiva-
lent to knowing the whole configuration ζ(x). Therefore, the Cauchy
problem (2.2.3) can be reformulated in terms of X and v. In this
way we are decomposing the phase space as

(
R3 \ {0}

)
× R3 × Y ,(

R3 \ {0}
)
× R3 being the space where position and velocity of X

live and Y being defined as the phase space related to the centered
configuration v.

In order to prove our result, we need some definitions and tech-
nical hypotheses. First of all, we need to deal with the case of the
impact between the satellite and the planet M . We remark that the
problem has a singularity, in the sense that the equations of motion
are not defined if the position a point of the satellite coincides with
the position of the planet M , i.e. if there exists a point x0 ∈ Ω such
that ζ(x0) = 0.
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Definition 2.5.1. A solution to the Cauchy problem (2.2.3) (with
any initial datum) is said to be impacting the planet (in the future)M
if for all ε > 0 there exists a time t > 0 such that dist(ζ(Ω, t), 0) < ε.

Then we make the following assumption about the existence time
of solutions to (2.2.3).

Assumption 3. The existence time of a solution to (2.2.3) is infinite
(in the future) if and only if the solution is not impacting the planet.

We observe that this assumption implies that, if an impact is
there, it takes a finite amount of time for the impact to occur. More-
over, it rules out the possibility of the occurrence of any sort of
blow up which might correspond to some fracture, disintegration,
or, generally speaking, singularity formation in the configuration of
the satellite.

Then the following proposition is immediate.

Proposition 2.5.2. A solution is not impacting the planet if and
only if there exists δ > 0 such that dist(ζ(Ω, t), 0) ≥ δ for all times
t > 0.

The next assumption is a rather technical one: in fact, LaSalle’s
invariance principle applies to orbits contained in a compact set. At
the same time, bounded subsets of infinite-dimensional spaces are not
necessarily pre-compact. In our case, what we need to assume is a
usual fact in viscous-type equations. A typical effect of viscosity is the
damping of high-frequency modes, which leads to pre-compactness
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properties of orbits in the future. Such properties are usually de-
duced by performing estimates which make use of the explicit form
of the equations of motion. In our case, since we are dealing with
quite a general setting, and we have no explicit expressions for the
constitutive equations, we assume the following property.

Assumption 4. For any initial datum, the solution to (2.2.3) is
such that the corresponding future orbit {(v(t), v̇(t))|t > 0} ⊂ Y of
the centered configuration is pre-compact.

Finally, we assume the following property about the energy of the
satellite.

Assumption 5. The functional

F (u) := Esg(u) + Eel(u)

is bounded below.

We remark that the above assumption is satisfied if, in partic-
ular, the satellite has an equilibrium configuration under the effect
of elastic stresses and self-gravitation which globally minimizes the
associated energy.

We are now ready to state the main theorem.

Theorem 2.5.3 (Theorem of the three outcomes). Let Assumptions
1, 2, 3, 4 and 5 be satisfied. Then, for a solution to (2.2.3), one of
the following three (future) scenarios must occur:
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(i) the trajectory of the center of mass X is unbounded;

(ii) the solution impacts the planet;

(iii) the solution is asymptotic to the non-dissipating invariant man-
ifold NDinv.

Proof. The proof of the theorem is actually a simple application of
LaSalle’s invariance principle. We are going to prove that any future
orbit which does not satisfy either (i) or (ii) must necessarily satisfy
(iii).

Let therefore γ be the orbit corresponding to the solution to
(2.2.3), for some given initial data. Assume that γ does not sat-
isfy either (i) or (ii). Then, by Proposition 2.5.2, we can conclude
that the future trajectory ofX is bounded above and below, i.e. there
exist k,K > 0 such that k ≤ |X| ≤ K for all times.

In order to conclude that the velocity Ẋ is bounded, we first look
at the form of the energy functional

E(u, u̇) = Ekin(u, u̇) + Eg(u) + Esg(u) + Eel(u) .

Observe that the sum Esg(u)+Eel(u) is bounded below, by Assump-
tion 5. Furthermore, Eg(u) is bounded below because, by Proposition
2.5.2, there exists δ such that dist(ζ(Ω), 0) ≥ δ for all times. Then,
by the non-increasing energy inequality (2.2.4), we can conclude that
the kinetic energy Ekin(u, u̇) is bounded above in the future. Then,
by König’s second theorem, the total kinetic energy must be greater
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or equal to the kinetic energy of the center of mass of the satel-
lite. Therefore, the kinetic energy of the center of mass of the satel-
lite must be bounded above in the future, which implies that Ẋ is
bounded above in the future.

Then, since the future orbit of (X, Ẋ) is contained in a com-
pact subset of

(
R3 \ {0}

)
× R3 and the future orbit of the centered

configuration (v, v̇) is pre-compact, then the future orbit of (u, u̇)
is pre-compact in X. Therefore, we can apply LaSalle’s invariance
principle, which states that the solution is asymptotic to the non-
dissipating invariant manifold NDinv, which concludes the proof of
the theorem.

2.5.1 Comments about the meaning of the theorem of
the three outcomes

In order to understand the content of the theorem of the three out-
comes, we should first remark what it does not say. First of all, the
theorem in itself says nothing about the stability of the synchronous
resonance. At the same time, if one is able to prove the orbital sta-
bility of the synchronous resonance (which, apart from the matter of
giving a rigorous proof, is something which is strongly expected to
be true), then the local asymptotic stability is a trivial consequence
of the theorem.

Some comment is needed about the meaning of the three out-
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comes.
Let us first consider the outcome (i), i.e. the case of unbounded

orbit. The fact that the trajectory of the center of mass of the satel-
lite is unbounded does not necessarily mean that it tends to infinity.
In fact, one cannot a priori rule out the possibility that, along with
an unbounded trajectory of the center of mass, there exist R > 0
and tn → +∞ such that |X(tn)| < R. Anyway, if one can prove the
orbital stability of the synchronous resonance, then a simple appli-
cation of 2.3.6 proves that an unbounded trajectory of the center of
mass must actually tend to infinity. In fact, under the assumption of
orbital stability, one proves that, if there were R > 0 and tn → +∞
such that |X(tn)| < R, then the orbit should be asymptotic to the
synchronous resonance, which cannot be the case if the orbit is un-
bounded.

The outcome (ii) has the clear meaning of a planet-satellite colli-
sion and does not need any further explanation.

The outcome (iii) is the one we informally refer to as asymptot-
ically being trapped into the synchronous resonance, since the char-
acterization explained in Section 2.4 shows that the only possible
non-dissipating behavior of the satellite is that of synchronous reso-
nance, in the sense that the satellite always shows the same face to
the planet, revolving about it at a fixed distance. Actually, in the
least degenerate case, where the non-dissipating invariant manifold
NDinv is made up of only one orbit, the outcome (iii) clearly implies
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asymptoticity to such an orbit; however, in presence of very degen-
erate non-dissipating invariant manifolds, the outcome (iii) could a
priori not result in asymptoticity to a synchronous resonant orbit.
In order to perform some more accurate analysis of the manifold
NDinv, one should add some assumptions about the structure of the
satellite. However, in the next chapter we analyze, in the planar
approximation (which we will specify in the next chapter), the two
relevant cases of a triaxial satellite and of a satellite with spherical
symmetry. In the triaxial case, the non-dissipating invariant manifold
turns out to be completely non-degenerate; in the spherically sym-
metric case, the non-dissipating invariant manifold turns out to be a
slightly degenerate one, in a sense that we will discuss later. In such
a slightly degenerate situation, the outcome (iii) can still be referred
to as asymptotically approaching the synchronous resonance.

A remarkable fact is that, anyway, the discussion of the present
chapter excludes the possibility that other periodic orbits exist, dif-
ferent from the synchronous resonant ones. This may seem quite
surprising, since, for instance, some celestial bodies are known to be
trapped in spin-orbit resonances different from the synchronous one
(think, for example, of the 3:2 of Mercury, seen as a satellite of the
Sun). At the same time, from our point of view, it is natural to think
that any periodic orbit different from the synchronous resonant one
would cause some periodic deformation of the satellite. Such a peri-
odic deformation would, in turn, produce some periodic dissipation.
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But one cannot continue dissipating periodically the same amount
of energy for an infinite time, since this would lead the energy to
−∞, implying that a collision is going to occur. Our interpretation
is that situations like the 3:2 resonance of Mercury are very likely to
be metastable, and it would be very interesting to investigate further
in this direction. For instance, one could try to give an estimate of
the time of such a metastability: it would not be so surprising if such
a time were of the same order of magnitude as the estimated lifespan
of the Solar system.





Chapter 3

Orbital stability

In this chapter, as we did in the previous one, we will deal with a
dynamical system made up of a a pointlike mass M (the “planet”),
whose space coordinates are fixed at the origin of the Euclidean space
R3, and an elastic body (the “satellite”) with internal friction, subject
to the force of gravity exerted by M .

Our aim here is to prove the orbital stability of the synchronous
resonance. We will give the proof of the stability in two cases:

(i) triaxial satellite;

(ii) satellite with spherical symmetry.

The proof of the orbital stability will be done under some approx-
imations. Namely, we will make the planar approximation (which we

59
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will explain later) and we will truncate the expansion of the gravi-
tational potential at the quadrupole terms, neglecting higher order
effects.

In both cases, we make the convenient assumption that the elas-
ticity moduli of the satellite are very large.

Before making some kinematic considerations, let us say what we
mean by “triaxial satellite”. To this end, we have to recall some basic
facts about moments and axes of inertia.

We first need to recall what the matrix of inertia is. In principle,
one may evaluate the matrix of inertia of an extended body with
respect to any point in space; however, we will always refer to the
matrix of inertia evaluated with respect to the center of mass.

Let B be an extended body which occupies a volume V in the
three-dimensional Euclidean space. Fix a Cartesian frame of refer-
ence (x, y, z), with origin in the center of mass of B and let ρ(x, y, z)
be the density function of B. Then the matrix of inertia of B is a
symmetric matrix  I11 I12 I13

I12 I22 I23

I13 I23 I33


where

I11 =
∫ ∫ ∫

V

ρ(x, y, z)(y2 + z2)dxdydz (3.0.1)

I22 =
∫ ∫ ∫

V

ρ(x, y, z)(x2 + z2)dxdydz (3.0.2)
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I33 =
∫ ∫ ∫

V

ρ(x, y, z)(x2 + y2)dxdydz (3.0.3)

I12 = −
∫ ∫ ∫

V

xyρ(x, y, z)dxdydz (3.0.4)

I13 = −
∫ ∫ ∫

V

xzρ(x, y, z)dxdydz (3.0.5)

I23 = −
∫ ∫ ∫

V

yzρ(x, y, z)dxdydz . (3.0.6)

Since the matrix of inertia is a real symmetric matrix, it has real
eigenvalues. The eigenvalues of the matrix of inertia are the principal
moments of inertia of B. If the three eigenvalues are distinct, then
the directions of the three associated eigenvectors are well defined
and individuate the principal axes of inertia of B.

As we will show later, the principal moments and axes of inertia
are very relevant objects in the study of our problem. On the one
side, the kinematic study of extended bodies rotating in space in-
volves the concept of moment of inertia. On the other side, which is
more specific to our problem, if one expands in multipoles the grav-
itational interaction of an extended body with a pointlike mass and
neglects terms beyond quadrupole, the only relevant parameters of
the extended body (apart from its mass and the position of its center
of mass) are found to be the principal moments of inertia and the
directions of the principal axes of inertia.

A rigid body is called triaxial if its three moments of inertia are
distinct. In our framework, we deal with a body (the satellite) which



CHAPTER 3. ORBITAL STABILITY 62

is not rigid. When we talk about triaxiality of the satellite, we mean
that the satellite is triaxial when it reaches its configuration of equilib-
rium between the elastic and self-gravitating forces. In other words,
the satellite is triaxial if the three eigenvalues of the matrix of inertia
are distinct when the satellite is in such an equilibrium configuration.

In the triaxial case, the orbital stability of the synchronous res-
onance is a consequence of the orbital stability for a triaxial rigid
body, the deformable case being a small perturbation of the rigid
one.

In the spherically symmetric case, instead, there is no orbital
stability of the synchronous resonance for a rigid body, and such a
stability appears as a consequence of the tidal deformation of the
satellite.

For this reason, the proof of orbital stability will be quite straight-
forward in the triaxial case, while it will require a careful and rather
technical kinematic analysis in the spherically symmetric case.

3.1 General setting and global rotations

Let us now recall some notation we have already used in the pre-
vious chapter, only to fix ideas. Let Ω be the material space and
let ζ : Ω → R3 be the body. In this chapter we assume that, in
the reference configuration ζ0(x) = x, elastic forces and forces of
self-gravitation are in equilibrium in the satellite. As in the previ-
ous chapter, we denote by ρ0 : Ω → R the density function in the
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reference configuration and by ρ : Ω → R the density function in a
generic configuration ζ, which is related to ρ0 by (2.1.8). Without
loss of generality, we assume that the center of mass in the reference
configuration is at the origin, i.e.∫

Ω
xρ0(x)d3x = 0 . (3.1.1)

The map ζ describes both the deformation of the body and its
position and rotation in space, so it is natural to try to decompose ζ
into a rigid translation, a rigid rotation and an internal deformation.
As in the previous chapter, we define the center of mass of the body
by

X = 1
m

∫
Ω
ζ(x)ρ(x)d3x , (3.1.2)

and decompose the configuration vector field ζ as

ζ(x) = X + v(x) , (3.1.3)

where v is such that ∫
Ω
v(x)ρ(x)d3x = 0 . (3.1.4)

Denote by C the space of the v’s such that (3.1.4) holds.

Remark 3.1.1. The space C is an infinite dimensional function
space, so in order to discuss dynamics one should introduce a suitable
norm in it, prove an existence and uniqueness theorem for the solu-
tions to the Cauchy problem and, in order to use energy conservation
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(or dissipation) to prove dynamical properties, one should also prove
that dynamics is well posed in the energy space, which is in general
unknown [26].

Here, we do not want to enter such a kind of mathematical prob-
lems, so we will simply assume existence and uniqueness for the so-
lutions to the Cauchy problem and well-posedness of the dynamics
in the energy space.

Now the body configuration is uniquely parameterized through
the position X of the center of mass and the function v ∈ C. The
reference configuration corresponds to X0 = 0, v0(x) = x.

Then we would like to factor out rotations in a way similar to
translations, however this requires a careful discussion. The point is
that it is clear what it means to rotate a body, but it is not clear how
to say that a deformation does not rotate the body: as we will see,
this is not a well defined concept.

To understand this point, we recall the standard analysis of the
local deformation in linear elasticity theory, as explained in the previ-
ous chapter. Fix a point x0 ∈ Ω. Then, the displacement vector field
is defined by u(x) := ζ(x)− x. The gradient ∇u(x0) is decomposed
as the sum of its symmetric part ε and its skew-symmetric part ω.
Then, at the point x0, the local deformation is described by the strain
tensor ε, while the skew-symmetric part of the gradient ω describes
the local rotation. Thus, at a local level, the separation between
deformation and rotation is well-defined and completely standard.
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On the other hand, when considering the global configuration, the
situation is more complicated, because it is not trivial at all to answer
the following question. Let the configuration ζ be assigned. Is the
corresponding displacement vector field u a “pure deformation”, in the
sense that it does not “globally rotate the body”, or is it given by the
composition of a rotation of the body with some “pure deformation”?

The answer to this question is easy if one considers only affine
deformations, i.e. if one allows only displacements whose gradient is
spatially constant. In fact, in this case, the rotation is simply de-
scribed by the skew-symmetric part of the gradient of the displace-
ment (evaluated at any point, since it is constant).

Nevertheless, if one wants to deal with general displacement fields,
no obvious answer can be given to the previous question. One could
try to give some reasonable definitions of what a “pure deformation”
is. For instance, we could fix x0 ∈ Ω and say that u is a “pure de-
formation” if the displacement, locally at x0, does not contain any
rotation, i.e. ∇u(x0) is symmetric. Anyway, this seems quite ar-
bitrary; moreover, different choices of x0 would result in different
definitions of “pure deformation”.

In order to make it independent of the particular choice of a point,
one could try to give the definition of “pure deformation” through an
integral condition. This is done, for instance, in [31, 35], where such
a definition (in the case of an incompressible homogeneous body) is
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given by imposing that the integral of the curl vanishes, i.e.∫
Ω

curl(u(x))d3x = 0 . (3.1.5)

But the choice of this definition is again arbitrary.
The real point is that there is no natural way of defining what it

means that a displacement does not globally rotate the body. How-
ever, it is even trivial to explain what it means to rotate a body or
to say that a configuration is obtained by rotating another configu-
ration. Mathematically, this corresponds to the fact that there exists
a group action A1 of the rotation group SO(3) on the configuration
space C, defined by

A1 : SO(3)× C → C

(Γ, v) 7→ Γv . (3.1.6)

This group action allows one to introduce a structure of principal fibre
bundle in C, the base manifold being the quotient M := C/SO(3).
The elements of such a quotient manifold are what one could call
“pure deformations”.

The fact that the quotient of a manifold under a group action is
still a manifold is not always true, so we have to recall some basic
facts about group actions in order to justify our assertion.

Definition 3.1.2. Let G be a group acting on a set X. The action
is said to be free if the following condition is verified: if there exist
x ∈ X and g ∈ G such that gx = x, then g is the identity.
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Definition 3.1.3. The action of a topological group G on a topolog-
ical space X is said to be proper if the mapping

G×X → X ×X (g, x) 7→ (gx, x)

is proper, i.e., inverses of compact sets are compact.

Theorem 3.1.4. Let G be a topological group acting on a topological
space M . If G is compact, then the action is proper.

Theorem 3.1.5. If a Lie group G acts freely and properly on a
smooth manifold, then the quotient M/G is a smooth manifold.

In our case, the fact that SO(3) is a compact group and that the
action A1 is obviously free implies that M is a manifold.

As usual in this geometric context, it is useful to introduce coordi-
nates in which a point of C is represented by an element of SO(3) and
an element of the base manifold. However a concrete representation
of the elements of the quotient manifold can be obtained only locally,
by introducing a local section of the bundle, namely by choosing a
submanifold S of C, transversal to the group orbit. Now it is clear
that there are infinitely many possible choices of the section of the
bundle, which correspond to infinitely many admissible definitions of
“pure deformations”. Nonetheless, the physics is independent of the
choice of the section S: a change in the choice of the section simply
results in a change of coordinates. The fact that the section is only
local is not a problem, as long as only small deformations are allowed.
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Now, let A1(v0) be the orbit of the reference configuration under
the action of the group SO(3). Once the section has been chosen,
it naturally induces a smooth one-to-one correspondence between a
neighborhood of A1(v0) (obtained as the union of the orbits of the
points of S under the group action A1) and SO(3)×S. Such a cor-
respondence allows one to parameterize the space C of configurations
through an element of the group SO(3) and a point of the section
S. In the context of classical mechanics, this is useful, since, due
to the isotropy of space, the Lagrangian of the body is going to be
independent from the element of SO(3) and will depend only on the
variable belonging to S.

We remark that the machinery we have just introduced describes a
general fact, which is independent of all the assumptions we will make
later in the paper. We can summarize the result of our discussion in
the following theorem:

Theorem 3.1.6. There exist a neighborhood U ⊂ C of A1(v0) and a
one-to-one smooth function f : SO(3)×S→ U with the property that
f(Γ, w) = A1(Γ)w. Therefore, Γ and w can be used as coordinates
on the configuration space C.
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3.2 The matrix of inertia as a function of the con-
figuration

Since the satellite is deformable, in our setting the matrix of inertia
of the satellite is not a fixed object, but it is a function of the body
configuration. In a compact notation, the elements {Iij}3i,j=1 of the
inertia matrix I are given by the following formula:

Iij = Iij(v) := ei ·
∫

Ω
v(x) ∧ (ej ∧ v(x))ρ(x)d3x . (3.2.1)

In the rest of the chapter we will always denote with the double
subscript the elements Iij of the matrix of inertia, while the principal
moments of inertia (i.e., the eigenvalues of the matrix I) will be
denoted by I1, I2, I3. Again, we remark that the principal moments
of inertia are a function of the body configuration. The principal
axes of inertia are also functions of the body configuration and we
will denote them by u1, u2, u3.

3.3 Planar restriction

We are going to study the dynamics of the satellite in the special
case when the motion of the center of mass of the satellite is planar
and the spin axis of the body is orthogonal to the plane of the orbit
and coincides with one of the principal axes of inertia of the body.
For this reason, we will restrict to “planar motion of the center of
mass”, “planar deformations” and “planar rotations”. Precisely, we
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make the following assumptions. (Here and below we denote by e1,
e2, e3 the vectors of the canonical base of R3.)

Assumption 6 (Planar motion of the center of mass). We assume
that X lies in the plane generated by e1 and e2.

Assumption 7 (Planar deformations). The configuration is such
that e3 is an eigenvector of I. We label the principal axes of inertia
so that u3 = e3.

In other words, we are assuming the matrix of inertia of the satel-
lite to be of the form

I(v) =

 I11(v) I12(v) 0
I12(v) I22(v) 0

0 0 I33(v)

 , (3.3.1)

so that I3(v) ≡ I33(v).

Assumption 8 (Planar rotations). Γ is a rotation about the e3-axis,
i.e. it has the form

Γ = Γ(α) :=

 cosα − sinα 0
sinα cosα 0

0 0 1

 . (3.3.2)

3.4 The gravitational interaction

In this section we prove that, in the quadrupole approximation, the
gravitational potential of the satellite, in the Newtonian field gener-
ated by M , depends only on:
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(i) the mass of the satellite;

(ii) the position of the center of mass of the satellite;

(iii) the principal moments of inertia of the satellite;

(iv) the orientation of the principal axes of inertia of the satellite.

To start with, we fix some notation: (R,ψ) are the polar coordi-
nates of the center of mass of the satellite in the plane of the orbit.
We denote with γ the angle between the principal axis u1 and the
line joining the planet to the center of mass of the satellite. Such a
line is usually referred to as the line of centers. Then, we have the
following result.

Proposition 3.4.1. In the quadrupole approximation the gravita-
tional potential energy of the body in the field generated by the mass
M is given by

Vg(X, I1, I2, I3, γ) := −GMm

R
+GM

R3 [−I1+2I2−I3+3(I1−I2) cos2 γ] .
(3.4.1)

Proof. Let (x1, x2, x3) be the Cartesian coordinates referred to the
system with originX and axes u1u2u3. Then we introduce the spher-
ical coordinates (r, ϑ, φ) of the generic point P in the satellite, defined
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by:

x1 = r cosϑ cosφ (3.4.2)

x2 = r sinϑ cosφ (3.4.3)

x3 = r sinφ . (3.4.4)

In this frame, the products of inertia Iij (i 6= j) vanish, i.e.∫
ζ(Ω)

ρ(ξ)r2 cos2 φ cosϑ sinϑd3ξ = 0 (3.4.5)∫
ζ(Ω)

ρ(ξ)r2 cosφ sinφ cosϑd3ξ = 0 (3.4.6)∫
ζ(Ω)

ρ(ξ)r2 cosφ sinφ sinϑd3ξ = 0 , (3.4.7)

and the principal moments of inertia are given by

I1 = K2 +K3 (3.4.8)

I2 = K1 +K3 (3.4.9)

I3 = K1 +K2 , (3.4.10)

where

K1 = 1
2

∫
ζ(Ω)

ρ(ξ)r2 cos2 φ cos2 ϑd3ξ (3.4.11)

K2 = 1
2

∫
ζ(Ω)

ρ(ξ)r2 cos2 φ sin2 ϑd3ξ (3.4.12)

K3 = 1
2

∫
ζ(Ω)

ρ(ξ)r2 sin2 φd3ξ . (3.4.13)
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The gravitational potential energy Vg is:

Vg = −
∫
ζ(Ω)

GMρ(ξ)
|ξ| d3ξ = −

∫
ζ(Ω)

GMρ(ξ)√
R2 + r2 − 2Rr cos η

d3ξ ,

(3.4.14)
where η is the angle between the line of centers and XP. Notice that
the relation

cos η = cosφ cos (ϑ+ γ) (3.4.15)

holds. Let us recall now how the multipole expansion arises. We have
1
|ξ| = 1√

R2 + r2 − 2Rr cos η
= 1
R

1√
1 +

(
r
R

)2 − 2
(
r
R

)
cos η

.

(3.4.16)
In terms of the Legendre polynomials Pn(z), one has

1√
1 + x2 − 2xz

=
∑
n≥0

xnPn(z) . (3.4.17)

In particular, we recall that

P0(z) = 1

P1(z) = z

P2(z) = 3z2 − 1
2 .

Taking the quadrupole approximation means to cut the sum at n = 2.
We get

1
|ξ| = 1

R

∑
n≥0

(
r

R

)n
Pn(cos η) ' 1

R

[
1 + r

R
cos η +

(
r

R

)2 3 cos2 η − 1
2

]
,

(3.4.18)
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so the potential energy becomes

Vg = −
∫
ζ(Ω)

GMρ(ξ)
R

[
1 + r

R
cos η +

(
r

R

)2 3 cos2 η − 1
2

]
d3ξ .

(3.4.19)
Here, the first term equals −GMm

R
; the second one vanishes because

X is the center of mass of the satellite; the third term, namely

Vt := −
∫
ζ(Ω)

GMρ(ξ)(3 cos2 η − 1)r2

2R3 d3ξ ,

gives what we call the “tidal” potential energy. A brief manipulation
shows that

Vt = −GM
R3

∫
ζ(Ω)

ρ(ξ)(3 cos2 η − 1)r2

2 d3ξ =

= −GM2R3

∫
ζ(Ω)

ρ(ξ)r2[3 cos2 φ cos2(ϑ+ γ)− 1]d3ξ =

= −3GM
R3 (K1 cos2 γ +K2 sin2 γ) + GM

2R3

∫
ζ(Ω)

ρ(ξ)r2d3ξ =

= −3GM
R3 (K1 cos2 γ +K2 sin2 γ) +

+GM

2R3

∫
ζ(Ω)

ρ(ξ)r2[sin2 φ+ cos2 φ(sin2 ϑ+ cos2 ϑ)]d3ξ =

= −3GM
R3 (K1 cos2 γ +K2 sin2 γ) + GM

R3 (K1 +K2 +K3) =

= GM

R3 [−I1 + 2I2 − I3 + 3(I1 − I2) cos2 γ] . (3.4.20)
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The proposition we have proved in this section is the reason why
it is convenient to use the principal moments of inertia of the satellite
as Lagrangian coordinates in the study of our dynamical system.

3.5 Triaxial satellite

As we said above, triaxiality means that the three principal moments
of inertia of the satellite in its reference configuration v0 are all dis-
tinct. Without loss of generality, we may assume that e1, e2 and
e3 are the principal axes of inertia of the satellite in the reference
configuration.

Therefore, in the present section, we will assume that the follow-
ing assumption is satisfied.

Assumption 9 (Triaxiality). The reference configuration v0 is such
that I12(v0) = 0 and

I1(v0) = I11(v0) < I2(v0) = I22(v0) < I3(v0) = I33(v0) . (3.5.1)

Remark 3.5.1. The assumption on I3(v0) is actually useless, once
we have done the planar restriction. However, this is the correct
assumption that one should make in order to look for stability of
the complete three-dimensional model, without the assumption of pla-
narity. We leave the assumption in this form, in order to make phys-
ically relevant the situation that we are studying. Anyway, in the
planar model, we could only assume I1(v0) 6= I2(v0), the sign of the
inequality between I1 and I2 being determined by a choice of notation.
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We are now ready to prove the orbital stability of the synchronous
resonance for a triaxial satellite. The scheme of the proof is the
following: we will first prove orbital stability for the conservative
Lagrangian system that one obtains neglecting internal friction. Such
a proof involves conservation of energy. Then we observe that, if
one adds some extra dissipative force which makes energy a non-
increasing function of time, then one still has orbital stability (in the
future).

3.5.1 Lagrangian coordinates

By virtue of Assumption 8 and Theorem 3.1.6, we can use the fol-
lowing set of Lagrangian coordinates:

• the polar coordinates (R,ψ) of the center of mass of the satel-
lite;

• the angle χ := α−ψ, describing the rigid rotation of the satel-
lite, measured with respect to the line of centers;

• a set of Lagrangian coordinates for w ∈ S.

We start with the idea of using the principal moments of inertia and
an angle describing the orientation of the principal axes of inertia as
Lagrangian coordinates; however, there is the problem of singularity
in the definition of the axes of inertia when two principal moments
of inertia have the same value. In the triaxial case, since we need not



CHAPTER 3. ORBITAL STABILITY 77

exploit any further symmetry (as, instead, we will have to do in the
spherically symmetric case), we can get rid of the problem of such a
singularity by simply using the matrix elements Iij(w) as coordinates
instead of the eigenvalues and eigenvectors of the matrix of inertia.
In order to do this, we need the following assumption.

Assumption 10. The functions

Iij : S→ R ,

(i, j) = (1, 1), (2, 2), (3, 3), (1, 2)

are independent in a neighborhood of v0.

Remark 3.5.2. The previous assumption is satisfied, for instance,
if for any ij there exists a deformation which modifies Iij, leaving
unaltered the other elements of the matrix I. The same assumption
would not be satisfied if, for example, one added some additional con-
straint, like the incompressibility constraint. In that case, one would
have to drop one degree of freedom.

If the assumption of independence is satisfied, then one can com-
plete the set of Iij ’s to a system of coordinates on the local section
S, which is expressed by the following proposition.

Proposition 3.5.3. There exist functions (z1, z2, . . .), with

zj : S→ R (j = 1, 2, . . .)

such that (I11, I22, I33, I12, z1, z2, . . .) is a set of smooth coordinates
on S.
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Without loss of generality (just by applying a translation), we
may also assume zj(v0) = 0.

Now that we have a set of Lagrangian coordinates, we seek for
the expression of the Lagrangian function in these coordinates, which
gives the equations of motion for the conservative system.

3.5.2 Potential energy

The potential energy is the sum of three terms: (1) the potential
energy of the satellite in the gravitational field generated by M , (2)
the elastic potential energy, (3) the energy of self-gravitation of the
satellite.

Gravitational potential energy

Since we are using as coordinates the Iij ’s instead of the Ij ’s and
the angle γ, we have to adjust, in terms of the new coordinates,
the expression of the gravitational potential that was calculated in
Proposition 3.4.1.

We obtain the following proposition.

Proposition 3.5.4. In the quadrupole approximation the gravita-
tional potential energy of the body in the field generated by the mass
M is given by

Vg(R,χ, I11, I22, I33, I12) = −GMm

R
+ (3.5.2)

+GM

R3 [−I11 + 2I22 − I33 + 3(I11 − I22) cos2 χ− 3I12 sin(2χ)] .
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Proof. We follow the proof of Proposition 3.4.1. Everything works
in the same way, except for the fact that we replace γ with χ and
that, correspondingly, in the frame co-rotating with the satellite, the
product of inertia I12 does not vanish. Then we have the thesis.

Elastic and self-gravitational energy

In our model, the elastic and self-gravitational forces play, in some
sense, the same role, since the combined action of both forces tends
to restore the reference configuration of the body and since they
are both independent of the rotation angle χ. Therefore, we will
not distinguish between the two corresponding potential energies.
(With an abuse of language, we will refer to the sum of the elastic
and self-gravitational potential energies simply as “elastic potential
energy”.) We will also assume that the satellite has very large moduli
of elasticity, which will correspond to having a very small parameter
ε. Using the notation I = (I11, I22, I33, I12), z = (z1, z2, . . .), we
summarize these facts in the following assumption.

Assumption 11. The elastic potential energy has the form

Ve(I, z) = 1
ε
V0(I, z) , (3.5.3)

where ε is a small parameter Q and V0 has a nondegenerate minimum
at (I, z) = (I0, 0), having set I0 := (I11(v0), I22(v0), I33(v0), I12(v0)).



CHAPTER 3. ORBITAL STABILITY 80

3.5.3 Kinetic energy

When evaluating the expression for the kinetic energy, it is convenient
to express it in terms of the angle α = χ + ψ, which describes the
actual speed of rotation of the satellite with respect to an inertial
frame of reference. By König’s second Theorem, the kinetic energy
T can be written as the sum of two terms: the former is the kinetic
energy of the center of mass

Tcm = m

2 (Ṙ2 +R2ψ̇2) (3.5.4)

and the latter is the kinetic energy of the satellite with respect to its
center of mass

Tr := Tr(α̇, İ, ż; I, z) . (3.5.5)

Remark 3.5.5. Tr is independent of α and due to the A1-invariance.

Since the kinetic energy with respect to the center of mass is a
quadratic form in the corresponding velocities, we will use the nota-
tion

Tr := 1
2

+∞∑
i,k=1

aik(I, z)q̇iq̇k , (3.5.6)

where q = (α, I11, I22, I33, I12, z1, z2, . . .). Observe that the coeffi-
cients aik(I, z) are such that the quadratic form is positive definite
on C.

Lemma 3.5.6. The coefficient a11(I, z) satisfies

a11(I, z) = I33 . (3.5.7)
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Proof. We have
v(x) = Γ(α)w(x) . (3.5.8)

Taking the derivative with respect to time, we get

v̇(x) = dΓ(α)
dt

w(x) + Γ(α)ẇ(x) . (3.5.9)

Therefore,

Tr = 1
2

∫
Ω

[v̇(x)]2ρ(x)d3x = 1
2

∫
Ω

[Γ(−α)v̇(x)]2ρ(x)d3x =

= 1
2

∫
Ω

[
Γ(−α)dΓ(α)

dt
w(x) + ẇ(x)

]2

ρ(x)d3x =

= 1
2

∫
Ω

[ω × w(x)]2 ρ(x)d3x + (3.5.10)

+
∫

Ω
〈ω × w(x), ẇ(x)〉ρ(x)d3x + 1

2

∫
Ω

[ẇ(x)]2 ρ(x)d3x,

where ω is the angular velocity of the satellite, defined by

ω × (·) = [Γ(−α)][ d
dt

Γ(α)](·)

. Under our assumptions, ω = α̇u3.
As the vector field w(x) is independent of α, we observe that Tr

is the sum of three integrals, the first of which gives the term in α̇2,
while the third one is a quadratic form in (İ , ż) and the second one
gives mixed terms in α̇ and in the other velocities.

Therefore, one gets

a11(I, z) =
∫

Ω
{u3 × [x + u(x)]}2 ρ(x)d3x , (3.5.11)
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and it can easily be seen that this expression equals the moment of
inertia related to the vertical axis, which concludes the proof of the
lemma.

3.5.4 The reduced Lagrangian

The Lagrangian of the system is given by

L = T − V = Tcm + Tr − Vg − Ve , (3.5.12)

where each of the terms is given by the expressions calculated in the
previous sections. As a result, one gets

L = m

2
(
Ṙ2 +R2ψ̇2)+ Tr(χ̇+ ψ̇, İ, ż; I, z) + GMm

R
+

+ GM

R3

[
I11 − 2I22 + I33 + 3(I22 − I11) cos2 χ+ 3I12 sin(2χ)

]
+

−Ve(I, z; ε) . (3.5.13)

Now, we observe that the Lagrangian does not depend on the
cyclic coordinate ψ, so the total angular momentum

p := ∂L
∂ψ̇

= mR2ψ̇ + I33(χ̇+ ψ̇) + 2
+∞∑
k=2

a1k(I, z)q̇k , (3.5.14)

is a constant of motion. We can invert relation (3.5.14), to get the
expression of ψ̇ as a function of the other variables:

ψ̇ =
p− I33χ̇− 2

∑+∞
k=2 a1k(I, z)q̇k

mR2 + I33
. (3.5.15)
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Then, we can drop one degree of freedom and study the reduced
Lagrangian

L∗ = L − ψ̇ ∂L
∂ψ̇

, (3.5.16)

where ψ̇ must be thought of as a function of the other Lagrangian
coordinates and velocities. After some calculations, we get

L∗ = T2 + T1 − Ṽ , (3.5.17)

where

T2 = m

2 Ṙ
2 + Tr(χ̇, İ, ż; I, z)−

[
I33χ̇+ 2

∑+∞
k=2 a1k(I, z)q̇k

]2
2(mR2 + I33)

T1 =
p
[
I33χ̇+ 2

∑+∞
k=2 a1k(I, z)q̇k

]
mR2 + I33

Ṽ = p2

2(mR2 + I33) −
GMm

R
+

− GM

R3

[
I11 − 2I22 + I33 + 3(I22 − I11) cos2 χ+ 3I12 sin(2χ)

]
+

+ Ve(J, z; ε) .

The conservative system given by the corresponding Euler-Lagrange
equations has the conserved quantity

E := T2 + Ṽ =
+∞∑
k=1

ẏk
∂L∗

∂ẏk
− L∗ , (3.5.18)

where
y := (R,χ, I, z)
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and the strict minima of Ṽ are Lyapunov-stable equilibria of the re-
duced system.

Let R0 be a nondegenerate minimum of the function

VG0(R) := −GMm

R
+ p2

2(mR2 + I330) −
GM

R3 (I330 + I220 − 2I110) ,

(3.5.19)
where we have used the notation Iij0 := Iij(v0).

Then we have the following

Lemma 3.5.7. For any ε small enough, there exist R̄, χ̄, Ī, z̄, s.t.

(1) the point ȳ := (R̄, χ̄, Ī, z̄) is a nondegenerate minimum of Ṽ .

(2) One has (|R̄−R0|, χ̄, |Ī − Ī0|, z̄) = O(ε).

(3) For all ψ ∈ S1, in the configuration of the unreduced system
corresponding to (R̄, ψ, χ̄, Ī, z̄), the principal axis of inertia u1

is directed along the line of centers.

Remark 3.5.8. A fixed point in the reduced system corresponds to
a situation of synchronous resonance on a circular orbit in the unre-
duced system.

Proof. We look for a minimum of Ṽ in the domain |I − I0| ≤ Cε

for some fixed C. Observe that, if ε is small enough, |I − I0| ≤ Cε

implies both inequalities I1 < I2 < I3 (we remind that I12(v0) = 0)
and I11 < I22 < I33, because of the triaxiality assumption. Moreover,
if ε is small enough, also the inequality |I12| < I22 − I11 holds true.
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First consider Ṽ as a function of χ. Since |I12| < I22− I11, Ṽ has
a nondegenerate minimum at

χ = χ(I) := 1
2 arctan I12

I22 − I11
. (3.5.20)

Comparison with (3.4.1) shows that the angle χ(I) corresponds to
γ = 0 in (3.4.1); this will imply the point (3) of the lemma. Consider
now Ṽ

∣∣
χ=χ(I)

; as a function of R it has a nondegenerate minimum
at some point R = R(I, z) fulfilling

|R(I, z)−R0| ≤ Cε .

Consider now the restriction V̄ = V̄ (I, z) of Ṽ to the manifold χ =
χ(I), R = R(I, z); since

V̄ (I, z) = 1
ε
V0(I, z) +O(1) , (3.5.21)

such a function has a nondegenerate minimum close to zero.
Then the thesis follows.

Corollary 3.5.9. The synchronous resonant circular orbit corre-
sponding to ȳ is orbitally stable for the Lagrangian system of equations

d

dt

∂L
∂ẋk

= ∂L
∂xk

, (k = 1, 2, . . .) (3.5.22)

where x = (R,ψ, χ, I, z).
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3.5.5 Dissipative dynamics

Now we modify the Euler-Lagrange equations of the previous section
by introducing the effects of internal friction. To this end, we add
terms −fk(ẋ, x) to the Euler-Lagrange equations (3.5.22), so that
now we are going to study the system of equations

d

dt

∂L
∂ẋk
− ∂L
∂xk

= −fk(ẋ, x) , (k = 1, 2, . . .) (3.5.23)

Moreover, since no dissipation acts on the orbital parameters,
observe that the ψ-related term f2(ẋ, x) must be identically zero.
Furthermore, since the dissipative forces are only function of the time
evolution of the body configuration, all the fk’s must be independent
of ψ and ψ̇. As a consequence, one is again allowed to pass to the
reduced system

d

dt

∂L∗

∂ẏk
− ∂L∗

∂yk
= −f̃k(ẏ, y) , (k = 1, 2, . . .) (3.5.24)

where the f̃k are obviously defined.
Now, proceeding as for the proof of energy conservation, we get

the following lemma.

Lemma 3.5.10. In the system of differential equations (3.5.24), the
Lie derivative of the energy is given by

dE

dt
= −

+∞∑
k=1

ẏkf̃k(ẏ, y) . (3.5.25)
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Proof. We have

dE

dt
= d

dt

+∞∑
k=1

(
∂L∗

∂ẏk
ẏk − L∗

)
= (3.5.26)

=
+∞∑
k=1

[(
d

dt

∂L∗

∂ẏk
− ∂L∗

∂yk

)
ẏk

]
= −

+∞∑
k=1

ẏkf̃k(ẏ, y) .

Then, the property that the f̃k-terms represent a dissipative force
is summarized by the following

Assumption 12. The functional form of the functions f̃k is such
that

+∞∑
k=1

ẏkf̃k(ẏ, y) ≥ 0 . (3.5.27)

Then, a simple reasoning about the fact that energy is a non-
increasing function of time, combined with Lemma 3.5.7, gives im-
mediately the result of orbital stability of the synchronous resonance,
which is expressed by the following theorem.

Theorem 3.5.11. The point (y = ȳ, ẏ = 0), with ȳ as in Lemma
3.5.7, is a Lyapunov-stable (in the future) equilibrium for the reduced
system of equations (3.5.24).

Corollary 3.5.12. The synchronous resonant circular orbit corre-
sponding to ȳ is orbitally stable (in the future) for the complete system
of equations (3.5.23).
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3.6 Spherically symmetric satellite

In this section, we prove the orbital stability of the synchronous reso-
nance for a satellite with spherical symmetry. When we say that the
satellite is spherically symmetric, we mean the following things:

(i) the satellite, in the reference configuration v0(x) = x, has a
spherical shape, i.e. Ω is a three dimensional sphere centered
at the origin;

(ii) the corresponding density function ρ0(x) is a purely radial func-
tion of x;

(iii) the Lagrangian of the satellite (when ignoring the gravitational
interaction with M) is invariant not only under the action A1

already introduced, but also under the action A2 defined in the
following way:

A2 : SO(3)× C → C

(R, v) 7→ Rv ◦R−1 . (3.6.1)

The group action A2 has the following meaning. Imagine that the
satellite is experiencing some deformation, which corresponds to a
body configuration v. Then, applying A2(R) to v corresponds to
producing a configuration looks exactly like the previous one, except
for the fact that the “direction” of the deformation inside the body
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has been rotated through the matrix R. We mean that if, for exam-
ple, the initial configuration is an ellipsoid with some principal axes,
then the second one is an ellipsoid with the same shape, but with
axes which have been rotated inside the body. This is a true elastic
deformation that involves dissipation.

Now we must face the following problems. With respect to the
case of a triaxial satellite, now the situation is more degenerate, since,
as we will prove later, the A2-invariance gives origin to a manifold
of synchronous resonant orbits: heuristically, suppose you have one
synchronous resonant orbit with a body configuration v; then, due
to the A2-invariance, there exists a synchronous resonant orbit for
every configuration of the type A2(R)v. At the same time, the pres-
ence of such an invariance gives a more symmetrical structure to the
problem, which actually allows to cope with this slight degeneracy.
However, when one tries to introduce coordinates adapted to this
further symmetry, one has to cope with the fact that the group ac-
tion A2 is not free, which makes non-trivial the fact of passing to
the quotient. As a consequence, in order to pass to the quotient,
we will have to exclude a singular set of configurations. Moreover
it will turn out that, on the remaining “good” set, the adapted co-
ordinates that we introduce form a 24-fold covering of the space of
configurations. The most significant difficulties are precisely those
related to the kinematic analysis which leads to the introduction of
the Lagrangian coordinates.
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3.6.1 Adapted coordinates

Since the action A2 is not free, we will consider also the action A3,
combination of the actions A1 and A2, defined by

A3(R)v := A1(R)A2(R−1)v = v ◦R (3.6.2)

and study the couple of actions A1 and A3. The advantage in intro-
ducing A3 is that such an action is free.

We introduce now an adapted set of coordinates in a neighbor-
hood of the “identical” deformation

v0(x) = x (3.6.3)

(excluding however such a configuration). To this end we need to
introduce a few objects:

(1) Define

C6= = {v ∈ C|I1 6= I2, I1 6= I3, I2 6= I3} (3.6.4)

and its complement

C= = {v ∈ C|Ii = Ij for some i 6= j} . (3.6.5)

This is useful since the principal axes u1, u2, u3 are uniquely
determined in C6=.
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(2) Define
D := {v ∈ C|I(v) is diagonal} . (3.6.6)

We also define D6= := D∩C6=. Observe that D is a codimension
3 submanifold of C, invariant under the action A3 (we will show
in the proof of Lemma 3.6.5 that the action A3 leaves invariant
the matrix of inertia) and observe that v0 ∈ D. Moreover,
as we will prove in Lemma 3.6.5, on D ∩ C6= the action A1 is
independent of the action A3, and is transversal to D.

(3) Consider the group orbit A3(SO(3))v0 ⊂ D, and let S ⊂ D be
a codimension 3 (in D) manifold transversal to such a group
orbit. Actually we are interested in the restriction of such a
section to a small neighborhood of v0. We still denote by S
such a local section. The existence of such an S is assured
by the fact that the action A3 is free and therefore defines a
foliation of D.

(4) Finally define F to be the tube constituted by the orbits of
A1 ◦ A2 starting in S ∩ C6=, namely

F := A1(SO(3))A2(SO(3))(S ∩ C6=) . (3.6.7)

We remark that F = A1(SO(3))A3(SO(3))(S ∩ C6=).

Remark 3.6.1. The eigenvalues Ij, as functions of the matrix ele-
ments {Iij} (and therefore of the configuration v), are smooth func-
tions on C6=; however, the first derivatives of the Ij’s have a singu-
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larity at C=, therefore the Ij’s can be used as Lagrangian coordinates
only on C6=.

Remark 3.6.2. When restricting to the submanifold D, the eigen-
values Ij coincide with the matrix elements on the main diagonal, and
therefore they are obviously smooth functions of the configuration.

Again, we make the following assumption.

Assumption 13. We assume that the functions Ij : D → R, j =
1, 2, 3 are independent in a neighborhood of v0.

In the rest of the section we will prove the following Theorem

Theorem 3.6.3. There exist functions (z1, z2, . . .), with

zj : S → R (j = 1, 2, . . .)

such that:

(i) (I1, I2, I3, z1, z2, . . .) is a set of smooth coordinates on S.

(ii) the map

SO(3)× SO(3)× (S ∩ C6=) → F

(Γ, R, I1, I2, I3, z1, z2, . . .) 7→ A1(Γ)A2(R)w

is a 24-fold covering of F ; here we denoted

w = (I1, I2, I3, z1, z2, . . .) .
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Remark 3.6.4. The number 24 arises as the order of the chiral octa-
hedral group. More precisely it corresponds to the number of ways in
which an oriented triple of orthonormal vectors can be rotated in such
a way that the vectors lie on a triple of unoriented fixed orthogonal
axes.

Proof of Theorem 3.6.3

To begin with, we prove the existence of (z1, z2, . . .) satisfying (i).
Observe that S is a smooth submanifold of C. Then, since I1(w),
I2(w), I3(w) are independent functions, it is possible to complete the
triple (I1, I2, I3) to a local system of coordinates (I1, I2, I3, z1, z2, . . .)
near v0.

In the rest of the section, we will prove (ii). As a first step, we
show that the two actions of SO(3) on C6= are independent, which is
implied by the following Lemma.

Lemma 3.6.5. For any fixed v̂ ∈ C6=, we consider two subspaces
of Tv̂C6=, tangent to the group orbits A1(SO(3))v̂ and A3(SO(3))v̂,
namely

T1 := Tv̂A1(SO(3))v̂ T3 := Tv̂A3(SO(3))v̂ .

Then, T1 ∩T3 = {0}. Moreover, if v̂ ∈ C 6= ∩D, then T1 is transversal
to D.

Proof. In order to prove the thesis, we start by showing that the
action A1 rotates the matrix of inertia, while the action A3 leaves it
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invariant. We have

Iij(Γv̂) = ei ·
∫

Ω
Γv̂(x) ∧ (ej ∧ Γv̂(x))ρ(x)d3x

= Γ−1ei ·
∫

Ω
v̂(x) ∧ (Γ−1ej ∧ v̂(x))ρ(x)d3x ,(3.6.8)

which shows that the I(A1(Γ)v̂) is the matrix of I(v̂), just referred
to a rotated basis. On the other hand, we have

Iij(v̂ ◦R) = ei ·
∫

Ω
v̂(Rx) ∧ (ej ∧ v̂(Rx))ρ(x)d3x . (3.6.9)

Setting y = Rx, we have

Iij(v̂ ◦R) = ei ·
∫

Ω
v̂(y) ∧ (ej ∧ v̂(y))ρ(y)d3y , (3.6.10)

which means that the action of A3 leaves the matrix of inertia invari-
ant. This implies

dI(v̂)v3 = 0 ∀v3 ∈ T3 , (3.6.11)

while
dI(v̂)v1 6= 0 ∀v1 ∈ T1 \ {0} , (3.6.12)

from which the independence follows.
To get the transversality when v̂ ∈ C6= ∩ D, we remark that A1

rotates the principal axes of inertia, then, since the three eigenvalues
are distinct, it destroys the diagonal structure of I.

Remark 3.6.6. As an obvious corollary of Lemma 3.6.5, we also
have that A1 and A2 are independent at any point v̂ ∈ C 6=, in the
sense that T1 is transversal to the tangent space T2 := Tv̂A2(SO(3))v̂.
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Moreover, we observe that in C6= the three eigenvalues of the ma-
trix of inertia are distinct, so the eigenvectors u1, u2, u3 are well de-
termined. Furthermore the dependence of the eigenvalues and eigen-
vectors on the configuration v ∈ C 6= is smooth.

Now, we want to represent any configuration v ∈ F in the form

v = A1(Γ)A2(R)w , w ∈ S ∩ C 6= . (3.6.13)

Let us first represent any v ∈ C 6= in the form

v = A1(Γ̃)w̃ , w̃ ∈ D 6= . (3.6.14)

Proposition 3.6.7. The map

Π : SO(3)×D 6= → C 6=

(Γ̃, w̃) 7→ A1(Γ̃)w̃

is a 24-fold covering map.

The proof will make use of the following Theorem, which is an
immediate corollary of [18], Proposition 1.40, p. 72.

Theorem 3.6.8. If G is a finite group, acting freely on a Hausdorff
space X, then the quotient map X → X/G is a covering map.

Proof of Proposition 3.6.7. We observe that each v ∈ C 6= has many
distinct representations of the form (3.6.14): since the three principal
moments of inertia are distinct from one another, the directions of the
principal axes of inertia are well-determined, but the same is not true
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for what concerns their orientation; moreover, any of the principal
axes may be labeled u1 as well as u2 or u3. In order to make this
rigorous, consider the equation

A1(Γ̃1)w̃1 = A1(Γ̃2)w̃2 , (3.6.15)

with w̃1, w̃2 ∈ D6=. This implies

w̃2 = A1(Γ̃−1
2 Γ̃1)w̃1 . (3.6.16)

Therefore, since w̃1, w̃2 ∈ D 6=, the rotation Γ̃−1
2 Γ̃1 must transform the

set {u1,u2,u3} to a set of unit vectors having the same directions.
It is easy to see that the set of rotations satisfying this property is
the subgroup of SO(3) generated by the three rotations

R1 =

 1 0 0
0 0 −1
0 1 0



R2 =

 0 0 1
0 1 0
−1 0 0



R3 =

 0 −1 0
1 0 0
0 0 1

 .

Such a subgroup, which we will denote by O, is isomorphic to the
group of the orientation preserving symmetries of the cube, which
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is a group of order 24, known as the chiral octahedral group. This
argument shows that the possible representations of the form (3.6.14)
are at most 24. On the other hand, for any w̃ ∈ D6= and Γ̃ ∈ SO(3),
we have that the expression

A1(Γ̃ΓO)[A1(Γ−1
O )w̃] (3.6.17)

yields 24 different representations of the same configuration, as ΓO
varies within the group O. Therefore, each configuration v ∈ C6= has
exactly 24 distinct representations of the form (3.6.14) and a natural
identification arises between C6= and (SO(3)×D 6=/O, where the action
of O on SO(3)×D 6= is defined by

[ΓO, (Γ̃, w̃)] 7→ (Γ̃ΓO,A1(Γ−1
O )w̃) . (3.6.18)

Now, applying Theorem 3.6.8 with X = SO(3)×D 6= and G = O, we
get the thesis.

The above Proposition given as a global statement applies also
to a small tube of orbits originating in S. Precisely, define T :=
A3(SO(3))(S ∩ C6=): then we have

Corollary 3.6.9.

Π : SO(3)× T → F

(Γ̃, w̃) 7→ A1(Γ̃)w̃

is a 24-fold covering map.
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Proof. The only thing we have to prove is that F is the image of
SO(3)× T through Π. However, this is obvious, since

Π(SO(3)×T ) = A1(SO(3))(T ) = A1(SO(3))A3(SO(3))(S∩C 6=) = F .
(3.6.19)

End of proof of Theorem 3.6.3. The last step consists in factoring
out the group action A3. This is easy, since the action A3 is free.
Therefore, one can decompose

T 3 w̃ = A3(R̃)w (w ∈ S ∩ C 6=) (3.6.20)

in a unique way, and moreover the map

w̃ 7→ (R̃, w)

is smooth. Therefore, a 24-fold covering of F is naturally induced by
the map

(Γ̃, R̃, w) 7→ A1(Γ̃)A3(R̃)w . (3.6.21)

Now, setting
Γ := Γ̃R̃

R := R̃−1 ,

we find that also

(Γ, R, w) 7→ A1(Γ)A2(R)w (3.6.22)

is a 24-fold covering of F , which completes the proof of (ii) and of
Theorem 3.6.3.
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3.6.2 Elastic potential energy

Let us study the form of the elastic potential energy and of the po-
tential energy of self-gravitation in the coordinates just introduced.
As for the triaxial case, with an abuse of terminology, we will call the
sum of these two potential energies simply “elastic potential energy”
and we will denote it by Ve; furthermore, we will refer to the cor-
responding forces as to the “elastic forces”, leaving understood that
they include also the forces related to self-gravitation.

In the equilibrium state, because of the rotational invariance, all
three principal moments of inertia are equal to the same constant
I0. For simplicity, we use the differences between the Ij ’s and I0 as
configuration variables instead of the Ij ’s themselves, so we define

Ji := Ii − I0 , (i = 1, 2, 3) , (3.6.23)

and we assume (without loss of generality) that

zj(v0) = 0 ∀j .

Remark 3.6.10. Due to the A1- and A2-invariance, the elastic po-
tential energy does not depend on Γ and R.

As we did for the triaxial satellite, we also assume that the min-
imum is nondegenerate and that the body has very large moduli of
elasticity.

Assumption 14. The elastic potential energy has the form

Ve(J, z) = 1
ε
V0(J, z) ≡ 1

ε
[Q(J, z) + V3(J, z)] , (3.6.24)
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where ε is a small parameter, Q a nondegenerate quadratic form and
V3 has a zero of order three at the origin.

We want to study more in detail the form of the elastic potential
near the equilibrium, but we have to cope with the fact that our
coordinates are singular at the equilibrium configuration v0(x) = x.

Lemma 3.6.11. The quadratic part of the elastic potential energy
has the form

Q(J, z) = A

2 (J1
2 + J2

2 + J3
2) +B(J1J2 + J1J3 + J2J3) +

+
+∞∑
j=1

Cjzj(J1 + J2 + J3) + 1
2

+∞∑
j,k=1

Djkzjzk , (3.6.25)

where the constants A,B,Cj , Djk are such that the quadratic part
Q(J, z) is a positive definite quadratic form in the variables (J, z). In
particular, this implies A > B.

Remark 3.6.12. By Remark 3.6.1, such an expression can be used
to compute the Lagrange equations only outside C=.

Proof. Any v ∈ F can be represented as A1(Γ)A2(R)w, for some
Γ, R ∈ SO(3) and w ∈ S ∩C6=. Moreover, due to the group action in-
variance, the potential energy associated to the configuration v must
be the same as the potential energy associated to the configuration w.
Therefore the functional form of the elastic potential in terms of the
variables J, z can be computed working in S and then the obtained
form holds on the whole of F .
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The independence of the Lagrangian of the body with respect to
the choice of the representative (Γ, R, w) from the covering mentioned
in Proposition 3.6.3 implies that the expression of the elastic potential
energy must be symmetric with respect to permutations of the indices
i = 1, 2, 3, and the expression of Q(J, z) in (3.6.25) is the most general
expression of a quadratic form with such a property.

3.6.3 Planar restriction

We will study the equations of motion under our usual assumptions of
planar restriction (Assumptions 6, 7 and 8), but it is worth making
some further remark that holds true for the spherically symmetric
case only.

Remark 3.6.13. As a consequence of Assumptions 7 and 8, R is a
rotation about the e3-axis, i.e. there exists an angle β such that

R = R(β) :=

 cosβ − sin β 0
sin β cosβ 0

0 0 1

 . (3.6.26)

Remark 3.6.14. The assumptions 7 and 8, together with Theorem
3.6.3, imply that (α, β, I1, I2, I3, z1, z2, . . .) are good Lagrangian coor-
dinates for the space of body configurations. Actually, by following
the proof of Theorem 3.6.3 one can show that such coordinates form
a 4-fold covering of the configuration space restricted to planar con-
figurations.
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The fact that dynamics remains confined for all times within the
set F will be guaranteed by the local stability result proved in the
following sections.

3.6.4 Kinetic energy

Again, the kinetic energy T can be written as the sum of the kinetic
energy of the center of mass

Tcm = m

2 (Ṙ2 +R2ψ̇2) (3.6.27)

and the kinetic energy of the satellite with respect to its center of
mass

Tr := Tr(α̇, β̇, J̇ , ż; J, z) . (3.6.28)

Remark 3.6.15. Tr is independent of α and β due to the rotational
(A1- and A2-) invariance of the satellite.

We will use the notation

Tr := 1
2

+∞∑
i,k=1

aik(J, z)q̇iq̇k , (3.6.29)

where q = (α, β, J, z). Observe that the coefficients aik(J, z) are such
that the quadratic form is positive definite on F .

Lemma 3.6.16. The coefficient a11(J, z) satisfies

a11(J, z) = I3 = I0 + J3 . (3.6.30)
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Proof. For w ∈ S, we set

u = A2(R(β))w . (3.6.31)

Now, let us evaluate the kinetic energy Tr. For v ∈ F we have

v(x) = Γ(α)u(x) . (3.6.32)

Taking the derivative with respect to time, we get

v̇(x) = dΓ(α)
dt

+ u(x) + Γ(α)u̇(x) . (3.6.33)

Therefore,

Tr = 1
2

∫
Ω

[v̇(x)]2ρ(x)d3x = 1
2

∫
Ω

[Γ(−α)v̇(x)]2ρ(x)d3x =

= 1
2

∫
Ω

[
Γ(−α)dΓ(α)

dt
u(x) + u̇(x)

]2

ρ(x)d3x =

= 1
2

∫
Ω

[ω × u(x)]2 ρ(x)d3x + (3.6.34)

+
∫

Ω
〈ω × u(x), u̇(x)〉ρ(x)d3x + 1

2

∫
Ω

[u̇(x)]2 ρ(x)d3x,

where ω is the angular velocity of the satellite.
Then the thesis follows as in Lemma 3.5.6.

3.6.5 Lagrangian and reduction

Now we can write the explicit form of the Lagrangian function.
Our Lagrangian coordinates are:



CHAPTER 3. ORBITAL STABILITY 104

• the polar coordinates (R,ψ) of the center of mass of the satel-
lite;

• the angle χ = α−ψ, describing the rigid rotation of the satellite,
measured with respect to the line of centers;

• the angle β, associated to the action A2, which describes how
the principal axes of inertia rotate, with respect to the rigid
motion of the satellite;

• the coordinates (J,z), which parameterize the configuration w ∈
F .

The Lagrangian, again, has the structure

L = Tcm + Tr − Vg − Ve . (3.6.35)

After noticing that now the angle γ of equation (3.4.1) equals χ+ β,
the Lagrangian function assumes therefore the following form:

L = m

2
(
Ṙ2 +R2ψ̇2)+ Tr(χ̇+ ψ̇, J̇ , β̇, ż; J, z) + GMm

R
+

+ GM

R3

[
J1 − 2J2 + J3 + 3(J2 − J1) cos2(χ+ β)

]
− Ve(J, z; ε) .

Again, the variable ψ is cyclic and we pass to the reduced La-
grangian L∗. We have the conservation of the total angular momen-
tum

p := ∂L
∂ψ̇

= mR2ψ̇ + (J3 + I0)(χ̇+ ψ̇) + 2
5+n∑
k=2

a1k(J, z)q̇k , (3.6.36)
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and then we find

ψ̇ =
p− (J3 + I0)χ̇− 2

∑5+n
k=2 a1k(J, z)q̇k

mR2 + I0 + J3
. (3.6.37)

Hence,
L∗ = L − ψ̇ ∂L

∂ψ̇
= T2 + T1 − Ṽ , (3.6.38)

where

T2 = m

2 Ṙ
2 + Tr(χ̇, J̇ , β̇, ż; J, z) +

−
[
(J3 + I0)χ̇+ 2

∑5+n
k=2 a1k(J, z)q̇k

]2
2(mR2 + I0 + J3)

T1 =
p
[
(J3 + I0)χ̇+ 2

∑5+n
k=2 a1k(J, z)q̇k

]
mR2 + I0 + J3

Ṽ = p2

2(mR2 + I0 + J3) −
GMm

R
+

−GM
R3

[
J1 − 2J2 + J3 + 3(J2 − J1) cos2 γ

]
+ Ve(J, z; ε) .

Again, we will exploit the conservation of the energy

E := T2 + Ṽ =
5+n∑
k=1

ẏk
∂L∗

∂ẏk
− L∗ , (3.6.39)

where
y := (R,χ, β, J, z)

and the fact that the strict minima of Ṽ are Lyapunov-stable equi-
libria of the reduced system.
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Let R0 be a nondegenerate minimum of the function

VG0(R) := −GMm

R
+ p2

2(mR2 + I0) . (3.6.40)

Then we have the following

Lemma 3.6.17. For any ε small enough there exist R̄, J̄ , z̄, s.t.

(1) the manifold

M :=
{

(R̄, χ, β, J̄1, J̄2, J̄3, z̄)|χ+ β = 0
}
,

is composed by critical points of Ṽ .

(2) M is a minimum of Ṽ which is nondegenerate in the transversal
direction.

(3) One has (J̄ , z̄) = O(ε) and |R̄−R0| = O(ε).

(4) Finally J̄1 < J̄2 < J̄3.

Remark 3.6.18. Point (4) guarantees that M ⊂ C6=. If ε is suffi-
ciently small, then we haveM⊂ F .

Remark 3.6.19. M is the manifold corresponding to 1:1 spin orbit
resonance.

Proof. We look for a minimum of Ṽ in the domain J1 ≤ J2 and
|J | ≤ Cε for some fixed C.
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First remark that, as a function of γ = χ+ β, Ṽ has a minimum
at γ=0 (strict if J1 < J2). Consider now Ṽ

∣∣
γ=0

; as a function of R
it has a nondegenerate minimum at some point R = R(J, z) fulfilling

|R(J, z)−R0| ≤ Cε .

Consider now the restriction V̄ = V̄ (J, z) of Ṽ to the manifold γ = 0,
R = R(J, z); since

V̄ (J, z) = 1
ε

[Q(J, z) + V3(J, z)] +O(1) , (3.6.41)

such a function has a nondegenerate minimum close to zero.
Then (1), (2) and (3) follow provided one shows that J̄1 < J̄2.

We are now going to prove (4) which in particular implies the thesis.
To this end, observe that at the critical point one has

0 = ∂Ṽ

∂J1
= 2GM

R̄3
+ A

ε
J̄1 + B

ε
(J̄2 + J̄3) + 1

ε

+∞∑
j=1

Cj z̄j +O(ε) (3.6.42)

0 = ∂Ṽ

∂J2
= −GM

R̄3
+A

ε
J̄2+B

ε
(J̄1+J̄3)+ 1

ε

+∞∑
j=1

Cj z̄j+O(ε) . (3.6.43)

0 = ∂Ṽ

∂J3
= − p2

2(mR̄2 + I0 + J̄3)2
− GM

R̄3
+

+A

ε
J̄3 + B

ε
(J̄1 + J̄2) + 1

ε

+∞∑
j=1

Cj z̄j +O(ε) . (3.6.44)
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Subtracting (3.6.43) from (3.6.42), we obtain

3GM
R̄3

+ A−B
ε

(J̄1 − J̄2) +O(ε) = 0 . (3.6.45)

The positive definiteness of the quadratic form Q implies A−B > 0.
Therefore, if ε is sufficiently small, we have J̄1 < J̄2. Subtracting
(3.6.44) from (3.6.43), we get

p2

2(mR̄2 + I0 + J̄3)2
+ A−B

ε
(J̄2 − J̄3) +O(ε) = 0 . (3.6.46)

Hence, if ε is sufficiently small, we have J̄2 < J̄3.

Corollary 3.6.20. The critical submanifold of the phase space man-
ifold

M := {(y, ẏ)|y ∈M, ẏ = 0}

is stable in the sense of Definition 2.3.4 for the Lagrangian system of
equations

d

dt

∂L∗

∂ẏk
= ∂L∗

∂yk
. (k = 1, 2, . . .) (3.6.47)

Corollary 3.6.21. The two-dimensional submanifold of the phase
space of the unreduced system, obtained as a one-parameter family of
synchronous resonant orbits,

O :=
{

(y, ψ, ẏ, ψ̇)|(y, ẏ) ∈M, ψ ∈ S1, ψ̇ = ¯̇ψ
}
,

with ¯̇ψ given by plugging (y, ẏ) ∈ M into (3.6.37) (notice that this
substitution gives a well-defined result, since the r.h.s. of (3.6.37) is
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independent of both the configuration variables χ and β), is stable in
the sense of Definition 2.3.4 for the unreduced Lagrangian system of
equations

d

dt

∂L
∂ẋk

= ∂L
∂xk

. (k = 1, 2, . . .) (3.6.48)

3.6.6 Dissipative dynamics

As we did for the triaxial case, we now modify the Euler-Lagrange
equations in order to take account of internal friction. We study the
system of equations

d

dt

∂L
∂ẋk
− ∂L
∂xk

= −fk(ẋ, x) , (k = 1, 2, . . .) (3.6.49)

Again, we observe that f2(ẋ, x) must be identically zero and that
all the fk’s must be independent of ψ and ψ̇. Then we can study the
reduced system

d

dt

∂L∗

∂ẏk
− ∂L∗

∂yk
= −f̃k(ẏ, y) . (k = 1, 2, . . .) (3.6.50)

Then, we assume that the f̃k’s represent a dissipation.

Assumption 15. The functional form of the functions f̃k is such
that

+∞∑
k=1

ẏkf̃k(ẏ, y) ≥ 0 . (3.6.51)

.
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Then, the usual reasoning about non-increasing energy, together
with Lemma 3.5.7, gives the result of orbital stability of the syn-
chronous resonance, in the following sense.

Theorem 3.6.22. The manifold M is stable in the future, in the
sense of Definition 2.3.4, for the reduced system of equations (3.6.50).

Corollary 3.6.23. The manifold O of synchronous resonant circular
orbits is orbitally stable in the future, in the sense of Definition 2.3.4,
for the unreduced system of equations (3.6.49).

3.6.7 Multi-layer satellite

We remark that the proof of the orbital stability that we have given
for a spherically symmetric satellite can be immediately extended to
the case of amulti-layer spherically symmetric satellite. A spherically
symmetric satellite with n layers has the following structure in the
reference configuration: the inner layer (the core) is a sphere, while
the n − 1 outer layers are spherical shells, adjacent to one another.
These n layers are free to slide (possibly with some dissipation of
energy) on one another. Moreover, we require the same properties of
invariance of the Lagrangian function as for the “single-layer” case.

All the machinery works exactly the same way, except some tech-
nical details. In this case, it is convenient to use the group actions A1

andA3, instead ofA1 andA2. Then, observe thatA1[R(α)]A2[R(β)] =
A1[R(α + β)]A3[R(−β)]. Then, when passing to the quotient, one
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introduces angles θ := α + β and φ := −β. In order to handle the
n layers, one has to define n group actions A31, . . . ,A3n, instead of
the single action A3, each of these n group actions corresponding
to the rotational symmetry of only one of the layers. In particular,
the action A3k will correspond to the k-th layer of the satellite slid-
ing between the two adjacent layers, while all the other layers do
not move. Then, instead of passing to the quotient with respect to
the action A3 and describing the group action through an angle φ,
one passes to the quotient with respect to all the group actions A3k

and correspondingly defines n angles φ1, . . . , φn. Then, in order to
refer rotations to the line of centers, thus making the Lagrangian
of the system independent from the cyclic coordinate ψ, one defines
θ̃ := θ − ψ.

Now, we observe that, in terms of the variables (θ̃, φ), the manifold
M of equilibria of the reduced system for the single-layer satellite
corresponds to {R = R̄, θ̃ = 0, φ ∈ S1, J = J̄ , z = z̄}. In the case
of the multi-layer satellite, one simply finds that the manifold of
equilibria is the n-dimensional manifold {R = R̄, θ̃ = 0, φ ∈ Tn, J =
J̄ , z = z̄}, where φ := (φ1, . . . , φn) and Tn is the n-dimensional torus.

With these slight changes, all the stability results that we have
obtained hold also for the case of a multi-layer satellite.
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3.7 General comments

We recall the theorem of the three outcomes that we have proved in
the previous chapter: one of the consequences was that, if there is
orbital stability of the synchronous resonance, then the synchronous
resonance is also asymptotically stable. The results of orbital stability
that we have proved in the present chapter are not a completely
rigorous proof of the asymptotic stability, since in the present chapter
we have done some approximations. If the same result of the orbital
stability that we have obtained in this chapter were proved removing
our approximations, then the asymptotic stability of the synchronous
resonance would be automatically proved through the theorem of the
three outcomes.

A further comment is worth being done about the result of sta-
bility that we have obtained for a spherically symmetric satellite: we
are not able to prove that each of the synchronous resonant orbits
of the manifold O is orbitally stable, when considered alone. Even
if we have proved that the speed of rotation of the satellite tends to
zero, we are unable to prove that asymptotically “the satellite stops
rotating”: we only prove that asymptotically the principal axes of in-
ertia stop rotating. This is compatible with a situation in which the
satellite has a constant shape, but the direction of the deformation
continuously changes in the body. In a pictorial way one can think
of a rubber balloon which on a wooden cross whose axes are fixed in
space. In a more rigorous fashion, we are stating that the previous
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theorem implies that χ + β → 0 when t → +∞, but it says nothing
about the individual behavior of χ and β. If there is asymptotic sta-
bility, then this implies that χ̇ and β̇ approach zero as t→ +∞ (the
rubber balloon slides on the wooden cross more and more slowly).
This, however, does not imply that there exist χ̄ and β̄ such that
χ → χ̄ or that β → β̄, since, at our level of generality, we are not
able to prove the convergence of the integrals∫ +∞

0
χ̇(t)dt

∫ +∞

0
β̇(t)dt .

3.8 A direct proof of the asymptotic stability

In this section, we show that, under some more assumptions and
approximations, in the spherically symmetric case it is possible to
give a proof of the asymptotic stability, directly from the equations
of motion.

The further approximation that we impose here is a finite-dimen-
sionality approximation.

Assumption 16 (Finite-dimensionality). The space C is finite-di-
mensional.

We are assuming that the dimension of C is arbitrary, but finite.
For example, one can obtain this by cutting at any order the multi-
pole expansion of the configuration v ∈ C. The Lagrangian variables
(z1, z2, . . .) will therefore be replaced by (z1, z2, . . . , zn).
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Under this finite-dimensionality assumption, we can prove a useful
result about the expression of the kinetic energy.

Lemma 3.8.1. The coefficient a12(J, z) satisfies:

lim
(J,z)→0

a12(J, z) = 0 . (3.8.1)

Proof. We use the same notation as in Lemma 3.6.16. Then, reason-
ing as in the proof of Lemma 3.6.16, we observe that the coefficient
a12 of the term α̇β̇ in the expression of the kinetic energy arises from
the integral ∫

Ω
〈ω × u(x), u̇(x)〉ρ(x)d3x

in (3.6.34). The α̇ factor comes from the angular velocity ω, while
the β̇ factor is hidden in u̇(x). Define

wdef = w − v0 = A2[R(−β)]u− v0 . (3.8.2)

We get

u̇(x) = R(β) {ẇdef [R(−β)x]}+ β̇
∂R(β)
∂β

wdef [R(−β)x] +

+β̇R(β)∇wdef [R(−β)x] · ∂R(−β)
∂β

x . (3.8.3)

Here, we notice that the first of the three addenda is independent of
β̇ (since w = wdef + v0 belongs to the section S, which is transversal
to the group action A2), so we have (exploiting v0(x) = x)

a12(J, z) = 1
2

∫
Ω
ρ(x)〈u3 × {x +R(β)wdef [R(−β)x]}, (3.8.4)

∂R(β)
∂β

wdef [R(−β)x] +R(β)∇wdef [R(−β)x] · ∂R(−β)
∂β

x〉d3x ,
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which goes to zero when wdef → 0, i.e. when (J, z)→ 0; this is where
we exploit the assumption of finite-dimensionality, since we use the
equivalence of norms (wdef → 0⇔ ∇wdef → 0).

Moreover, we will make some more assumption about the dissipa-
tive terms in the equations of motion, i.e. we introduce a Rayleigh’s
dissipation function F (ẏ; y). Namely, we assume that the equations
of motion of the reduced system have the form (3.8.5) below. Of
course, we do not expect dissipation to act directly on the orbital
variables R and χ, so we assume F to be independent of R, χ, Ṙ and
χ̇. Due to the A2-invariance of the satellite, F is also independent of
the coordinate β (but it depends on β̇); however, for the proof of our
result, it is not necessary that F be β-independent.

Assumption 17. As a function of the velocities (β̇, J̇ , ż), the Rayleigh’s
dissipation function F (β̇, J̇ , ż; J, z) has a nondegenerate minimum at
0.

We denote by ye := (β, J, z) the variables fixing the configura-
tion of the satellite. So in particular we have F = F (ye, ẏe) (with
∂F/∂β = 0).

Then the result of asymptotic stability is:

Theorem 3.8.2. If ε is sufficiently small, the manifold M, defined
in Section 3.6, is asymptotically stable for the dynamical system of
equations

d

dt

∂L∗

∂ẏk
− ∂L∗

∂yk
= − ∂F

∂ẏk
, (k = 1, 2, . . .) (3.8.5)
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with L∗ defined as in Section 3.6.

Proof. Let us evaluate the time derivative of the energy:

dE

dt
= d

dt

(
4+n∑
k=1

ẏk
∂L∗

∂ẏk

)
− d

dt
L∗ =

=
4+n∑
k=1

ÿk
∂L∗

∂ẏk
+

4+n∑
k=1

ẏk
d

dt

∂L∗

∂ẏk
−

4+n∑
k=1

ẏk
∂L∗

∂yk
−

4+n∑
k=1

ÿk
∂L∗

∂ẏk
=

= −
4+n∑
k=1

ẏk
∂F

∂ẏk
= −

(
2QF +

4+n∑
k=1

ẏk
∂F3

∂ẏk

)
, (3.8.6)

where QF is the quadratic part of F , and F3 is the part of order 3 in
ẏe. Let ND := {(y, ẏ)|F (ẏ; y) = 0} =

{
(y, ẏ)|β̇ = J̇ = ż = 0

}
be the

subset of phase space where there is no energy dissipation. Then, due
to LaSalle’s invariance principle, any solution such that (y(0), ẏ(0))
belongs to a sufficiently small neighborhood of M (notice that such
a solution will stay bounded for all t ≥ 0 due to the stability of M
proved in Section 3.6) will get arbitrarily close to the largest invariant
subset of ND, for t → +∞. Therefore, the only thing we have to
check is that the set ND contains no orbit, apart from the points of
the manifoldM. To check this, observe that, if such an orbit existed,
it would satisfy equations (3.8.5). In particular, the orbit satisfies

d

dt

∂L∗

∂χ̇
− ∂L∗

∂χ
= 0 (3.8.7)

and
d

dt

∂L∗

∂β̇
− ∂L∗

∂β
= −∂F

∂β̇
. (3.8.8)
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When restricting to ND, these two equations become, respectively,

− (I0 + J3)2χ̈

mR2 + I0 + J3
+ 2mR(I0 + J3)2χ̇Ṙ

(mR2 + I0 + J3)2 + (3.8.9)

+(I0 + J3)χ̈− 2pmR(I0 + J3)Ṙ
(mR2 + I0 + J3)2 = −∂Ṽ

∂χ
(y)

and

−a12(J, z)(I0 + J3)χ̈
mR2 + I0 + J3

+ 2mRa12(J, z)(I0 + J3)χ̇Ṙ
(mR2 + I0 + J3)2 + (3.8.10)

+a12(J, z)χ̈− 2pmRa12(J, z)Ṙ
(mR2 + I0 + J3)2 = −∂Ṽ

∂β
(y) ,

where we took into account that, by Assumption 17, ∂F/∂β̇ vanishes
onM. Observe that the r.h.s.’s of the two equations are equal.

Multiplying (3.8.9) by a12(J,z)
I0+J3

and subtracting (3.8.10) we get(
1− a12

I0 + J3

)
∂Ṽ

∂γ
= 0 ,

which, by (3.8.1), implies ∂Ṽ
∂γ

= 0, and therefore χ+β = 0. Then, we
have χ̇ = −β̇ = 0, since β̇ = 0 on ND. Now , substituting χ̇ = χ̈ = 0
into equations (3.8.9) and (3.8.10), we find Ṙ = 0. Finally, we observe
that now we have

χ̇ = β̇ = Ṙ = J̇ = ż = 0 , (3.8.11)

which is true on the equilibrium manifoldM only.
We have thus proved that the only orbits contained in ND are the

points of the synchronous resonance manifoldM, which, by LaSalle’s
invariance principle, implies the asymptotic stability ofM.
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