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Introduction

In this thesis, I study three stochastic methods that can be applied for the
analysis of data in cancer research and, in particular, to cancer genomic
data and to images of angiogenic processes. Cancer is a multistep process
where the accumulation of genomic lesions alters cell biology. The latter is
under control of several pathways and thus, cancer can arise via different
mechanisms affecting different pathways. Due to the general complexity
of this disease and the different types of tumors, the efforts of cancer re-
search cover several research areas such as, for example, immunology, ge-
netics, cell biology, angiogenesis. Moreover, in recent years, interactions
between mathematicians and biomedical researchers have increased due
to both the awareness of the complexity of the biological/medical issues
and the development of new technologies, producing “large” data rich of
information. Biomathematics is applied in many areas, such as epidemiol-
ogy, clinical trial design, neuroscience, disease modeling, genomics, pro-
teomics, and thus in several areas of cancer research.

The thesis is divided into two parts. In the former, I propose two
Bayesian regression methods for the analysis of two types of cancer ge-
nomic data. In the latter, I study the properties of two estimators of the
intensity of a stationary fibre process, which can be applied for the char-
acterization of angiogenic and vascular processes.

xiii



xiv Introduction

PART I: “Bayesian integrative genomics”.
Tumors are largely related to chromosomal lesions and some of them

can be detected by using specific types of microarrays. In Chapter 1, I
introduce some basic knowledge of genetics, in order to describe the prin-
cipal types of genomic alterations that can occur in genetics diseases, like
cancer. DNA contains (in the genes) the information for coding proteins
and the functions in a living cell depend on proteins, hence DNA aberra-
tions can lead to a different production of proteins, changing the behavior
of the cell.

One type of aberration is the change of DNA copy number in one or
more regions of the genome. Apart from the sex chromosomes, in a healthy
cell the copy number is two because we inherit a copy of each chromosome
(called homolog) from each of our parents, but in a tumor cell the genome
can present regions of deletions (copy number one or zero), gains (copy
number three or four) or amplifications (copy number greater than four).
Another type of mutation regards the status of the two homologs of the
chromosomes, measured via the genotype of the single nucleotide poly-
morphisms (SNPs). A SNP is a base-pair location in the genome where
the nucleotide can assume two or three different bases (called alleles) out
of the four: thymine, adenine, cytosine and guanine. The status of the base-
pair of nucleotides at a SNP position is called genotype and a SNP can be
classified as either homozygous, if its two copies consist of equal alleles,
or heterozygous, otherwise. Alterations of the homozygous status are of-
ten displayed by unusual long stretches of homozygous SNPs (called loss
of heterozygosity, LOH) in regions with normal copy number and they can
be explained with several genomic events such as uniparental disomy [40]
or autozygosity [43]. I denote this type of aberrations with IBD/UPD. In
literature, a relationship between some tumors and both types of mutations
have been shown [4, 5, 10, 19, 20, 22, 54, 71, 87].

In Chapter 1, I also briefly explained the SNP microarrays, which are
able to measure simultaneously both DNA copy number and genotype at
hundred thousands of SNP positions. However, the raw copy number data
(i.e. the copy number data obtained by the microarray) generally are very
noisy, due to both technical and biological reasons. Then, an important is-
sue is to define a method which can estimate well the number of regions
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with different copy number, the endpoints of these regions (called break-
points) and their copy number. In practice, the raw copy number is not an
integer, since it is measured from the DNA extracted in a sample of cells,
that does not contain only tumor cells. Moreover, among the tumor cells
we can have cells that belong to different stages of the disease and thus can
carry different mutations. Hence, the raw and the estimated copy number
usually assume real values and the DNA copy number along the aberrated
genome can be represented as a piecewise constant function.

An advantage of SNP microarray is the possibility to measure both
DNA copy number and genotype at each SNP position considered. In this
way, several types of “abnormalities” of the genome (regarding both DNA
copy number and LOH status) can be observed and integrated for a bet-
ter identification of the events occurred. For example, when a copy of a
chromosomic segment is deleted, we detect a long stretch of homozygous
SNPs (since the microarray is unable to distinguish between the presence
of only one allele and the presence of two equal alleles), but, in general,
the same genotype can also occur for other reasons, such as uniparental di-
somy. In this situation, the knowledge of both types of data can lead to the
correct interpretation of the phenomenon, while it would not be possible
with only the genotyping data or the copy number data. Several relation-
ships between detected genotype and underlying copy number event (gain,
amplification, loss of one or two copies) can be found.

Several methods were developed to solve the problem of copy num-
ber estimation from the raw data. We can roughly divide them into two
classes: the ones that estimate the copy numbers as a piecewise constant
function (such as CBS [59], CGHseg [63], GLAD [31] and HMM [21])
and the ones that are smoothing methods and estimate the copy numbers
as a continuous curve (such as quantreg [18] and wavelet [28]). Other al-
gorithms have been developed for the discovery of LOH regions, without
distinguishing if they are caused by either the loss of one copy or other ge-
nomic events (IBD/UPD). Among them, two well-known (and most used)
methods are dChip [8] and CNAT [2]. In literature, only one method [72]
has been developed for the integration of these two types of data, with the
purpose of estimating both copy number and LOH aberrations, and it uses
HMM. In Chapter 2, I explain how generally the copy number data are
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modeled and I describe some of the well-known methods for copy number
or LOH estimation: CBS, HMM, CGHseg, quantreg and dChip.

In Chapter 3, I propose both a piecewise constant and two continuous
regression methods, where the solution of the regression is found using
Bayesian statistics, which is more suitable when we have regions with few
data [65]. These methods build on and improve the methods presented by
Hutter in [32, 33]: the Bayesian Piecewise Constant Regression (BPCR)
and the Bayesian Regression Curve (BRC). In both, the data are assumed
to be noisy observations of a piecewise constant function of which we want
to estimate the number of segments, the boundaries of these segments and
the value of the function in each interval (called level). The noise is as-
sumed to be normally distributed and data points belonging to the same
segment are conditionally independent of the level in that segment. The
prior distributions of the parameters involved are defined in the following
way. The number of segments is uniformly distributed in the interval {1,
. . ., kmax}. Given the number of segments, the boundaries are uniformly
distributed in the set of all possible boundaries. The levels are indepen-
dent and identically normally distributed. Finally, the hyper-parameters of
the model (i.e. the variance of the noise and the mean and variance of the
levels) are estimated from the data in an empirical Bayes way. The regres-
sion procedures require the computation of the posterior distributions of
the parameters that we want to estimate, which needs the computation of
the likehood over all possible number of segments, boundaries and levels.
This can be done in an efficient way by using the dynamic programming
presented in [32, 33].

In the original formulation, BPCR estimated the number of segments
and each boundarywith the maximum a posterior (MAP) estimator (which
minimizes the posterior expected 0-1 error) and the segment levels with the
posterior mean. However, the first two estimators failed to properly deter-
mine the corresponding parameters. In particular, the boundary estimator
did not take into account the dependency among the boundaries and could
estimate more than one breakpoint at the same position, losing segments.
In the chapter, I define different segment number and boundary estimators
to enhance the fitting procedure, by changing the error to minimize with
respect to the posterior distribution. I also propose an alternative estima-
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tor of the variance of the segment levels, which is useful in case of data
with high noise. I compare my methods with other well-known and recent
methods existing in literature on artificial data, showing that they generally
outperform all the others. I also validate some results obtained by applying
the piecewise constant regression (called mBPCR) on real data.

In cancer research, the accuracy in the DNA copy number estimation
is crucial for the correct determination of the mutations that characterize
the disease. In particular, the estimation of the breakpoints must be precise
to detect correctly which genes are affected by these genomic aberrations.
In this context, the use of mBPCR can highly improve the disease inves-
tigation, because it accurately determines breakpoints, is less sensitive to
high noise and generally outperforms all the methods considered. Conse-
quently, after its publication, mBPCR has been used as standard algorithm
for the analysis of copy number data at the Laboratory of Experimental
Oncology, Oncology Institute of Southern Switzerland (IOSI) [10, 68, 71].

In Chapter 4, I propose a Bayesian piecewise constant regression (called
gBPCR), which infers the type of aberration occurred (high amplification,
gain, loss of one copy, loss of two copies, IBD/UPD, normal state), tak-
ing into account all the possible influences in the microarray detection
of the genotype, resulting from an altered copy number level [66, 67].
Namely, I model the distributions of the detected genotype given a spe-
cific genomic alteration and I estimate the parameters involved on public
reference datasets. The prior distribution of the copy number alterations
is derived from the copy number profile of the sample, while the proba-
bility of heterozygosity for each SNP is retrieved from the annotation file
of the microarray used. The regression procedure is performed similarly
to mBPCR, slightly changing the breakpoint estimator. I show the good-
ness of the method by applying it to both artificial and real data. I also
compare it with two well-known methods for LOH estimation: dChip and
CNAT. This comparison shows that they perform equally well on data with
medium and low noise, while gBPCR outperforms the others on data with
high noise. The model proposed is also more complete than the one in [72],
since the latter cannot be applied to data, whose DNA sample come from
a mixture of cell populations (which is usually the case for samples of
patients affected by cancer). Moreover, since both types of data are inher-
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ently noisy, a fully Bayesian model can include prior information that can
lead to a better identification of the aberrations.

PART II: “Estimators of the intensity of stationary fibre processes ap-
plied to angiogenesis”.

In solid tumors, cell proliferation is helped by the formation of a vas-
cular network around the tumor. The vessels supply nutrient which allows
the growth of the tumor. Hence, a challenge in cancer research is to find
an antibody which is able to inhibit the formation of vessels. In order to
quantify the effect of a specific antibody in the inhibition of this process
from images of the vessels, we can estimate one or more parameters that
characterize their geometry. We model them as a stationary planar fibre
process and, for the purpose of antibody comparison, we estimate the in-
tensity (i.e. mean length per unit area) of the corresponding processes.

In Chapter 5, I illustrate the basic concepts of the theory of fibre pro-
cesses and some intensity estimators present in the literature. A fibre in R2

is a curve of class C 1 defined on a bounded and closed interval. To model
more complex objects, we can define a fibre system, i.e. a locally finite
union of fibres, which can have only endpoints in common. Then, a fibre
process is a random variable taking values in the space of fibre systems,
endowed with a suitable σ -algebra. In particular, I consider stationary fi-
bre processes, which are invariant under translations, and one of the main
characteristics of this kind of processes is the intensity.

In literature, several estimators have been proposed (see for exam-
ple [78]). The simplest estimator is the ratio between the fibre length in
the window of observation and the area of the window. This estimator is
unbiased and, if the fibre process is ergodic, it is also strongly consistent
(the asymptotic properties of the intensity estimators are usually defined
for a sequence of increasing windows of observation, which tends to R2).
In practice, this estimator is not easy to compute. Usually the window of
observation is a digitized image and the easiest way to measure the fibre
length is to count the pixels belonging to the fibres. Since the pixel is a
two-dimensional set, while a fibre is one-dimensional, in order to obtain a
correct estimate we have to adjust the raw estimation with a factor which
represents the mean length of the fibre in a pixel.
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Another kind of estimation has been proposed by Ohser and Stoyan [58,
78], by intersecting the sample with a deterministic test fibre system with
finite length (e.g. segments or circles). Using the properties of the point
process derived from the intersection, it is possible to define an unbiased
estimator of the intensity. This estimator consists in a counting measure
defined on the point process of the intersections. But the resulting point
process cannot have asymptotic properties, because of the finiteness of the
length of test fibre system, and thus we cannot apply any ergodic theorem.
In order to have an estimator easy to be computed and with good asymp-
totic properties, I intersected the sample with an independent, stationary
and isotropic fibre process [53, 64]. Thus, I defined two estimators based
on counting measures of the marked point process arisen from the inter-
section. These estimators are unbiased and, if the point process is ergodic,
they are also strongly consistent. The main difficulties are in deriving their
asymptotic normality.

As a consequence, in Chapter 6, I study conditions, regarding both the
point process and the sequence of enlarging windows, under which the es-
timators are asymptotically normal. Penrose and Yukich [61] derived sev-
eral central limit theorems for functionals of two types of point processes
in Rn, having independent increments: the Poisson and the binomial point
processes. This property of independent increments (i.e. the points of the
process, which fall in disjoint Borel sets, are independent) is crucial for
their proofs. Since the fibres have not-null length, the points of intersec-
tion located at distance lower than the maximum length of the fibres (if it
exists) are correlated. Therefore, the point process of intersection of fibre
processes has in general not independent increments. Nevertheless, if the
fibres are generated independently and have a.s. finite maximum length l,
then at least the intersection points at a distance greater than l are indepen-
dent.

Trying to mimicking the proofs in [61], in Chapter 6, I derive a central
limit theorem which involves a general positive functional defined on a
point process independent at distance l, for particular sequences of enlarg-
ing windows. Due to its general formulation, the theorem can be applied
in a more general framework in the theory of point processes. Moreover,
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in the chapter, I also deduce from this central limit theorem the asymptotic
normality of some estimators of the intensity presented in Chapter 5.

In Chapter 7, I verify empirically the asymptotic properties of the esti-
mators on simulated data. I use different choices for the shape of the fibres
of both the process under study Φ1 and the test process Φ2, and several
values for the other parameters that characterize Φ2. In this way, I can ob-
serve whether and how the speed of convergence of the estimator depends
on the characteristics of Φ1 and Φ2. In fact, the variance of our estimators
depends both on the dimension of the window of observation and the in-
tensities of the two fibre processes. Therefore, by suitably choosing Φ2,
we can reduce the variance of the corresponding estimator and thus obtain
an accurate estimate, especially in case of a small window of observation.
I also derive a method to approximate the variance of the estimator via its
upper bound, when only one window of observation is available and it has
a small size.

Since in real applications the window of observation is usually a digital
image, I verify that the asymptotic properties of the estimators hold also
on simulated images of fibre processes (that is I use the 2D-box approx-
imation given by the pixels to represent the fibres). Finally, I apply some
intensity estimators to some images of angiogenesis in eyes of mice, in
order to determine in a quantitative way which antibody was more able to
inhibit the angiogenic activity of the protein VE-cadherin.
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Chapter 1
Genetics and microarray

Abstract Cancer is a complex disease characterized by the accumula-
tion of genomic lesions, that alter cell biology [25, 60, 82]. Among the
DNA aberrations, we recall copy number changes, translocations, regions
of loss of heterozygosity (LOH). The identification of causative mutations
involved in tumorigenesis is very important for prognosis and the creation
of drug therapies. Moreover, the genetic study of tumor diseases can also
determine subtypes of the diseases, leading to the comprehension of the
reasons for differences in drug-resistance and to the creation of more spe-
cific drug therapies.
Microarray technology allows to measure biological quantities at DNA
or RNA level [17, 39, 75]. Single nucleotide polymorphism (SNP) mi-
croarrays are able to measures the copy number and the genotype at thou-
sands/millions of SNP positions for the analysis of both copy number
changes and LOH along the genome. Therefore, they are used in cancer
research to identify genes or genomic regions bearing these types of aber-
rations that are correlated with the disease.
The chapter is divided into two parts: in Section 1.1 we describe some
basic knowledge of genetics and in Section 1.2, we introduce SNP mi-
croarray technology.

3



4 1 Genetics and microarray

1.1 Basic biology of genetics

We introduce some basic concepts of genetics that will be useful for un-
derstanding the procedure of SNP microarrays and, consequently, for the
comprehension of the random variables involved in the statistical models
described in Chapters 2, 3 and 4. Moreover, they also motivate the im-
portance of the development of good statistical tools for the analysis of
microarray data, especially in cancer research.

1.1.1 DNA and RNA: structure and role

The DNA is a double-strand molecule, which entwines to achieve the
shape of a double helix (Figure 1.1). Each strand consists of a sequence
of nucleotides. Each nucleotide contains both a segment of the backbone
of the molecule (a phosphate group and a sugar molecule), which holds
the chain together, and a nitrogen-containing base, which interacts with
the other DNA strand. There are four types of bases (and thus four types
of nucleotides): adenine (A), cytosine (C), guanine (G) and thymine (T).
The two strands are joints by hydrogenous bonds between complemen-
tary bases (base-pairs): A with T and C with G. The complementarity of
the bases is the principle of both cell reproduction and gene expression.
Moreover, the strands have a direction, which is one the opposite of the
other.

The genetic material of each cell/individual is organized in chromo-
somes, which consist of DNA and proteins. The number of chromosomes
is a characteristic of any species and, for human beings, the genome con-
sists of 23 pairs of chromosomes. Each pair is made of two copies of the
same chromosome (called homologues), one inherited from the mother
and one from the father. Each homologue is divided in two parts by the
centromere and, since the centromere is not placed exactly in the middle
of the chromosome, they are called long and short arm.
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Fig. 1.1 DNA structure.
[Adapted from Encyclopædia
Britannica, Inc., copyright
(2007)]

Every function in the living cell depends on proteins. A protein con-
sists of a sequence of amino acids jointed by peptide bonds. Only 20
types of amino acids can be part of a protein and typically a protein con-
tains between 100 and 1000 amino acids. The sequence of the proteins is
determined on the basis of the information contained in the DNA. Each
triplet of contiguous nucleotides (called codon) corresponds to a specific
amino acid. Because the amino acids are 20 and the possible codons are
43 = 64, the genetic code is redundant, i.e. different codons may codify the
same amino acid. The sequences of DNA that encode proteins are inside
the genes. Genes are sequences of nucleotides consisting of protein cod-
ing regions (called exons) interspaced by segments of noncoding regions
(called introns). Any gene is preceded by a promoter region, which is a
binding site for proteins (called transcription factors) that influence the
transcription machinery. Therefore, this sequence controls the conditions
under which the gene will be transcribed.
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The process of protein synthesis involves RNA molecules. The RNA
is similar to DNA with three differences: 1) it consists of only one strand
of nucleotides, 2) the thymine is substituted by the uracil (U) and 3) it
contains molecules of ribose sugar instead of deoxyribose sugar. The mes-
senger RNA (mRNA) is synthesized using the DNA as a template (tran-
scription process) and is then used for translation into protein (Figure 1.2).
Each mRNA transcript represents a copy of only the exons of the gene, cor-
responding to the protein to be synthesized, and each molecule of protein
requires and consumes one transcript. Therefore the rate of synthesis of a
protein can be estimated by quantifying the abundance of corresponding
mRNA transcripts, although the correspondence is not exact since some
transcripts are degraded before protein translation.

Fig. 1.2 Protein syn-
thesis [Adapted from
http://beckysroom.tripod.com/].

In general, all cells of the same organism contain the same DNA. Nev-
ertheless, the cells differ from each other in function and their function can
change over time. These functional differences are determined by differ-
ences in the abundance of the various types of proteins. Therefore, DNA
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aberrations can lead to a different expression of specific genes, that can
change the behavior of the cell. We refer to the over-expression or under-
expression of a gene if the abundance of its transcript is, respectively,
higher or lower with respect to the one in a reference cell (usually a normal
cell of the same tissue).

1.1.2 DNA polymorphisms

Due to the high number of nucleotides in the DNA strands of the genome,
we can have a high number of different genomes. Actually, most of human
genome is equal for all individuals and the DNA markers that can show
differences among individuals are called DNA polymorphism. Examples
are single nucleotide polymorphisms (SNPs) and copy number polymor-
phisms (CNPs) or copy number variations. The alternative variants of a
DNA polymorphism are called alleles. In order to be classified as a poly-
morphism, a genomic variant must have a minor allele frequency greater
than 1% in a given population to avoid that it represents a rare mutation.

Fig. 1.3 Single nu-
cleotide polymorphism.
[Adapted from David Hall,
http://en.wikipedia.org/wiki/File:Dna-
SNP.svg, available under
Creative Commons Attribu-
tion 2.5 Generic]

A SNP is a single base-pair position where the nucleotide can assume
two possible bases (alleles) out of the four (Figure 1.3). In general, since
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we have two copies of each chromosome, the genotype at any SNP can
be: AA, BB or AB, where A and B represent the two possible alleles. In
an individual, a SNP is said homozygous if the homologuos chromosomes
carry the same allele (AA or BB), otherwise is said heterozygous (AB). It
has been estimated that the number of SNPs in the human population is
about 10 millions [47] and about 3 millions SNPs have been already iden-
tified [48] by the HapMap Consortium. In biomedical research we do not
need to know the value of all SNPs. In fact, SNPs on a small chromosomal
segment tend to be transmitted as a block, forming a haplotype. This cor-
relation between alleles at nearby sites is known as linkage disequilibrium
and enables the prediction of the genotypes at a large number of SNP loci
from known genotypes at a smaller number of representative SNPs, called
tag SNPs.

Instead, CNPs are defined as portions of the genome that can be deleted
or present in extra copies. Their width ranges from 1 kb (one thousand
base-pairs) to 1 Mb (one million base-pairs).

As a consequence of the existence of DNA polymorphisms, genes may
presents alternative forms (alleles). Due to the redundancy of the genetic
code, different alleles of a gene may or may not code for different amino
acid sequences, sometime with drastic effects. Usually, harmful alleles are
recessive, i.e. the organism need to carry those alleles on both homologues
to express them. Therefore, one of the key goal in studying DNA polymor-
phisms is to identify gene variants associated with a disease.

1.1.3 Cell cycle, mitosis and meiosis

The formation of a complex organism from the zygote implies cell repli-
cation, growth and differentiation. The mechanism of replication is called
mitosis (Figure 1.4). In the mitotic division, the chromosomes are sepa-
rated in the two daughter cells so that each daughter cell contains the same
genome of the mother cell. After their birth, the daughter cells grow, pro-
vide to the duplication of the chromosomes and perform their function
inside the tissue in which they are (this phase is called interphase). The
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period from the birth up to the next mitosis is called cell cycle (see Fig-
ure 1.5). Several key events in cell cycle are monitored and, when defects
are identified, the progression through the cell cycle is halted at a check-
point. For example, if a cell reports a DNA damage, it can be repaired
or self-destroyed by a mechanism called apoptosis. Once the cell is fully
differentiated, it becomes quiescent and stops dividing.

Fig. 1.4 Mitosis. [Adapted
from National Library of
Medicine (NLM) website,
http://www.ncbi.nlm.nih.gov/]

Fig. 1.5 Cell cycle. [Adapted
from Clinical Tools, Inc.,
available under Creative Com-
mons Attribution-Share Alike
3.0 United States License]

Another mechanism of cell division is the one that lead to the for-
mation of the gametes. This process is called meiosis and can be done
only by the germ cells. The meiosis is divided in two principal phases
(see Figure 1.6). In the first, the chromosomes are duplicated, undergo
the crossover (mechanisms of exchange of genetic material between ho-
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mologue chromosomes) and are separated in two daughter cells. In the
second phase, in each daughter cell, the homologues of the chromosomes
are separated and the cell is divided in two cells.

Fig. 1.6 Meiosis. [Adapted
from National Library of
Medicine (NLM) website,
http://www.ncbi.nlm.nih.gov/]

During the cell cycle, most of the biochemical and metabolic activi-
ties of the cell are carried out by proteins. Each of these activities corre-
sponds to one or more metabolic pathways. A metabolic pathway is a set
of chemical reactions that take place in a definite order to convert a partic-
ular starting molecule in one or more specific products. Each of its steps
is regulated by an enzyme (and thus by its corresponding gene).

We can observe that, during the cell life, several mechanisms can be
altered. Among the most important ones, we can recall the inhibition of
apoptotis, the increase of cell growth over the normal or the defects in
the DNA repair pathways. Each cell activity can be interrupted by alter-
ations at different steps in the corresponding pathway. Therefore, cancer is
highly related to DNA aberrations, which can appear during meiosis (germ
line lesions) or mitosis (somatic lesions). For example, in meiosis the ho-
mologous recombination of repeated sequences (which belong to different
genomic regions) can lead to the deletion and/or duplication of the genetic
material between the repeats [44]. Moreover, since the same phenotype of
the disease can be achieved by different genomic alterations targeting dif-
ferent genes involved in the same pathway, patients affected by the same
disease can present heterogeneous DNA lesions.
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1.1.4 Some genetic lesions in cancer

Cancer is a group of diseases that are characterized by the uncontrolled
growth of the cells as a result of mutations that effect a limited number of
genes. In the majority of the cases, the genetic changes are only in somatic
cells (i.e. the disease is not familial). Cancer cells share several properties
not found in normal cells:

• loss of contact inhibition (i.e. process that allows the inhibition of
growth and division through cell-to-cell contact),

• loss of growth-factor dependence,
• insensitivity to anti-growth signals,
• evasion of apoptosis,
• immortality (no cell senescence),
• ability to metastasize and invade other tissues,
• sustained angiogenesis (i.e. formation of new vascular network which

supplies more nutrient to tumor cells).

Tumor formation is a multi-step process in which normal cells evolve into
cells with increasing neoplastic phenotype, through a sequence of ran-
domly occurring alterations of DNA. Some DNA aberrations can occur
at level of nucleotide sequence (e.g. single point mutations) or at level
of chromosomal structure (e.g translocations and inversions) and number
(e.g. deletions and amplifications); Figure 1.7.

A translocation is a chromosomal aberration resulting from the inter-
change of parts between non-homologous chromosomes. Translocations
can be formed by interchange of parts between two broken chromosomes
or by recombination between copies of repeatedDNA sequences present in
two non-homologous chromosomes. We call inversion a chromosomal re-
gion in which the linear order of a group of genes is the reverse of the nor-
mal order. An inversion can be formed, for example, by two break events
in a chromosome in which the middle segment is reversed in orientation
before breaks are healed. Copy number (CN) changes are defined as ge-
nomic regions where the number of DNA copies is different from the nor-
mal copy number (which is two, for human beings). We can divide these
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Fig. 1.7 Schematic illustration of some mechanisms by which chromosomal aberra-
tions arise. [Adapted by permission from Macmillan Publishers Ltd: Nature genetics
[3], copyright (2003)]

aberrations in four categories: homozygous deletion (CN=0), loss (CN=1),
gain (CN=3 or 4) and high amplification (CN>4). For example, a deletion
(CN=0 or 1) can occur by chromosome breakage and reunion.

Especially in solid tumors, two types of genes are the major targets
of the aberrations in the multi-step cancer progression: proto-oncogenes
and tumor-suppressor genes. The former are genes that, through a DNA
aberration, are improperly enhanced to be expressed and their expression
promotes cell proliferation or inhibits apoptosis. Examples of alterations
that can activate a proto-oncogene are: amplification (e.g. of the genes
FGFR and EGFR), mutation (e.g. targeting the gene Ras) and chromoso-
mal translocations. In contrast, tumor-suppressor genes are genes that nor-
mally negatively control cell proliferation or activate the apoptotic path-
way. Examples of lesions that inactivate this kind of genes are: homozy-
gous deletion (e.g. of CDKN2A) and loss of the remaining normal allele,
after the mutation of one copy of the gene (e.g. of TP53 and BRCA2).
The last type of event can be detected as a loss of heterozygosity (LOH) of
polymorphic markers in the region of that gene.

In general LOH can arise by several mechanisms (see Figures 1.8
and 1.9), such as deletion, somatic or germ-line recombinations result-
ing in uniparental disomy, autozygosity and chromosomal nondisjunction.
When the LOH occurs without a change in copy number, it is referred
as copy-neutral LOH and a possible cause of this alteration can be uni-
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Fig. 1.8 Mechanisms leading to loss of heterozygosity due to uniparental disomy.
Strategies for possible recombination events leading to loss of heterozygosity and their
detectable sequelae. Informative microsatellite alleles are A and B and are in the region
of the tumor suppressor gene. White and grey markers distinguish specific alleles of
the tumor suppressor gene. Solid black signals indicate the FISH interphase appearance
with a specific tumor suppressor gene probe that cannot distinguish alleles. The aster-
isk (*) is a distal FISH chromosomal marker (or a centromeric probe). Note that several
mechanisms can give rise to a loss of heterozygosity, but only 2b, 2c, and 3di and 3dii
are associated with a copy number deletion. Cells with any of these events may be se-
lected during clonal outgrowth. [Reprinted by permission from Macmillan Publishers
Ltd: Modern Pathology [54], copyright (2002)]

parental disomy or autozygosity. Uniparental disomy (UPD) describes the
inheritance of a pair of homologous chromosomes (or only a portion of
them) from a single parent [40, 80]. Either the presence of both homo-
logues (heterodisomy), or two copies of one homologue (isodisomy), or a
mixture of both are possible, due to meiotic recombinations. Similar events
can also happen during the mitosis. In cancer cells, uniparental isodisomy
can also occur when an homologue of a part of a chromosome is lost and
the remaining homologue is duplicated. In cancer biology, the relevance
of copy-neutral LOH aberrations, derived from meiotic or mitotic isodi-
somy, could for example lie in the inactivation of one allele of a tumor
suppressor gene, which is then duplicated (while the remaining normal
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Fig. 1.9 A model for mecha-
nisms which may contribute
to LOH. In cells carrying
one wildtype allele (T) and
one mutant allele (t) of a tu-
mor suppressor gene, LOH
events result in the expression
of the recessive mutation.
It has been postulated that
mechanisms like deletion,
gene conversion, recombi-
nation, non-disjunction, and
non-disjunction followed by
duplication of the remaining
chromosome may result in
LOH. In addition transloca-
tion may also result in LOH
[Reprinted by permission
from John Wiley & Sons,
Inc.: Genes, chromosomes
and cancer [46], copyright
(1998)]].

allele is lost). Instead, autozygosity describes a situation where the homo-
logues are identical by descendent (IBD), because they are inherited from
a common ancestor. Among human beings, inbreeding is usually uncom-
mon because of social conventions and laws, although in small isolated
populations (like religious communities, isolated villages) it does occur,
mainly between relatives more distant than second cousins (remote rela-
tives). The most common type of close inbreeding is between first cousins
and the effect is an increase in the frequency of homozygous genotypes
for rare, harmful recessive allele.

In human acute leukemia (cancer that arises in white blood cells), the
initial genetic events usually are not alterations in cell-cycle regulation or
checkpoints. Up to 65 percentage of cases arise as a consequence of chro-
mosomal translocation involving genes that play a role in blood cell de-
velopment. The breakpoints can occur in introns of two genes on different
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chromosomes, producing a gene that encodes a chimeric protein (fusion
gene) which may interfere with the normal cell development. Since one of
the two genes is normally expressed in the cell, also the fusion gene will
be expressed. Nevertheless, both the uniqueness of these chimeric proteins
and the fact that they are present only in cancer cells, make them a target
for drugs. If one could successfully attack the cells expressing those pro-
teins, then one could selectively kill all cancer cells.

1.2 Microarrays for DNA profiling

In the last decade, several types of microarray have been developed, for
example, to measure simultaneously the abundance of transcripts of thou-
sands of genes or the copy number at thousands/millions of DNA posi-
tions. The main difference with other conventional biological techniques
is that, in short time, they are able to measure simultaneously a specific
quantity at several units (e.g. genes or SNP positions). For example, the
fluorescent in situ hybridization (FISH) technique can be used to measure
the copy number of specific DNA sequences. Using the bonds caused by
the complementarity of the bases, the fluorescent probes bind the specific
target sequences of DNA (hybridization) and a fluorescent microscopy is
used to find out where the probes bound. Therefore, this technique cannot
be massively applied to find the copy number of thousands of genes.

In the following, we will consider only microarrays that measure DNA
copy number and/or genotyping. The first type of array are called ar-
ray comparative genomic hybridization (aCGH) microarray. In general,
an aCGH microarray consists of a glass slide (called also chip or array)
with spotted DNA probes (i.e. single-strand DNA segments). The probes
are attached on the slide to form a matrix in order that they can be uniquely
identified and, for each target sequence, more than one probe is used. The
technique is based on the complementarity property of the basis. Several
types of aCGH arrays exist and they differ for the type of probe used, the
resolution (i.e. how many positions of DNA are measured), the design of
the matrix and the biochemical process used.
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In the next applications (in Chapters 3 and 4), we will consider only
oligonucleotide-based microarray of Affymetrix (Santa Clara, CA, USA),
whose target sequences are oligonucleotides (sequence of 25 nucleotides)
containing a SNP position. Briefly, the biochemical process is the follow-
ing (Figure 1.10):

• the DNA is extracted from a sample of cells of a patient,
• using a restriction enzyme, the genomic DNA is cut in specific frag-

ments to reduce the genomic complexity,
• using the polymerase chain reaction (PCR), each fragment is amplified,

augmenting its abundance,
• the fragments are cut again (in pieces which are related to the probes),

labeled with a fluorescent tag and hybridized on the chip,
• the microarray is “washed” to eliminate the fragments that did not hy-

bridize,
• the array is stimulated with the laser and the intensities of the probes

are measured through a scanner.

At the end, all probes on the microarray, corresponding to a target se-
quence, should be bound to a quantity of labeled DNA that is proportional
to the copy number of the target sequence for that patient. Therefore, by
measuring the intensity of label bound to the probes, we can obtain an
estimate of the copy number of the target sequences.

In the Affymetrix GeneChip Mapping 10K Array, the probes are de-
signed in the following way. For each SNP, we have probes for both al-
leles, setting as position of the SNP the center of the oligonucleotide or
a position -4, -1, 1 and 4 around the center. For each of these sequences,
we have also probes for both directions of the strand (Figure 1.11). In this
way, in the 10K Array (11,464 SNP positions), there is a total of 40 probes
interrogating the same SNP, while, in the 250K Nsp Array (262,217 SNP
positions), only a subset of 24 probes is used in order to measure more SNP
positions. Moreover, each probe (called perfect match, PM) is paired with
a mismatch one (MM), having a wrong nucleotide in the center. The MM
probes are assumed to bind to non specific sequences at the same rate as
the PM probes and thus they can be used to correct the intensity measured
by the PM probe for background nonspecific hybridization. However, the
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Fig. 1.10 Scheme of Affymetrix GeneMapping 10K Array [Adapted by permission
from Macmillan Publishers Ltd: Nature biotechnology [37], copyright (2003)].

MM probes can also bind to differently-specific labeled subsequences in
the sample and thus some preprocessing methods do not take into account
the background adjustment given by MM probes (see, for example, [12]).
The probes interrogating the same SNP position are usually spotted sparse
in the matrix to reduce the effects in the measurement of possible artifacts.

Fig. 1.11 SNP miniblock
showing the hybridization
in three individuals, demon-
strating the three possible
genotypes: AA (left), AB
(middle), BB (right) [Adapted
by permission from Macmil-
lan Publishers Ltd: Nature
biotechnology [37], copyright
(2003)].

Due to their design, SNP microarray are able to measure simultane-
ously the copy number and the genotype at several SNP positions. In fact,
by comparing the intensity of the probes targeting the different alleles of
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the SNP, it is possible to determine its genotype. Moreover, we can also
identify its copy number by taking into account all the information given
by the probes of both alleles. The use of these arrays for the identification
of DNA alterations in cancer has three major advantages: 1) their genotyp-
ing ability allows for analysis of LOH, 2) they determine the copy number
of each interrogated SNP and 3) the density of SNP loci being interro-
gated allows for very high-resolution analysis (for example, in compar-
ison to probes targeting only genes). Moreover, as recently shown [36],
SNP microarrays can also potentially detect the breakpoints involved in
unbalanced translocations, allowing the identification of fusion genes (de-
scribed in Subsection 1.1.4).

1.2.1 Image analysis and preprocessing of Affymetrix SNP
microarray data

The acquisition of the so called raw data is not automatic from the scan-
ning of the array. After the microarray has been scanned, an image file is
created, storing all pixel-level intensities. Obviously, there are many more
pixels than probes, thus an image analysis is needed to process and convert
the pixel level data into measures of the probe intensities. The main step
of image analysis are:

• gridding, i.e. overlay a rectangular grid onto the pixels in order to iso-
late the spots corresponding to different probes,

• segmentation, i.e. inside each cell, identify the pixels belonging to the
probe (foreground region),

• intensity extraction, i.e. for each probe, the intensity is estimated as the
75th percentile of the pixel intensities in the foreground region.

Due to the complexity of the microarray procedure, these estimated in-
tensities are not biologically reliable. A preprocessing method is needed
to correct the intensity value for technical noise, such as fragment length,
nucleotide content in the fragment, lab effect. The preprocessing proce-
dure is essential for allowing the comparison among the data obtained in
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different microarray (i.e. different patients). Moreover, for the genotyp-
ing, a clustering algorithm (usually called genotyping calling algorithm)
is needed for the classification of the SNPs as AA, BB or AB. The two
main methods that solve this issue are: BRLMM [1] and CRLMM [12].





Chapter 2
The problem of copy number and LOH
estimation

Abstract Lesions at DNA level represent the cause of cancer and of many
congenital or hereditary disorders. The change of the number of copies of
DNA in a genomic region is one of the most common aberrations. In nor-
mal cells each genomic segment is present in two copies, but, for example,
in tumor cells the genome can present regions of deletions (copy number
one or zero), gains (copy number three or four) or amplifications (copy
number greater than four). Thus, in general, the DNA copy number along
the genome can be represented as a piecewise constant function.
With microarray technology it is possible to simultaneously measure the
copy number along the genome at hundred thousands of positions (see for
example [30]). However, raw copy number data are generally very noisy.
Hence, it is important to define a method which allows to estimate the
number of regions with different copy number, the endpoints of these re-
gions (called breakpoints) and their copy number.
In Section 2.1, we explain how the copy number data are commonly mod-
eled and in Section 2.2 we present some well-known methods for copy
number estimation.
Another kind of lesion of DNA is the loss of heterozygosity (LOH), i.e.
the transformation of the SNPs from heterozygous to homozygous due to
genomic events, such as the loss of one copy or uniparental disomy (see

21
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Subsection 1.1.4). SNP microarrays are also able to detect the homozygos-
ity status at hundred thousands of SNP loci. In Section 2.3, we describe
two methods which are currently the most used for the estimation of the
LOH profile.

2.1 The general hypotheses of the copy number inference

Since the genome can be divided in regions of constant copy number (or
log2ratio of the copy number), the DNA copy number profile can be mod-
eled as a piecewise constant function. Therefore, many methods model the
problem in the following way.

Fig. 2.1 Example of piece-
wise constant profile. We used
the log2ratio data of chromo-
some 22 of cell line JJN-3
(unpublished).

In general, all cells of the same organism contain the same DNA. Nev-
ertheless, the cells differ from each other in function and their function can
change over time. These functional differences are determined by differ-
ences in the abundance of the various types of proteins. Therefore, DNA
aberrations can lead to a different expression of specific genes, that can
change the behavior of the cell. We refer to the over-expression or under-
expression of a gene if the abundance of its transcript is, respectively,
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higher or lower with respect to the one in a reference cell (usually a normal
cell of the same tissue).

Let Y ∈ Rn be a random vector, such that each component (called data
point or, since Y represents a quantity measured on part of the genome,
probe) is conditionally normally distributed and conditionally indepen-
dent:

Yi|μ̃0
i ,σ2 ∼ N (μ̃0

i , σ2), i = 1, . . . ,n. (2.1)

Let us assume also that Y represents a noisy observation of a piecewise
constant function, which consists of k0 horizontal segments. Then, the seg-
ment level at a generic position i (μ̃0

i ) does not assume different values for
each i, but the data are divided into k0 intervals (with boundaries 0 = t00 <
t01 < · · ·< t0k0−1 < t0k0 = n) where μ̃0

tq−1+1 = . . .= μ̃0
tq =: μ0

q for each q= 1,

. . ., k0 (see Figure 2.1). Hence, μ0
q represents the level of the qth segment.

Given this setting, the joint distribution of Y (i.e., the likelihood) is
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where yi, j = (yi+1, . . ., y j).
The goal is to estimate the levels μ0 = (μ0

1 , . . . , μ0
k0
) of all the seg-

ments. In order to do that, we need to estimate also the number of the
segments k0 and the partition of the data t0.

Usually, the vectorY ∈Rn represents the vector of the observed log2ratio
of the copy number at n positions along the genome, and the triplet
(k0,t0,μ0) identifies the true piecewise constant log2ratio profile along the
genome. The log2ratio scale of the data (the ratio is computed with re-
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spect to a normal reference sample) is usually assumed to be normally dis-
tributed (see Figure 2.2). We refer to the whole model just described as the
piecewice constant formulation and the methods that assume this model
are sometimes called segmentation methods. There are other methods that
only suppose a normal distribution of the data points Y ∈ Rn, without as-
suming (taking into account) that the vector of the means μ̃0 (i.e., the true
log2ratio) is piecewise constant.

Fig. 2.2 Density histogram
of the raw log2ratio values
of cell line JEKO-1, obtained
by using the Affymetrix
GeneChip Mapping 10K
Array [69].

2.2 Estimation of copy number profile in literature

Several methods have been developed to infer the copy number profile,
using the formulations described in Section 2.1 (see Table 2.1). We can
roughly subdivide all of these methods into two classes: the ones that esti-
mate the copy numbers as a piecewise constant function and the others that
estimate the copy numbers as a continuous curve. The methods belonging
to the latter group are called smoothing methods.

Among the methods belonging to the first class, we can find the fol-
lowing. The Circular Binary Segmentation (CBS) approach is a recursive
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Table 2.1 The table summarizes some of the well-known and recent methods for copy
number estimation.

type name reference

piecewise constant method CBS [59]
piecewise constant method CGHseg [63]
piecewise constant method GLAD [31]
piecewise constant method HMM [21]
piecewise constant method BioHMM [45]
piecewise constant method Rendersome [57]

smoothing method wavelet [28]
smoothing method quantreg [18]
smoothing method smoothseg [29]

method in which the breakpoints are determined on the basis of a test of
hypothesis, with null hypothesis that in the interval considered there is
no change in copy number [59]. Picard et al. [63] used a piecewise con-
stant regression model, where the parameters are estimated by maximizing
a penalized likelihood (i.e. the likelihood with the addition of a penalty
function). This method is usually denoted with the abbreviation CGHseg.
The GLAD method is another piecewise constant regression method, but
in this case the parameters are estimated by maximizing a weighted likeli-
hood [31]. Fridlyand et al. [21] applied Hidden Markov Models (HMM),
while Marioni et al. [45] defined an HMM method which takes into ac-
count the distance among the data points (BioHMM). Recently, Nilsson et
al. [57] derived a segmentation method based on total variation minimiza-
tion, called Rendersome. It is optimized for gene expression data, but the
authors affirm that it can be used also on copy number data.

Among the smoothing methods, Hsu et al. [28] used a wavelet regres-
sion method with Haar wavelet. Eilers and de Menez [18] applied a quan-
tile smoothing regression (quantreg), with the solution found by minimiz-
ing a loss function based on the L1 norm, to obtain a flatter curve. Huang
et al. [29] proposed smoothseg, i.e. a smooth segmentation method based
on a doubly heavy-tailed random-effect model.
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In this section, we describe four well-known algorithms among the pre-
viously cited: CBS, HMM, CGHseg and quantreg.

2.2.1 The circular binary segmentation (CBS) method

The Circular binary segmentation procedure (CBS) is based on the like-
lihood ratio test for testing the null hypothesis that all data points have
the same mean against that there is one change at the unknown position t
(see [59, 74]). Let us assume to test:

H0 : μ̃1 = μ̃2 = · · ·= μ̃n

H1 : μ̃1 = · · ·= μ̃t �= μ̃t+1 = · · ·= μ̃n, for some t ∈ {1, . . . ,n− 1}.
Since we assume that the data points are normally distributed with vari-
ance σ2 and unknown mean, the likelihood-ratio test statistic is given by

p(Y |H0)

sup1≤t≤n−1 p(Y |Ht)
=

(2πσ 2)−n/2 exp
(
− 1

2σ2 ∑n
i=1(Yi −Y )2

)
sup1≤t≤n−1

{
(2πσ 2)−n/2 exp

(
− 1

2σ2

[
∑t

i=1(Yi −Y 0,t)2 +∑n
i=t+1(Yi −Y t ,n)2

])} ,(2.2)
where Ht = {μ̃1 = · · ·= μ̃t �= μ̃t+1 = · · ·= μ̃n} and

Y =
1
n

n

∑
i=1

Yi

Y i, j =
1

j− i

j

∑
h=i+1

Yh.

After simplifications, Equation (2.2) becomes

inf
1≤t≤n−1

exp

(
− 1

2σ2(t−1+(n− t)−1)

(
Y 0,t −Yt,n

)2)
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= exp

(
sup

1≤t≤n−1

∣∣∣∣ Y 0,t −Yt,n

(t−1+(n− t)−1)1/2

∣∣∣∣) .

and we can use Z := sup1≤t≤n−1

∣∣∣ Y 0,t−Yt,n

(t−1+(n−t)−1)1/2

∣∣∣ as a statistic for the test.

If the statistic exceeds the upper αth quantile of the null distribution of Z,
we reject the null hypothesis and estimate the location of the change-point
as

argmax
1≤t≤n−1

∣∣∣∣ Y 0,t −Yt,n

(t−1+(n− t)−1)1/2

∣∣∣∣ .
The binary segmentation procedure applies the test recursively in each de-
tected segment until no more change-points are found. The major problem
of this procedure is the estimation of a single change-point at a time, which
is not suitable for the detection of aberrations of small width (i.e. when two
consecutive change-points are close). In the circular binary segmentation
defined in [59], the two endpoints of the interval are joint together (to form
a circle) and we test

H0 : μ̃1 = μ̃2 = · · ·= μ̃n

H1 : μ̃t1+1 = · · ·= μ̃t2 �= μ̃t2+1 = · · ·= μ̃n = μ̃1 = · · ·= μ̃t1 ,

for some t1 < t2, t1, t2 ∈ {1, . . . ,n− 1}.

Therefore, the statistic is given by

Z = sup
1≤t1<t2≤n

∣∣∣∣∣∣ Yt1,t2 −
(n−t2)Yt2,n+t1Y 0,t1

n−t2+t1

[(t2 − t1)−1 +(n− t2+ t1)−1]1/2

∣∣∣∣∣∣
and, if we reject the null hypothesis, we estimate the two change-points as

argmax
1≤t1<t2≤n

∣∣∣∣∣∣ Yt1,t2 −
(n−t2)Yt2,n+t1Y 0,t1

n−t2+t1

[(t2 − t1)−1 +(n− t2+ t1)−1]1/2

∣∣∣∣∣∣ .
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The advantage of the second procedure is that it looks at two change-points
at a time and we can obtain also single changes if t1 or t2 is equal to an end-
point of the segment. Nevertheless, the application of this procedure can
lead to an edge effect in the estimation. In fact, if t1 is estimated “close”
to 1 and t2 “close” to n, there might be only one change-point. To avoid
this issue, in [59], the authors added to the procedure two tests: the first
one to verify if t1 is a change-point in the segment [1, t2], the second one to
verify if t1 is a change-point in the segment [t1,n]. Due to the difficulties
in the definition of the “closeness” of the estimated boundaries to the end-
points of the interval, the two tests are performed for all paired estimated
change-points.

Moreover, to deal with the real copy number data, which are very noisy,
other two modifications were added to the procedure:

1. a smoothing of the outliers before the segmentation,
2. a test to delete the estimated change-points not biologically meaningful

(for example, they can be related to technical bias).

In the smoothing, for any fixed position i, they consider a region from i−R
to i+R (R ∈ {1, 2, 3, 4, 5}) and they defined

mi = Y i−R−1,i+R

σ̂2 =
1

n− 1

n

∑
i=1

(Yi −Y 0,n)
2.

If Yi is the maximum or the minimum value in the region, they take

j = argmin
i−R≤h≤i+R

|Yh −Yi|

and, if |Yi −Yj|> 2σ̂ , then Yi is substituted by mi+ sign(Yi −Yj)3σ̂ .
In order to eliminate meaningless breakpoints, they perform a test. As-

suming that k− 1 breakpoints are found, they define SS(k− 1) as the sum
of squares of the data points with respect to their segment average. Then,
they compute SS(1), . . . , SS(k− 2), using the best set of breakpoints of
size, respectively, 1, . . . , k− 2, choosing the change-points among the es-
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timated ones. Finally, they determine k′ such that

k′ = min
1≤p≤k−1

SS(p)
SS(k− 1)

− 1< γ, γ = 0.05 or 0.10,

and the final breakpoints are the ones use to calculate SS(k′).
We can observe that, due to the smoothness procedure, CBS is not able

to detect small segments in the profile. Nevertheless, copy number changes
with small width can be possible, especially using microarrays with a low
resolution or high density microarray with probe at CNP positions.

2.2.2 The Hidden Markov model (HMM) method for copy
number estimation

Another commonly used algorithm models the copy number data with a
Hidden Markov Model (HMM), see [21, 84]. In this setting, the observa-
tions are assumed to depend (in a probabilistic way) on the value of the
“state” at that position. In other words, we have an underlying sequence of
random variables (called states), which is not observable (it is hidden) and
it is observable only trough another sequence of random variables, which
produces the observations. The states are assumed to belong to a discrete
set {s1, . . ., sNS}. In our case, the states are type/degree of copy number
changes (S) and the observations are the raw data (Y ).

The model is characterized by the definition of the following quantities:

1. NS, the number of the possible states,
2. the initial state distribution π = {πl}NS

l=1, where πl = P(S1 = sl), l = 1,
. . . , NS,

3. the transition probability distribution A = {apq}NS
p,q=1, where apq =

P(Si = sq |Si−1 = sp), p,q = 1, . . . , NS, i.e. at each time the probability
to pass from one value of the state to another,
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4. the emission distribution B = {bl(y)}NS
l=1, where bl(y) = p(y |ml , Σl),

i.e. the distribution of any observation knowing the value of the corre-
sponding state.

The authors assume that, given the l states, y has a multivariate normal
distribution with mean vector ml and covariance matrix Σl . Notice that,
in order to satisfy the standard probability constrains, the elements of the
matrix A have to fulfil the following properties:

apq ≥ 0, p,q = 1, . . . ,NS,

NS

∑
q=1

apq = 1, p = 1, . . . ,NS.

Moreover, assuming that from each state value it is possible to reach any
other state value, then apq > 0, for all p,q = 1, . . . , NS.

In [21], the parameters are initialized as following. The initial state dis-
tribution is defined to have a high probability at the value corresponding
to the “normal” copy number and equal probabilities for the remaining
values. The matrix A is assigned in order to have high probability to re-
main in the same state value. In this way, the HMM has all the states
connected. Finally, fixed a number of state values NS, they estimate the
emission probabilities by partitioning the observations in NS groups, using
the partitioning among medoids (PAM) algorithm [35], and the mean of
each state is estimated as the median of the observations allocated in that
state. The common initial variance is estimated similarly.

To fit the HMM with NS state values, the authors use first the Forward-
Backward procedure to calculate the likelihood. To identify the optimal
sequence of state associated to the vector of observations, for each obser-
vation yi they choose the state sl which is individually most likely. Finally,
they re-estimate the parameters (π , A, B) to maximize the likehood, by
using the EM algorithm.

It remains to define or estimate the number of state values NS. For
this purpose, the HMM algorithm in [21] first fits the model for NS = 1,
. . ., NS,max(=5) and then chooses the optimal number of state, using the
Akaike’s information criterion (AIC), i.e.
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NS,opt = argmin
1≤NS≤NS,max

−2log(p(Y |A,B,π))+ 2qNS

n
,

where qNS is the number of the parameters corresponding to the model
with NS state values. Moreover, to improve the estimation, the authors
added the following recursive procedure: if NS �= 1, the algorithm iden-
tifies the two states values which have the closest medians (of their corre-
sponding observations) and if this distance is lower than a fixed threshold,
then the two state values are merged.

2.2.3 The CGHsegmentation method

The CGHsegmentation algorithm (or CGHseg, see [63]) consists in a max-
imum likelihood estimation of a piecewise constant function (e.g. the true
profile of the log2ratio values). Similar to the HMM algorithm in [21], the
model is estimated for several number of segments k and then the optimal
k is chosen as the one that minimize a penalty criterion.

Fixed k, the log-likelihood of the data points is given by,

Lk =−1
2

k

∑
p=1

tk

∑
i=tk−1+1

[
log(2πσ2)+

(
yi − μp

σ

)2
]

and μ and σ2 are estimated with the corresponding maximum likelihood
estimators. Also the boundaries t are estimated with the maximum like-
lihood estimator, but, for its efficient computation, the use of a dynamic
programming is necessary. L̂k is the log-likelihood evaluated at the esti-
mated parameters.

After estimating the model for k = 1, . . ., kmax, the optimal k is chosen
as the value for which a penalized version of the log-likelihood is maxi-
mized,

L̃k = L̂k −β2k
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⇒ k̂ = argmax
1≤k≤kmax

L̃k.

The penalty function is similar to the one given by the AIC criterion, but
the penalty constant β is defined in an adaptive way. Actually, the aim of
the penalty criterion is to find k such that L̂k ceases to increase signifi-
cantly (because L̂k increases with k, due to the overfitting). If we define,

βk =
L̂k+1− L̂k

2(k+ 1)− 2(k)
, k = 1, . . . ,kmax,

they represent the slopes between the points {(2k,L̂k)}kmax
k=1 . Thus, if we

want to see when L̂k ceases to increase significantly, we look for breaks
in the slope of the curve, i.e. difference between the β s,

lk = βk −βk−1

=
L̂k+1 − L̂k

2(k+ 1)− 2(k)
− L̂k − L̂k−1

2(k)− 2(k− 1)

=
L̂k+1 − 2L̂k+ L̂k−1

2

=:
Dk

2
.

We can observe that lk is the second derivative of the log-likelihood, com-
puted with the finite difference. Finally, the optimal k is chosen as the
maximal number of segments such that the second derivative is lower than
a fixed threshold,

k̂ =max(k ∈ {1, . . . ,kmax}|Dk <−0.5n).
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2.2.4 The quantreg method

Given a regression problem

Z = Bα + ε,

the 0.5-quantile (or median) regression [38] estimates the parameters α ,
by minimizing the objective function

S(0.5) =
1
2

m

∑
i=1

∣∣∣∣∣zi − p

∑
j=1

bi jα j

∣∣∣∣∣ . (2.3)

where m and p are the dimensions of the vectors Z and α , respectively,
and {bi j}i, j are the elements of B.

Eilers and de Menezes [18] thought to estimate the copy number profile
with a smoothing method, which minimizes

Q1 =
n

∑
i=1

|yi − μi|+λ
n−1

∑
i=2

|μi − μi−1|. (2.4)

The objective function Q1 is an L1 norm version of the one presented
in [83], which uses L2 norm. The first term in the equation measures
the goodness of the fitting, the second term is a penalty that discourages
changes in μ . The authors found that the L2 norm has the effect of smooth-
ing the data with a roundish function. This is not suitable for the estimation
of copy number data, since the copy number changes are represented as flat
plateaus, which are instead enhanced by the use of L1 norm analogously
to Lasso [26].

The problem of finding μ , which minimizes Q1, is equivalent to solving
a 0.5-quantile regression with m = n, p = 2n− 1, α = μ,



34 2 The problem of copy number and LOH estimation

Z =

(
y
0

)
, B =

(
I

λD

)
, D =

⎡⎢⎢⎢⎢⎣
−1 1 0 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . . 1 0
0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎦
and I is the n× n identity matrix. In fact, by substituting the previous
values of the parameters in Equation (2.3), we obtain Q1/2 (2.4). This
convex optimization problem is solved by linear programming and in [18]
the authors use the implementation given in the R package quantreg.

2.3 Estimation of LOH in literature

Since the LOH consists in the alteration of the homozygosity status of the
SNPs, the inference of the LOH profile usually requires the knowledge of
either the matched normal sample (from the same patient) or a large nor-
mal reference dataset. The former type of analysis is called paired, the lat-
ter unpaired. In cancer studies, the normal sample is usually not available
for all patients, therefore the analysis of the data is performed with algo-
rithms which use a normal reference dataset (usually the HapMap dataset,
see e.g. [47]), to retrieve the information regarding the homozygosity of
the SNPs in normal conditions. Nowadays, the two unpaired methods,
which are the mostly used, are: dChip [8] and CNAT 4.01 [2] and both em-
ploy HMM. The HMM used in CNAT 4.01 is similar to the one of dChip.
They have the same observed variables and unobserved states. Moreover,
the philosophy behind the definition of the initial, transition and emission
probabilities is similar to the one of dChip, but the explicit formulas are
not provided in [2]. Therefore, we will describe only dChip.
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2.3.1 The dChip algorithm

Beroukhim et al. [8] derived an HMM algorithm for inferring the LOH of
unpaired samples which is usually referred to as dChip. As we saw in Sub-
section 2.2.2, HMM needs the specification of the unobserved states and
observed variables, the emission probabilities, the transition probabilities
and the initial probabilities.

The observed variables are the SNP calls classified as homozygous
(Hom), heterozygous (Het) and “NoCall”. The unobserved states are the
LOH status, which are defined as loss (LOSS) if there is an LOH, and
retention (RET), otherwise. The aim is to estimate the unobserved states
from the observations (see Figure 2.3).

Fig. 2.3 Scheme of the HMM
used in dChip [Adapted from
PLOS Computational Bi-
ology [8], copyright (2006),
available under Creative Com-
mons Attribution License].

The emission probabilities are the probabilities of the observed calls,
given an unobserved state. To define them, the authors considered a SNP
having observed calls Hom and Het as a random variable with a different
distribution with respect to the NoCall SNPs. In fact, they assumed that
actually a NoCall SNP can be Hom or Het, independently of the corre-
sponding LOH status. Thus, P(NoCall|LOSS) = 1 and P(NoCall|RET ) =
1. For the others SNPs, it is sufficient to set P(Het|RET ) and P(Het|LOSS)
and then, P(Hom|LOSS) = 1 - P(Het|LOSS) and P(Hom|RET ) = 1 -
P(Het|RET). For any SNPi (SNPi denotes the ith SNP interrogated), the
probability of being heterozygous under the RET state is estimated with
the average heterozygosity rate in a normal population (P(Het|RET) =
phet). Instead, the probability of being heterozygous under the LOSS state
is related to the genotyping error (which is 0.01 [37]). Thus, P(Het|LOSS)
= 0.01.
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The initial probabilities are the prior distribution of the LOH status at
any SNPi: P0(Het) and P0(Hom) = 1 - P0(Het). Using basic probabilities
rules, we can see that

P(Het) = P(Het|LOSS)P0(LOSS)+P(Het|RET)P0(RET )

= 0.01P0(LOSS)+ phetP0(RET )

≈ phetP0(RET )

⇒ P0(RET ) ≈ P(Het)
phet

,

by considering the SNP genotyping error negligible. As a consequence,
P0(RET ) is estimated as the ratio between the proportion of heterozygous
SNPs in the sample and the heterozygosity rate in the normal population.

The transition probabilities are the conditional distribution of the LOH
state of two consecutive SNPs. Since nearby SNPs tend to have the same
LOH status, while distant markers not, first the authors defined the proba-
bility θ that SNPi−1 does not influence SNPi. They used a function which
increases with the distance d (in Megabases, Mb) between the markers:
θ = (1− e−2d). Therefore, the probability of a LOSS at SNPi, given the
LOSS at SNPi−1, is decomposed in the probability that SNPi is not in-
fluenced by SNPi−1 and SNPi is LOSS, and the probability that SNPi is
influenced by SNPi−1,

P(LOSS at SNPi|LOSS at SNPi−1) = θP0(LOSS)+ (1−θ ).

Similarly, the probability of a LOSS at SNPi, given the RET status at
SNPi−1, is equal to the probability that SNPi is not influenced by SNPi−1

and SNPi is LOSS,

P(LOSS at SNPi|RET at SNPi−1) = θP0(LOSS).

Obviously,

P(RET at SNPi|LOSS at SNPi−1) = 1−P(LOSS at SNPi|LOSS at SNPi−1)

= θP0(RET )
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P(RET at SNPi|RET at SNPi−1) = 1−P(LOSS at SNPi|LOSS at SNPi−1)

= θP0(RET )+ (1−θ ).





Chapter 3
New statistical methods for copy number
estimation

Abstract As we saw in Chapter 2, the copy number profile can be es-
timated with either a piecewise constant function or a continuous curve.
In [32, 33], Hutter proposed two Bayesian regression methods that can be
applied for the inference of the copy number profile: the Bayesian Piece-
wise Constant Regression (BPCR) and the Bayesian Regression Curve
(BRC).
BPCR is a Bayesian regression method for data that are noisy observations
of a piecewise constant function. The method estimates the unknown seg-
ment number, the endpoints of the segments and the value of the segment
levels of the underlying piecewise constant function. BRC estimates the
same data with a smoothing curve. However, in the original formulation,
some estimators failed to properly determine the corresponding parame-
ters. For example, the boundary estimator did not take into account the
dependency among the boundaries and estimated more than one break-
point at the same position, losing segments.
Therefore, in Section 3.1, we present an improved version of the BPCR
(called mBPCR), changing the segment number estimator and the bound-
ary estimator to enhance the fitting procedure. We also propose an alterna-
tive estimator of the variance of the segment levels, which is useful in case
of data with high noise. In Section 3.2 we deduce two improved versions

39
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of BRC: mBRC and BRCAk.
In literature, some methods estimate the copy numbers as a piecewise con-
stant function, while other algorithms estimate them as a continuous curve
(Chapter 2). Hence, we compare the original and the modified version of
BPCR to the former group of methods (Subsection 3.1.7), while the the
original and the modified version of BRC to the latter (Subsection 3.2.3).
On artificial data, we show that mBPCR and the improved versions of
BRC generally outperformed all the others. We observe that similar results
were obtained also on real data. The choice of using Bayesian statistics,
although it has higher computational complexity, appears appropriate es-
pecially for the estimation of regions containing only few data points.
In Section 3.3, we describe a dynamic programming for the computation
of the quantities involved in the estimation, since it is not possible to find
them analytically. In Section 3.4, we show a further change of mBPCR,
in order to reduce the false discovery rate of the breakpoint estimator in
presence of only one segment.
Our method (already published in [65]) was implemented in R and the
corresponding R package (called mBPCR) can be downloaded from the
Bioconductor website (http://www.bioconductor.org/).
Regarding notations, we will not indicate explicitly the random variable to
which a distribution is referred, if it is clear from the context. For example,
pK(k)≡ p(k) or pY ,M(y,μ)≡ p(y,μ).

3.1 Piecewise constant estimation: the mBPCR method

The Bayesian Piecewise Constant Regression (BPCR) estimates a piece-
wise constant function using a Bayesian regression [32, 33]. Since copy
number data can be modeled as a piecewise constant function, this algo-
rithm can be used for their profile estimation. Nevertheless, we found that
some estimators defined in the procedure gave practical and/or theoretical
problems. Therefore, we propose improved Bayesian estimators. The new
version of BPCR is called modified Bayesian Piecewise Constant Regres-
sion (mBPCR) and has been presented in [65].
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In Subsection 3.1.1, we define the complete model, which is common to
both BPCR and mBPCR. In Subsection 3.1.2, we briefly describe the es-
timation of the parameters in the original BPCR, in order to show how we
changed some of these estimators in Subsections 3.1.3, 3.1.4 and 3.1.5. In
Subsection 3.1.6, we select the best performing estimators on the basis of
the results obtained on artificial datasets. A further selection is performed
in Subsection 3.1.7, on the basis of the comparison with other methods
on artificial data. Finally, in Subsection 3.1.8, we define mBPCR and, in
Subsection 3.1.9, we compare it with other methods on real data.

3.1.1 Priors and posteriors

Given the “piecewise constant setting” defined in Section 2.1, we want to
estimate the number of the segments k0, the partition of the data t0 and
the levels of all the segments μ0. From a Bayesian point of view, μ0, t0

and k0 are treated as random variables, hence we denote them with the
corresponding upper case letters (M, T and K). Moreover, because of their
randomness, we need to define a prior distribution for each of them to
complete the model.

For the number of segments and the boundaries, we assume noninfor-
mative prior distributions:

p(k) =
1

kmax
, k ∈K (3.1)

p(t |k) = 1(
n−1
k−1

) , t ∈ Tk,n, (3.2)

whereK= {1, . . . , kmax} andTk,n is the subspace ofNk+1
0 such that t0 = 0,

tk = n and tq ∈ {1, . . ., n− 1} for all q = 1, . . . , k− 1, in an ordered way
and without repetitions.

About M, we assume that all its components are mutually independent
and identically normally distributed,
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M|ν, ρ2, K=k ∼ N (ν , ρ2 I), (3.3)

where ν ∈ Rk, such that νq = ν for each q = 1, . . . , k, and I ∈ Rk×k, such
that Ip,q = δp,q for each p, q = 1, . . . , k.

Instead of these assumptions, we could assume a Cauchy distribution
for eachYi or Mq in order to model an observation whose noise has heavier
tails, as previously done by Hutter [32, 33].

In general, the Bayesian estimation procedure requires the computation
of the posterior distributions of the unknown parameters. In particular, in
BPCR and/or in mBPCR we need to calculate the posterior distribution
of the number of segments, the posterior joint or marginal distribution of
the boundaries and the posterior marginal distribution of the levels M. We
obtain the desired distributions by using Bayes’s rule and conditioning
with respect to the other parameters,

p(k |y,σ2,ν,ρ2)

=
p(y |k,σ2,ν,ρ2)p(k)

p(y |σ2,ν,ρ2)

=
∑t∈Tk,n

p(y | t,k,σ2,ν,ρ2)p(t |k)p(k)
p(y |σ2,ν,ρ2)

=
p(k)∑t∈Tk,n

p(t |k)(∫Rk p(y |μ , t,k,σ2)p(μ |k,ν,ρ2)dμ
)

p(y |σ2,ν,ρ2)

=
p(k)∑t∈Tk,n

p(t |k)(∫Rk p(y |μ , t,k,σ2)p(μ |k,ν,ρ2)dμ
)

∑kmax
k=1 p(k)∑t∈Tk,n

p(t |k)(∫Rk p(y |μ , t,k,σ2)p(μ |k,ν,ρ2)dμ)

p(t |y,k,σ2,ν,ρ2) =
p(y | t,k,σ2,ν,ρ2)p(t |k)

p(y |k,σ2,ν,ρ2)

=
p(t |k)∫Rk p(y |μ , t,k,σ2)p(μ |k,ν,ρ2)dμ

∑t∈Tk,n
p(t |k)∫Rk p(y |μ , t,k,σ2)p(μ |k,ν,ρ2)dμ
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p(tp |y,k,σ2,ν,ρ2) = ∑
{t′∈Tk,n:

t′p=tp}

p(t ′ |y,k,σ2,ν,ρ2)

p(μp |y, t,k,σ2,ν,ρ2) = p(μp |ytp−1,tp , t,k,σ
2,ν,ρ2)

=
p(ytp−1,tp |μp, t,k,σ2)p(μp |ν,ρ2)

p(ytp−1,tp | t,k,σ2,ν,ρ2)
(3.4)

=
p(ytp−1,tp |μp, t,k,σ2)p(μp |ν,ρ2)∫

Rk p(ytp−1,tp |μp, t,k,σ2)p(μp |ν,ρ2)dμp
,

where the likelihood is defined in Equation (2.2) and the priors of the
parameters are defined in Equations (3.1), (3.2) and (3.3). Notice that it is
not possible to compute analytically the posteriors (since they require to
sum the likelihood over all t ∈ Tk,n and k ∈ K), therefore the estimation
procedure uses a dynamic programmingwhich is explained in Section 3.3.

In the following, we will not explicitly indicate the hyper-parameters
σ2, ν and ρ2 in the posteriors and in the likelihood, to simplify the nota-
tions.

3.1.2 Original estimation: the BPCR method

The statistical procedure consists in a sequence of estimations due to the
relationship among the parameters.

BPCR estimates the number of segments with the MAP (Maximum A
Posteriori) estimate given the sample point y,

k̂ := argmax
k∈K

p(k |y), (3.5)

and, given k̂, also each boundary is estimated separately with its corre-
sponding MAP estimate,
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t̂p := argmax
h∈{p, ..., n−(k̂−p)}

P(Tp = h |y,k̂) (3.6)

for all p = 1, . . . , k̂− 1. Finally, the rth moment of the level of the pth

segment is estimated with its posterior mean. Since its computation needs
the knowledge of the number of segments and the partition of the data, we
replace them with the estimated ones,

μ̂ r
p := E[Mr

p |y, t̂, k̂], (3.7)

for all p = 1, . . . , k̂. Equation (3.4) implies that the posterior probability
of Mp is proportional to p(ytp−1,tp |μp, t,k,σ2)p(μp |ν,ρ2) and, assuming
that Y and M are normally distributed (see (2.1) and (3.3)),

p(μp |y, t̂, k̂) ∝ exp

⎧⎨⎩− 1
2σ2

t̂p

∑
i=t̂p−1+1

(yi − μp)
2 − 1

2ρ2 (μp −ν)2
⎫⎬⎭

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

(
t̂p − t̂p−1

σ2 +
1

ρ2

)⎡⎢⎢⎢⎣μp −
∑

t̂p
i=t̂p−1+1

yi

σ2 + ν
ρ2

t̂p−t̂p−1

σ2 + 1
ρ2

⎤⎥⎥⎥⎦
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Consequently, Mp has the following posterior normal distribution,

Mp|y,̂t ,̂k ∼ N

⎛⎜⎝ρ2 ∑t̂p
i=t̂p−1+1

yi+σ2ν

(̂tp − t̂p−1)ρ2+σ2
,

σ2ρ2

(̂tp − t̂p−1)ρ2+σ2

⎞⎟⎠
and Equation (3.7) imply that the estimate of the pth level is

μ̂p =
ρ2 ∑tp

i=tp−1+1 yi+σ2ν

(tp − tp−1)ρ2+σ2 , (3.8)
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for all p = 1, . . . , k̂. When the sample contains only one segment, the
Bayesian estimation of the posterior distribution of the levels should the-
oretically lead to a normal distribution, similar to a Dirac delta function
centered at ν̂ , since the levels can assume only one value by knowing only
the data. In fact, in this case, if we estimate ρ2 only using the data (without
using any prior or other information), then this value will be close to zero
(the variance of a constant random variable, since M can assume only one
value by knowing only the data) and thus the level will be estimated with
ν̂ , the mean of the data (see Equation (3.9)).

The probability distributions defined previously depend on the hyper-
parameters ν , ρ2 and σ2 (the mean and the variance of the segment levels
and the variance of the noise, respectively). Hutter [32, 33] suggested the
following estimators:

ν̂ :=
1
n

n

∑
i=1

Yi = Y (3.9)

ρ̂2 :=
1
n

n

∑
i=1

(Yi −Y)2 (3.10)

σ̂2 :=
1

2(n− 1)

n−1

∑
i=1

(Yi+1 −Yi)
2. (3.11)

3.1.3 Improved estimators of the number of segments

To understand the real meaning of the MAP estimator K̂, we need to in-
troduce the theory of the construction of a generic Bayesian estimator.

In general, a Bayesian estimator is defined in the following way. Let
us suppose that Z is a random variable whose distribution depends on an
unknown parameter θ , which we want to estimate. Since we cannot know
exactly the true value of the parameter, we consider it as a random vari-
able Θ with a given prior probability distribution. In order to measure the
goodness of the estimation, we define an error (or loss function) and we
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choose the estimator that minimizes the expected error given the sample
Z,

Θ̂ := argmin
θ ′ E[err(Θ ,θ

′
) |Z]. (3.12)

The 0-1 error (defined as 1− δθ ,θ ′ ) is commonly used for a parameter
which can assume only a discrete number of values. The estimator corre-
sponding to this error is the MAP estimator,

argmin
θ ′ E[1− δΘ ,θ ′ |Z]=argmax

θ ′ ∑
θ

δθ ,θ ′ p(θ |Z)

=argmax
θ ′ p(θ

′ |Z). (3.13)

Obviously, if we use different types of errors, we can obtain different esti-
mators. In the following, we will use K̂ to denote any estimator of K, while
K̂01 to denote the estimator K̂ based on the 0-1 error.

Using the 0-1 error, we give the same penalty to each value different
from the true value, whether it is close to or far away from the true one. To
take into account the distance of the estimated value from the true one, we
need to use other types of errors, which are based on different definitions
of distance, such as,

absolute error := |θ −θ
′ | (3.14)

squared error := (θ −θ
′
)2. (3.15)

If the parameter θ ∈ R, then the estimators corresponding to these errors
are the median and the mean of its posterior distribution, respectively. In
our case, we denote these estimators of k0 with K̂1 and K̂2.
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3.1.4 Improved estimators of the boundaries

Similarly to the previous subsection, we derive alternative boundary es-
timators by considering different types of errors. We denote the MAP
boundary estimator defined in Equation (3.6) with T̂ 01.

The estimator T̂ 01 is defined in such a way that each component mini-
mizes the 0-1 error of the corresponding boundary, separately. Explicitly,
given the sample point y and the segment number k0, its estimate is

T̂ 01 =

(
0,argmax

t1∈T
p(t1 |y,k0), . . . , arg max

tk0−1∈T
p(tk0−1 |y, k0),n

)
,

where T = {1, . . . , n− 1}. T̂ 01 may be regarded as an approximation of
the Bayesian estimator that minimizes the error which counts the number
of wrongly estimated boundaries:

sum 0-1 error=
k0−1

∑
p=1

(
1− δt0p,tp

)
= k0 − 1−

k0−1

∑
p=1

δt0p,tp , (3.16)

that is

T̂ sum = argmax
t∈Tk0,n

k0−1

∑
p=1

p(tp |Y ,k0). (3.17)

A problem of the estimator in Equation (3.17) is its computational com-
plexity, because it needs the computation of all the ordered combinations
of the boundaries. On the other hand, there are two reasons for which
T̂ 01 is not a suitable estimator of the boundaries. First, it does not take
into account that the boundaries are dependent, because they have to be
ordered, and second, in principle, it can have more than one component
with the same value. As a consequence, a theoretically more correct way
to estimate the boundaries is minimizing the 0-1 error with respect to the
joint boundary probability distribution (this error is called total 0-1 error).
Then, given k0 and Y , the boundary estimator becomes
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T̂ joint = argmax
t∈Tk0,n

p(t |Y ,k0). (3.18)

We must notice that the estimators considered until now have the same
length of the true vector of the boundaries. In practice, the number of seg-
ments k0 is unknown, so that we should use k̂. As a consequence, if k̂ is
different from k0, then, strictly speaking, we cannot minimize the previous
types of error because the vectors have different length.

A way to solve this issue is to map each boundary vector into a vector
τ ∈ Rn+1

0 in the following way:

t �→ τ such that τi =

{
1 if ∃p such that tp = i
0 otherwise.

(3.19)

We denote with ττ k,n the set of all the possible τ with τ0 = 1, τn = 1 and
k− 1 of the other components equal to 1.

Now, for the new two vectors τ0 (which has two-norm
√

k0+ 1) and

τ (which has two-norm
√

k̂+ 1 ), we need to define a suitable error. For
example, we can consider the sum 0-1 error, the number of elements in τ0

which differ from those in τ (i.e. the number of missed breakpoints) or the
Euclidian distance, which are, respectively,

n−1

∑
i=1

(1− δτ0
i ,τi

) = k0+ k̂− 2
n−1

∑
i=1

τ0
i τi, (3.20)

k0 − 1−〈τ0, τ〉= k0 − 1−
n−1

∑
i=1

τ0
i τi, (3.21)

‖τ0 − τ‖2 =

(
‖τ0‖2+ ‖τ‖2− 2

n−1

∑
i=1

τ0
i τi

)1/2

. (3.22)

The errors (3.20) and (3.21) are minimized by the same argument. More-
over, minimizing (3.21) is also the same of minimizing (3.22), because
‖τ0‖2 and ‖τ‖2 are fixed. Furthermore, the error (3.21) is consistent with
the Russell-Rao dissimilarity measure defined on the space of the binary
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vectors, so we will call (3.21) the binary error.

τ̂ BinErr := argmin
τ ′ ∈ττ k0,n

E

[
k0 − 1−

n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ Y , k0

]

= argmax
τ ′ ∈ττ k0,n

E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ Y , k0

]
. (3.23)

We can make the last expected value explicit, given the sample point y,

E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ y, k0

]
= ∑

τ∈ττ k0,n

n−1

∑
i=1

τiτ
′
i p(τ |y, k0)

=
n−1

∑
i=1

∑
τ∈ττ k0,n

:τi=1

τiτ
′
i p(τ |y, k0)

=
n−1

∑
i=1

∑
τ∈ττ k0,n

:τi=1

τ
′
i p(τ |y, k0)

=
n−1

∑
i=1

δτ ′
i ,1 ∑

τ∈ττ k0,n
:τi=1

p(τ |y, k0)

= ∑
i=1,...,n−1:τ ′

i =1

P(τi = 1 |y, k0)

Moreover,

P(τi = 1 |y, K = k0) = P({t ∈ Tk0,n : ∃p such that tp = i}|y, k0)

=
min(i,k0−1)

∑
p=1

P(Tp = i |y, k0). (3.24)
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Therefore, to find the value of τ̂ BinErr, we need to find the k̂− 1 high-
est P(τi = 1 |y, k0) (corresponding to the indices i1, . . . , ik̂−1) and then

take τ̂ BinErr such that τ̂ip = 1 for p = 1, . . ., k̂− 1. Using the inverse of
the function in (3.19), we obtain the corresponding value of the estimator
T̂ BinErr.

Since we do not know the real value of k0, we should replace it with k̂
to compute Equation (3.23). Doing this, we could amplify the error of the
boundary estimation because of the addition of the error of the segment
number estimation. A way to attenuate this issue is to integrate out the
number of segments in the conditional expected value. Then the estimator
becomes

τ̂ BinErrAk := argmax
τ ′ ∈ττ

k̂,n

E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ Y
]
. (3.25)

and the explicit formula of the expected value, given the sample point y, is

E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ y
]
=

kmax

∑
k=2

∑
τ∈ττ k,n

n−1

∑
i=1

τiτ
′
i p(τ |y, k)p(k |y)

=
kmax

∑
k=2

n−1

∑
i=1

δτ ′
i ,1

P(τi = 1 |y, k)p(k |y)

=
n−1

∑
i=1

δτ ′
i ,1

kmax

∑
k=2

P(τi = 1 |y, k)p(k |y)

= ∑
i=1,...,n−1:τ ′

i =1

P(τi = 1 |y).

Analogously to the computation of τ̂ BinErr, the components of τ̂ BinErrAk

are equal to the ones corresponding to the k̂− 1 highest probabilities in
{P(τi = 1 |y)}n−1

i=1 . Again, using the inverse of the function in (3.19), we
obtain the corresponding value of the estimator T̂ BinErrAk.
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3.1.5 Properties of the hyper-parameter estimators and
definition of new estimators

In order to study the properties of the hyper-parameter estimators defined
in Equations (3.9), (3.11) and (3.10), first we need to compute joint dis-
tribution of any two data points Yi and Yj belonging to the same segment,
conditioned only on the hyper-parameters ν , ρ2, σ2. In the following, nq

will denote the number of data points in the qth segment.
At first, let us consider only the data which belong to the qth segment.

From the hypothesis of the model, we know that

Yj|Mq, σ2 ∼ N (Mq, σ2), j = tq−1+ 1, . . . , tq,

Mq|ν, ρ2 ∼ N (ν , ρ2),

thus, the joint density of any two data points Yi and Yj belonging to the qth

segment is

f (yi,y j|ν , ρ2, σ 2)

=
∫
R

f (yi,y j , μq|ν , ρ2, σ 2)dμq

=
∫
R

f (yi|μq, σ 2) f (y j|μq, σ 2) f (μq|ν , ρ2)dμq

=
∫
R

(
1

2π

) 3
2 1

σ 2ρ
exp

{
−1

2

[
∑

h={i, j}

(
yh −μq

σ

)2

+

(
μq −ν

ρ

)2
]}

dμq

=
1

2πσ 2ρ
exp

{
−1

2

[
− σ 2 ρ2

σ 2+2ρ2

(
yi + y j

σ 2 +
ν
ρ2

)2

+
y2
i + y2

j

σ 2 +
ν2

ρ2

]}

·
∫
R

1√
2π

exp

{
−1

2

[(
2

σ 2 +
1

ρ2

)(
μq − σ 2 ρ2

σ 2+2ρ2

(
yi + y j

σ 2 +
ν
ρ2

))2
]}

dμq

=
1

2πσ
√

2ρ2 +σ 2
exp

{
−1

2

[
(ρ2 +σ 2)(y2

i + y2
j)−2ρ2yiy j

σ 2(2ρ2 +σ 2)
+2

ν2 −ν(yi+ y j)

2ρ2 +σ 2

]}
.

The quantity in the square brackets can be written as a quadratic form in
the following way,
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[
yi −ν y j −ν

]⎡⎣ σ2+ρ2

σ2(2ρ2+σ2)
−ρ2

σ2(2ρ2+σ2)
−ρ2

σ2(2ρ2+σ2)
σ2+ρ2

σ2(2ρ2+σ2)

⎤⎦[ yi −ν
y j −ν

]
,

thus (Yi, Yj)|ν, ρ2, σ2 ∼ N2(ν , Σ), where

Σ =

[
σ2 +ρ2 ρ2

ρ2 σ2 +ρ2

]
.

It follows that the covariance between two data points, which belong to
the same segment, is

Cov(Yi, Yj|ν , ρ2, σ2) = ρ2 i �= j, (3.26)

and

E[Yj|ν , ρ2, σ2] = ν (3.27)

Var(Yj|ν , ρ2, σ2) = σ2+ρ2, (3.28)

for each j = 1, . . ., n, independently of the segment to which it belongs.
Furthermore, from the hypotheses of the model, knowing the segmen-

tation t0, data points belonging to different segments are independent.

Expected value and variance of the estimator ν̂

The estimator of ν is defined as ν̂ = Y (see Equation (3.9)) and Equa-
tion (3.27) implies that this estimator is unbiased. To compute its variance,
first, we need to calculate the second moment of the arithmetic mean.

From equations (3.27), (3.28) and (3.26), we can deduce that

E[YiYj] =

⎧⎨⎩
ν2 if they are independent
ν2 +ρ2 if they are dependent and j �= i
ν2 +ρ2+σ2 if j = i

(3.29)
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Using this fact and remembering thatYi andYj are independent only if they
belong to different segments, we can compute the expected values of the
square arithmetic mean,

E[Y
2
] =

1
n2

n

∑
i, j=1

E[YiYj]

=
1
n2

⎛⎜⎝ n

∑
i=1

E[Y 2
i ]+

k0

∑
p=1

np

∑
i, j=1
i �= j

E[Y p
i Y p

j ]+
k0

∑
p,q=1
p �=q

np

∑
i=1

nq

∑
j=1

E[Y p
i Yq

j ]

⎞⎟⎠
=

1
n2

[
n(ν2+ρ2+σ2)+

k0

∑
p=1

np(np − 1)(ν2+ρ2)

+
k0

∑
p=1

np(n− np)ν2

]
= ν2 +

σ2

n
+ρ2 ∑k0

p=1n
2
p

n2 , (3.30)

whereY p
i denotes the ith data point of the pth segment. For the last equation

we used the fact that ∑k0
p=1np = n. Therefore,

Var[Y ] = E[Y
2
]−E[Y ]2

=
σ2

n
+ρ2 ∑k0

p=1 n2
p

n2 (3.31)

≥ σ2

n
+ρ2

⌈
n
k0

⌉2
k0

n2 =
σ2

n
+O

(
ρ2

k0

)
.

Hence, the variance is always greater than O
(

ρ2

k0

)
, even if we use a denser

sampling, i.e. we augment the number of data points in the interval in
which we are estimating the piecewise constant function.
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New definition of the estimator σ̂2 and its expected value

A circular version of the σ2 estimator defined in Equation (3.11) is

σ̂2 :=
1
2n

n

∑
i=1

(Yi+1 −Yi)
2, (3.32)

where Yn+1 :=Y1. In order to compute the expected value of the estimator,
first we compute the expected value for each term of the summation. We
will consider two cases:

1. Yi and Yi+1 belong to different segments,
2. Yi and Yi+1 belong to the same segment.

In the first case, by using Equation (3.29), we obtain that

E[(Yi+1 −Yi)
2] = E[Y 2

i+1]+E[Y2
i ]− 2E[YiYi+1]

= 2(ν2+ρ2+σ2)− 2ν2 = 2(ρ2+σ2),

and in the second case,

E[(Yi+1 −Yi)
2] = 2(ν2+ρ2+σ2)− 2(ν2+ρ2) = 2σ2.

Then, the expected value of σ̂2 is

E[σ̂2]

=
1
2n

{
k0

∑
q=1

nq−1

∑
i=1

E[(Yq
i+1 −Yq

i )
2]+

k0−1

∑
q=1

E[(Yq+1
1 −Yq

nq
)2]+E[(Yn−Y1)

2]

}

=
1
2n

[
(n− k0)2σ2+ 2k0(ρ2 +σ2)I{k0≥2}+ 2σ2I{k0=1}

]
= σ2+ρ2 k0

n
I{k0≥2}. (3.33)

In the computation, we considered two situations: (a) when k0 = 1, Y1 and
Yn belong to the same segment (thus, they are dependent), (b) when k0 ≥ 2,
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Y1 and Yn are independent, because we supposed that the first and the last
segments have different levels. If the first and the last segments had the
same level, then the two segments would be joined together and Y1 and Yn

would be dependent. In this case, the expected value would be the same but
with k0 − 1 instead of k0, since the number of segments would be k0 − 1.

In any case, for k0 = 1, the estimator σ̂2 is unbiased, while for k0 � n

but k0 �= 1, σ̂2 is almost unbiased.

Expected value of the estimator ρ̂2

To derive the expected value of the estimator ρ̂2 = 1
n ∑n

i=1(Yi −Y )2, we
first compute the expected value for each term of the summation,

E[(Yi −Y)2] = E[Y 2
i ]−

2
n

n

∑
j=1

E[YiYj]+E[Y2
]

= ν2+ρ2+σ2 − 2
n

(
ν2+ρ2+σ2+(nq− 1)(ν2+ρ2)

+ (n− nq)ν2)+ν2+
σ2

n
+ρ2 ∑k

p=1n
2
p

n2

= σ2
(

1− 1
n

)
+ρ2

(
1− 2nq

n
+

∑k0
p=1n

2
p

n2

)
.

In the computation, we assumed that Yi belongs to the qth segment and we
used Equations (3.29) and (3.30). Then, denoting with Yq

i the ith element
of the qth segment,

E[ρ̂2 ] =
1
n

k0

∑
q=1

nq

∑
i=1

E[(Yq
i −Y)2]

=
1
n

k0

∑
q=1

nq

[
σ2
(

1− 1
n

)
+ρ2

(
1− 2nq

n
+

∑k0
p=1n

2
p

n2

)]
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= σ2
(

1− 1
n

)
+ρ2

(
1− ∑k0

p=1n
2
p

n2

)
. (3.34)

Notice that when k0 = 1 (i.e. having only one segment), E[ρ̂2 ] =
σ2
(
1− 1

n

)
. In this degenerate case, the variance of the segment levels ρ2

should be estimated with zero, instead ρ̂2 estimates it with the variance of
the data points.

Moreover, since ∑k0
p=1 n2

p ≥ n (the equality holds only when k0 = n), we
obtain that

σ2
(

1− 1
n

)
≤ E[ρ̂2 ] ≤

(
1− 1

n

)(
σ2 +ρ2) . (3.35)

Hence, if n is large the expected value is between σ2 and σ2+ρ2, so that,
if ρ2 � σ2, the estimator is almost unbiased for σ2 (instead of ρ2).

Definition of alternative estimator of ρ2: ρ̂2
1

Since the covariance between data points belonging to the same segment
is ρ2, we could try to use a circular version of the estimator of the autoco-
variance of a stationary time series

ρ̂2
1 :=

1
n

n

∑
i=1

(Yi −Y )(Yi+1 −Y ), (3.36)

where Yn+1 := Y1. To compute the expected value for each term of the
summation, we need to consider the two cases:

1. Yi and Yi+1 belong to different segments,
2. Yi and Yi+1 belong to the same segment.

In the first case, if we suppose that Yi belongs to the qth segment and Yi+1

belongs to the (q+ 1)th segment, Equations (3.29) and (3.30) imply that
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E[(Yi −Y )(Yi+1 −Y )] = E[YiYi+1]− 1
n

n

∑
j=1

E[YiYj]− 1
n

n

∑
j=1

E[Yi+1Yj]+E[Y
2
]

= ν2 − 1
n
(nν2 + nqρ2+σ2)− 1

n
(nν2 + nq+1ρ2+σ2)

+ ν2 +
σ2

n
+ρ2 ∑k

p=1n
2
p

n2

= ρ2

(
∑k0

p=1n
2
p

n2 − nq+ nq+1

n

)
− σ2

n
.

In the second case, we obtain that

E[(Yi −Y )(Yi+1 −Y )] = ν2 +ρ2− 2
n
(nν2 + nqρ2+σ2)+ν2+

σ2

n

+ ρ2 ∑k
p=1n

2
p

n2 = ρ2

(
∑k0

p=1n
2
p

n2 − 2nq

n
+ 1

)
− σ2

n
.

Therefore, by summing over all i= 1, . . ., n, we obtain

n

∑
i=1

E[(Yi −Y )(Yi+1 −Y )]

=
k0

∑
q=1

nq−1

∑
i=1

E[(Yq
i −Y )(Yq

i+1 −Y)]+ I{k0≥2}
k0−1

∑
q=1

E[(Yq
nq

−Y )(Yq+1
1 −Y)]

+E[(Yn −Y)(Y1 −Y)]

=
k0

∑
q=1

(nq − 1)

[
ρ2

(
∑k0

p=1n
2
p

n2 − 2nq

n
+ 1

)
− σ2

n

]

+I{k0≥2}
k0−1

∑
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ρ2

(
∑k0
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p

n2 − nq+ nq+1
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)
− σ2

n

]
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∑k0
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p

n2 − nk0 + n1
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)
− σ2

n

]
− σ2

n
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= ρ2

[
n+ 2− k0− 2I{k0≥2} −

∑k0
p=1n

2
p

n2

(
n+ k0− k0I{k0≥2}

)]

+σ2
(

k0

n
− 1− k0

n
I{k0≥2}+

1
n
I{k0=1}

)

⇒ E[ρ̂2
1 ] =

⎧⎨⎩−σ2

n if k0 = 1

ρ2

n

(
n− k0− ∑

k0
p=1 n2

p

n

)
− σ2

n if k0 ≥ 2.
(3.37)

In the computation we considered two cases: k0 = 1 and k0 ≥ 2. When
k0 = 1, Y1 and Yn belong to the same segment and thus they are dependent;
when k0 ≥ 2, we suppose that the first and the last segment do not have
the same level value and thus Y1 and Yn are independent. If k0 ≥ 2 and the
first and the last segment had the same level value (event with a very low
probability), then the first and the last segments would be joined together
and so Y1 and Yn would be dependent. In this case, the expected value of
the estimator would have the same formula, but with k0 − 1 instead of k0.

We can observe that, when k0 = 1, the expected value is negative, while,
when k0 ≥ 2, it can be negative or positive. Moreover, the coefficient of σ2

is − 1
n and thus this addendum does not contribute much to the unbiased-

ness of the estimator.
The negativity of the expected value happens because the estimator is

a generic estimator of the covariance and, in general, this quantity can be
negative. To prevent the negativity of the estimator, we can use its absolute
value. In this way, when the quantity in (3.36) is negative, we use the same
estimator but with the sign changed in one of the factors of each product,

ρ̂2
1 = 1

n ∑n
i=1(Yi −Y )(Y −Yi+1). Hence, the meaning of the estimator is the

same. We are interested only in the absolute value of the estimate and not
in its sign. In fact, we already know that the correlation is positive and the
negativity of the estimate is due only to the property of the estimator. Our
final definition of the estimator is then

ρ̂2
1 :=

1
n

∣∣∣∣∣ n

∑
i=1

(Yi −Y )(Yi+1 −Y )

∣∣∣∣∣ .
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3.1.6 Comparison among the proposed estimators on
simulated data

In this subsection, we experimentally compare the behavior of all the es-
timators proposed previously, on the basis of their results obtained on the
artificial datasets. The comparisons were accomplished using both the true
and the estimated values of the other parameters involved in the estimation.

Fig. 3.1 The simulated data in the figure represent an easy, medium and difficult case,
respectively. [Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

We used several types of artificial data. We call sample a sequence of
data which represents the copy number data of a genomic region, we call
dataset a set of samples, while collection a set of datasets.

In order to experimentally evaluate the behavior of all the estimators
proposed, we used the artificial datasets sampled from the priors, de-
fined in the hypotheses of the model. We always chose ν = 0.2, while
we changed the values of σ2 and ρ2 for each dataset, in order to study
different situations of noise (some examples of data are in Figure 3.1 and
the corresponding estimated profiles obtained by applying several meth-
ods are in Figures 3.7 and 3.20). The most problematic cases were the
ones with ρ2 < σ2 (i.e. when the variance of the noise was higher than
the variance of the segment levels), because in these cases it was hard to
identify the true profile of the levels. We always used n = 200, similar
to the mean number of probes of a small chromosome in the Affymetrix
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GeneChip Mapping 10K Array (hence it represented a difficult case due
to the small sample size), and kmax = 40, in order to have at least 5 probes
per segment on average.

Sometimes we needed datasets where all samples had the same true
profile of the segment levels (i.e. K, T and M were sampled one time
and only the noise varied in all samples). This type of dataset is called
dataset with replicates. Otherwise, the dataset is called without replicates
(i.e. each time we sampled K, T , M and added the noise to the profile).
The number of samples per dataset was 100, for datasets with replicates,
and 300 otherwise. We considered datasets with replicates in order to be
able to compare the goodness of different types of estimations for a given
profile.

We also compared the behavior of our boundary estimators using the
artificial dataset already employed in [84], where three methods for copy
number estimation were examined. This dataset contained 500 samples
consisting of 20 chromosomes, each of 100 probes, which emulated the
real copy number data. This dataset is referred to as Simulated Chromo-
somes.

Comparison among the hyper-parameter estimators

We applied the hyper-parameter estimators on eight datasets without repli-
cates, considering different values for σ2 and ρ2 (examples of data are in
Figure 3.2). To evaluate the behavior of the hyper-parameter estimators in
all these cases, for each dataset we computed the (estimated) Mean Square
Error (MSE) with respect to the true value of the parameter. The MSE is
defined as the expected value of the square error between the estimator Θ̂
and the parameter θ (to estimate),

MSEΘ̂ = E[(Θ̂ −θ )2]

= Var(Θ̂)+ (E[Θ̂ ]−θ )2

= Var(Θ̂)+
(
Bias(Θ̂)

)2
. (3.38)
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Fig. 3.2 True profiles of some datasets with replicates used in the comparisons.
[Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

The MSEΘ̂ is estimated with the corresponding arithmetic mean. Given N

estimated values θ̂1, . . ., θ̂N of the parameter θ , the estimated Mean Square
Error of Θ̂ is defined as

M̂SEΘ̂ :=
1
N

N

∑
i=1

(θ̂i −θ )2.

If the estimator is unbiased ˆMSEΘ̂ estimates the variance of the estimator
(see Equation (3.38)).
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Table 3.1 Estimated mean square error of the estimators ν̂ , σ̂ 2, ρ̂2 and ρ̂2
1 applied on

datasets with different values of σ 2 and ρ2. The table shows that MSEν̂ increases with
ρ2 and MSEσ̂2 increases with σ 2. The estimator ρ̂2

1 is generally better than ρ̂2 with
respect to the MSE error measure. [Adapted from BioMed Central Ltd: BMC Bioin-
formatics [65], copyright (2009), available under Creative Commons Attribution 2.0
Generic]

σ2 = 0.1 σ2 = 0.3 σ2 = 0.5 σ2 = 0.5 σ2 = 0.5 σ2 = 0.7 σ2 = 1 σ2 = 1.2
error ρ2 = 0.5 ρ2 = 0.05 ρ2 = 0.02 ρ2 = 0.05 ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.05 ρ2 = 0.5

M̂SEν̂ 0.0904 0.0091 0.0059 0.0094 0.021 0.067 0.0169 0.0729
M̂SEσ̂2 0.0042 0.0014 0.0041 0.0036 0.0037 0.0114 0.0123 0.0272
M̂SEρ̂2 0.0633 0.0871 0.2508 0.2404 0.2426 0.4271 0.9921 1.3254

M̂SEρ̂2
1

0.068 0.0009 0.0008 0.0014 0.0047 0.0593 0.0024 0.0623

Looking at the errors of the estimations of ν , we observed that the error
seemed to depend more on the ρ2 value than on σ2 value, increasing as
the value of ρ2 increased. This is a natural behavior due to the definition
of this estimator. Since it is unbiased (see Subsection 3.1.5), M̂SEν̂ is the
average of the variance of ν̂ over the samples (notice that the variance is
different in each sample because it depends on the segment number, see
Equation (3.31)). Then, the behavior or M̂SEν̂ is due to the fact that each
variance is a linear combination of σ2 and ρ2, where the coefficient of the
latter is greater than the one of the former (Equation (3.31)).

Regarding σ̂2, its error was always low, but we observed that it in-
creased as the value of σ2 increased, independently on ρ2 value. In fact,
although the estimator is biased and its bias is proportional to ρ2 (Equa-
tion (3.33)), the value of the bias is small (ρ2k0/n).

Comparing the behavior of the two different ρ2 estimators, we saw that,
apart from the first case in Table 3.1, ρ̂2

1 always gave a lower error than ρ̂2

and we also noticed that the two errors had different order of magnitude.
In the first case, the only one in which ρ2 > σ2, M̂SEρ̂2 and M̂SEρ̂2

1
were

comparable and M̂SEρ̂2 was the lowest. We also observed that the error of
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ρ̂2 did not depend on the value of ρ2, while it increased as the value σ2

increased. In fact, we know from Subsection 3.1.5 that ρ̂2 is biased and its
bias highly depends on σ2 (Equation (3.34)). On the contrary, the error of
ρ̂2

1 increased only as the value of ρ2 increased, because its bias depends
less on σ2 (Equation (3.37)).

To summarize the accuracy of the estimators, we computed the esti-
mated mean relative error over all datasets (Table 3.2),

Δθ̂
θ

:=
1

MN

M

∑
j=1

N

∑
i=1

∣∣θ̂i j −θ j
∣∣

θ j
,

where M is the number of datasets, N the number of samples in each
dataset and θ̂i j is the estimate of θ j based on the ith sample in the jth

dataset.

Table 3.2 Estimated mean relative error of the estimators ν̂ , σ̂ 2, ρ̂2 and ρ̂2
1 over all

the datasets used. The results show that σ̂ 2 has the lowest error. The error of ν̂ is
higher but acceptable. The estimator ρ̂2

1 is better than ρ̂2 with respect to this error
measure. [Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

type of error value

Δν̂/ν 0.6376
Δσ̂ 2/σ 2 0.1524
Δρ̂2/ρ2 8.6217
Δρ̂2

1/ρ2
1 0.5840

From the results, we can deduce that σ̂2 is a good estimator because
it was quite precise in all situations, while ν̂ was sometimes poor but in
general acceptable. About the ρ2 estimation, it is better to use ρ̂2

1 than ρ̂2,
when the variance of the noise is higher than the variance of the levels.
Otherwise, it seems better to use ρ̂2 because it does not underestimate ρ2

(see Subsection 3.1.5).
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Comparison among the segment number estimators

We evaluated the quality of the estimators of the number of segments,
using the eight datasets without replicates already employed for the com-
parison of the hyper-parameters estimators. The estimations were made
using either the true values of the hyper-parameters or the estimated ones.
In this way, we could also observe the behavior of the boundary estimators
without the influence of the hyper-parameter estimation. The results are in
Tables 3.3, 3.4 and 3.5.

Comparing the absolute, squared and 0-1 errors, we found that K̂2 gen-
erally had the lowest upper bound (or its upper bound was very close to the
lowest one) of the confidence interval at level 95%, for any type of error
and any type of value of the parameter ρ2 (see, for example, Figures 3.3
and 3.4). The estimator K̂1 had a behavior similar to K̂2, but it often had a
larger confidence interval which contained the confidence interval of K̂2.
Moreover, all estimators always had a similar confidence interval of the
0-1 error, while using ρ̂2, in most cases the upper bound of the confidence
interval of the absolute and the squared error was lower than using ρ̂2

1 . All
these results support the suggestion to use K̂2 with ρ̂2.

We should also observe that in general K̂01 underestimates k0, while K̂1

and K̂2 overestimate it. In addition, the percentage of the underestimations
increases using ρ̂2.

Comparison among the boundary estimators

We compared the boundary estimators on the same datasets, previously
used for the estimators of the number of segments, with both the estimated
and the true value of the parameters involved. The following errors were
taken into account: the sum 0-1 error, the joint 0-1 error and the binary
error, defined in Subsection 3.1.4, and the average square error,

sum 0-1 error =
k0−1

∑
p=1

(
1− δtp,T̂p

)
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Table 3.3 Estimated mean errors ± standard deviation, of the estimators of k0 applied
to eight datasets without replicates, by using in the regression σ 2, ρ2 and ν .

dataset error K̂01 K̂1 K̂2

σ 2=0.1 0-1 0.82 ± 0.39 0.79 ± 0.41 0.84 ± 0.37
ρ2=0.5 absolute 2.83 ± 2.94 2.87 ± 3.13 3 ± 3.17

squared 16.65 ± 37.17 17.99 ± 42.61 19.02 ± 44.99
σ 2=0.3 0-1 0.94 ± 0.24 0.96 ± 0.2 0.98 ± 0.15
ρ2=0.05 absolute 15.93 ± 19.86 16.97 ± 15.32 18.54 ± 13.92

squared 646.88 ± 1512.8 521.87 ± 824.5 537.03 ± 719.3
σ 2=0.5 0-1 0.91 ± 0.28 0.96 ± 0.2 0.97 ± 0.17
ρ2=0.1 absolute 18.09 ± 22.3 17.8 ± 16.1 18.4 ± 15.06

squared 823.1 ± 1783.1 575.33 ± 895.8 564.7 ± 781.1
σ 2=0.5 0-1 0.98 ± 0.14 0.97 ± 0.17 0.98 ± 0.15
ρ2=0.05 absolute 23.16 ± 25.62 21.73 ± 16.27 22.97 ± 14.9

squared 1190.9 ± 2240.9 736.3 ± 942.4 748.9 ± 830.7
σ 2=0.5 0-1 0.95 ± 0.21 0.99 ± 0.11 1 ± 0.06
ρ2=0.02 absolute 30.24 ± 30.14 25.24 ± 15.31 26.24 ± 13.82

squared 1819.8 ± 2703 870.6 ± 877.4 878.8 ± 783.5
σ 2=0.7 0-1 0.94 ± 0.24 0.91 ± 0.28 0.93 ± 0.25
ρ2=0.5 absolute 7.4 ± 8.35 7.89 ± 8.42 8.49 ± 8.6

squared 124.21 ± 333 132.91 ± 302.73 145.82 ± 302.65
σ 2=1 0-1 0.95 ± 0.22 0.99 ± 0.11 0.99 ± 0.11

ρ2=0.05 absolute 26.55 ± 28.34 24.46 ± 15.53 25.85 ± 14.15
squared 1505.1 ± 2502.6 838.8 ± 893.8 867.5 ± 797

σ 2=1.2 0-1 0.94 ± 0.24 0.95 ± 0.23 0.97 ± 0.17
ρ2=0.5 absolute 10.52 ± 14.89 10.71 ± 12.09 11.87 ± 11.73

squared 331.71 ± 1061.8 260.55 ± 596.3 278.06 ± 537.4

total 0-1 error = 1− δt,T̂

binary error = k0 − 1−
n−1

∑
i=1

δ
τ0
i ,τ̂ i

= k0 − 1−
k̂−1

∑
q=1

k0−1

∑
p=1

δt0p,T̂q

average squared error =
1

k0 − 1

k0−1

∑
p=1

min
q=1,...,k−1

(
t0q − T̂p

)2
.
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Table 3.4 Estimated mean errors ± standard deviation, of the estimators of k0 applied
to eight datasets without replicates, by using in the regression ν̂ , σ̂ 2 and ρ̂2.

dataset error K̂01 K̂1 K̂2

σ 2=0.1 0-1 0.86 ± 0.34 0.88 ± 0.33 0.9 ± 0.3
ρ2=0.5 absolute 4.06 ± 3.65 3.74 ± 3.33 3.65 ± 3.18

squared 29.78 ± 46.06 25.04 ± 39.8 23.45 ± 37.92
σ 2=0.3 0-1 0.97 ± 0.17 0.95 ± 0.21 0.97 ± 0.16
ρ2=0.05 absolute 15.55 ± 11.61 13.44 ± 10.78 12.4 ± 10.27

squared 376.16 ± 434.9 296.45 ± 381.7 258.91 ± 352.5
σ 2=0.5 0-1 0.95 ± 0.22 0.95 ± 0.23 0.92 ± 0.28
ρ2=0.1 absolute 14.32 ± 10.92 12.37 ± 10.25 11.39 ± 9.78

squared 323.78 ± 377 257.55 ± 334.4 224.93 ± 304.3
σ 2=0.5 0-1 0.97 ± 0.16 0.94 ± 0.23 0.97 ± 0.16
ρ2=0.05 absolute 16.39 ± 10.65 14.58 ± 10.59 13.75 ± 10.22

squared 381.9 ± 403.8 324.3 ± 377.7 293 ± 352.5
σ 2=0.5 0-1 0.97 ± 0.17 0.96 ± 0.2 0.97 ± 0.18
ρ2=0.02 absolute 19.24 ± 11.84 17.88 ± 11.77 16.87 ± 11.41

squared 509.9 ± 472.3 457.9 ± 450.4 414.3 ± 423.7
σ 2=0.7 0-1 0.94 ± 0.24 0.92 ± 0.28 0.95 ± 0.22
ρ2=0.5 absolute 7.86 ± 6.54 6.79 ± 5.85 6.45 ± 5.52

squared 104.46 ± 162.57 80.13 ± 131.64 71.96 ± 122.17
σ 2=1 0-1 0.96 ± 0.19 0.95 ± 0.23 0.92 ± 0.27

ρ2=0.05 absolute 17.82 ± 12.01 16.86 ± 11.9 15.88 ± 11.63
squared 461.4 ± 459.6 425.4 ± 440.6 387 ± 415.4

σ 2=1.2 0-1 0.94 ± 0.24 0.95 ± 0.23 0.95 ± 0.22
ρ2=0.5 absolute 10.23 ± 8.53 8.49 ± 7.45 7.78 ± 6.74

squared 177.17 ± 251.7 127.47 ± 195.4 105.74 ± 165.1

The first three errors were used in the definition of the different estimators,
while the last one corresponds to the mean square error over the whole
vector of estimated boundaries. As observed in Subsection 3.1.4, when
the estimated segment number is used in the estimation of the boundaries,
we are only able to compute the binary error, because it does not require
that the vector of estimated boundaries has the same length as the vector
of the true boundaries.
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Table 3.5 Estimated mean errors ± standard deviation, of the estimators of k0 applied
to eight datasets without replicates, by using in the regression ν̂, σ̂ 2 and ρ̂2

1 .

dataset error K̂01 K̂1 K̂2

σ 2=0.1 0-1 0.9 ± 0.3 0.89 ± 0.32 0.88 ± 0.32
ρ2=0.5 absolute 4.43 ± 5.68 4.17 ± 5.04 4.14 ± 4.96

squared 51.71 ± 247.72 42.71 ± 197 41.65 ± 187.05
σ 2=0.3 0-1 0.92 ± 0.27 0.97 ± 0.17 0.97 ± 0.16
ρ2=0.05 absolute 13.31 ± 14.11 13.7 ± 11.76 14.22 ± 11.57

squared 375.62 ± 846.1 325.66 ± 563.1 335.82 ± 537.8
σ 2=0.5 0-1 0.96 ± 0.19 0.96 ± 0.2 0.98 ± 0.15
ρ2=0.1 absolute 15.59 ± 15.56 15.4 ± 13.33 15.9 ± 12.94

squared 484.11 ± 931.8 414.18 ± 642.3 419.68 ± 608.1
σ 2=0.5 0-1 0.96 ± 0.2 0.97 ± 0.16 0.98 ± 0.15
ρ2=0.05 absolute 15.76 ± 16.22 15.06 ± 14.02 15.33 ± 13.69

squared 510.6 ± 1079.2 422.9 ± 781.2 421.8 ± 742.8
σ 2=0.5 0-1 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.16
ρ2=0.02 absolute 15.45 ± 14.15 13.84 ± 11.86 13.85 ± 11.58

squared 438.1 ± 830.1 331.8 ± 588.1 325.5 ± 559.3
σ 2=0.7 0-1 0.96 ± 0.2 0.95 ± 0.21 0.96 ± 0.2
ρ2=0.5 absolute 8.33 ± 8.95 9.23 ± 9.08 10.05 ± 9.37

squared 149.18 ± 360.27 167.28 ± 343.79 188.59 ± 350.74
σ 2=1 0-1 0.98 ± 0.15 0.97 ± 0.16 0.99 ± 0.1

ρ2=0.05 absolute 14.41 ± 12.97 13.17 ± 10.66 13.14 ± 10.53
squared 375.1 ± 705.5 286.7 ± 487.6 283.1 ± 470.6

σ 2=1.2 0-1 0.97 ± 0.16 0.95 ± 0.21 0.99 ± 0.11
ρ2=0.5 absolute 9.69 ± 10.15 10.78 ± 9.67 11.78 ± 9.81

squared 196.63 ± 501.2 209.46 ± 357.6 234.66 ± 354.7

Using the true values of ν , σ2, ρ2 and k0 (see Table 3.6), we observed
that all the T estimators gave similar sum 0-1 errors and total 0-1 errors.
With regard to the binary error, the results were similar, but they were
more distinguishable with respect to the previous errors: T̂ joint , T̂ BinErr

and T̂ BinErrAk gave the lowest errors and T̂ 01 the highest. Considering the
average squared error, we divided the datasets into two groups: the first
one, where σ2 <ρ2, and the other ones, where σ2 > ρ2. In the first dataset,
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Fig. 3.3 Confidence intervals at 95% of the estimators of k0 for the 0-1 error, the ab-
solute error and the squared error, respectively, obtained on a dataset without replicates
with σ 2 = 0.1 and ρ2 = 0.5. The graphs show that, in each situation, K̂2 always had the
lowest upper bound of the interval. Using ρ̂2 the confidence intervals were shorter.
[Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

Fig. 3.4 Confidence intervals at 95% of the estimators of k0 for the 0-1 error, the ab-
solute error and the squared error, respectively, obtained on a dataset without replicates
with σ 2 = 0.3 and ρ2 = 0.05. The graphs show that, in each situation, K̂2 always had
the lowest upper bound of the interval. [Reprinted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

T̂ 01 and T̂ BinErr gave the lowest error and T̂ joint the highest one, while,
in the other datasets, T̂ 01, T̂ joint and T̂ BinErr gave the lowest error and
T̂ BinErrAk the highest one.

Afterwards, we used in the regression estimated values of the parame-
ters. We used K̂2 to estimate the segment number and both ρ̂2 and ρ̂2

1 to
estimate ρ2 (Tables 3.7 and 3.8). In all the cases, looking at the binary er-
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Table 3.6 Estimated mean errors ± standard deviation, of the estimators of t0 applied
to eight datasets without replicates, by using in the regression k0, ν , σ 2 and ρ2.

dataset error T̂ 01 T̂ joint T̂ BinErr T̂ BinErrAk

sum 0-1 10.29 ± 6.92 8.35 ± 5.24 7.69 ± 4.93 7.7 ± 4.93
σ2=0.1 total 0-1 0.94 ± 0.23 0.94 ± 0.23 0.94 ± 0.23 0.94 ± 0.24
ρ2=0.5 binary 10.29 ± 6.92 8.35 ± 5.24 7.69 ± 4.93 7.7 ± 4.93

av. squared 7.13 ± 45.71 38.39 ± 133.66 7.45 ± 21.43 11.98 ± 70.63
sum 0-1 16.9 ± 9.97 15.65 ± 8.87 15.15 ± 8.71 15.25 ± 8.71

σ2=0.3 total 0-1 0.98 ± 0.13 0.98 ± 0.13 0.98 ± 0.13 0.98 ± 0.13
ρ2=0.05 binary 16.9 ± 9.97 15.65 ± 8.87 15.15 ± 8.71 15.25 ± 8.71

av. squared 196.23 ± 891.73 177.56 ± 811.37 150.35 ± 926.13 151.53 ± 591.5
sum 0-1 17.1 ± 9.83 15.66 ± 8.6 15.25 ± 8.63 15.38 ± 8.59

σ2=0.5 total 0-1 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.16
ρ2=0.1 binary 17.1 ± 9.83 15.66 ± 8.6 15.25 ± 8.63 15.38 ± 8.59

av. squared 204.94 ± 895.42 182.21 ± 687.28 133.18 ± 824.12 416.61 ± 2279.1
sum 0-1 16.52 ± 9.1 15.64 ± 8.4 15.27 ± 8.23 15.35 ± 8.23

σ2=0.5 total 0-1 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.16
ρ2=0.05 binary 16.52 ± 9.1 15.64 ± 8.4 15.27 ± 8.23 15.35 ± 8.23

av. squared 221.24 ± 1123.88 188.88 ± 821.38 152.02 ± 823.34 233.57 ± 1504.93
sum 0-1 17.76 ± 10.13 17 ± 9.54 16.89 ± 9.41 16.95 ± 9.51

σ2=0.5 total 0-1 0.98 ± 0.15 0.98 ± 0.15 0.98 ± 0.15 0.98 ± 0.15
ρ2=0.02 binary 17.76 ± 10.13 17 ± 9.54 16.89 ± 9.41 16.95 ± 9.51

av. squared 261.44 ± 891.24 208.92 ± 744.72 219.78 ± 906.24 351.09 ± 1889.43
sum 0-1 15.87 ± 8.82 13.91 ± 7.41 13.19 ± 6.99 13.3 ± 7.07

σ2=0.7 total 0-1 0.99 ± 0.11 0.99 ± 0.11 0.99 ± 0.1 0.99 ± 0.1
ρ2=0.5 binary 15.87 ± 8.82 13.91 ± 7.41 13.19 ± 6.99 13.3 ± 7.07

av. squared 150.34 ± 1370.74 129.08 ± 1235.01 100.17 ± 1232.16 102.42 ± 589.02
sum 0-1 16.55 ± 10.39 15.68 ± 9.55 15.54 ± 9.68 15.63 ± 9.63

σ2=1.0 total 0-1 0.97 ± 0.17 0.97 ± 0.17 0.97 ± 0.17 0.97 ± 0.17
ρ2=0.05 binary 16.55 ± 10.39 15.68 ± 9.55 15.54 ± 9.68 15.63 ± 9.63

av. squared 731.75 ± 3205.78 769.53 ± 3256.3 703.13 ± 3290.92 580.06 ± 2761.28
sum 0-1 17.01 ± 9.49 15.34 ± 8.08 14.61 ± 7.85 14.73 ± 7.91

σ2=1.2 total 0-1 0.98 ± 0.15 0.98 ± 0.14 0.98 ± 0.14 0.98 ± 0.14
ρ2=0.5 binary 17.01 ± 9.49 15.34 ± 8.08 14.61 ± 7.85 14.73 ± 7.91

av. squared 384.21 ± 2599.43 377.84 ± 2585.1 345.71 ± 2585.49 284.99 ± 2164.06

ror, we saw that T̂ 01 gave the highest error, while the other estimators had
the same behavior and T̂ BinErr and T̂ BinErrAk gave the lowest upper bound
of the confidence interval. Moreover, in the cases in which σ2 > ρ2, we
saw that there was a great difference between the errors obtained using ρ̂2

and ρ̂2
1 : using ρ̂2

1 , the errors were significantly lower.
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Table 3.7 Estimated mean binary error ± standard deviation, of the estimators of t0

applied to eight datasets without replicates, by using in the regression K̂2, ν̂ , σ̂ 2 and
ρ̂2. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

dataset T̂ 01 T̂ joint T̂ BinErr T̂ BinErrAk

σ 2=0.1, ρ2=0.5 11.6 ± 0.46 8.87 ± 0.33 8.68 ± 0.34 8.73 ± 0.34
σ 2=0.3, ρ2=0.05 18.09 ± 0.64 17.63 ± 0.62 17.38 ± 0.62 17.39 ± 0.62
σ 2=0.5, ρ2=0.1 18.2 ± 0.62 17.48 ± 0.59 17.25 ± 0.6 17.26 ± 0.6
σ 2=0.5, ρ2=0.05 17.83 ± 0.59 17.58 ± 0.59 17.46 ± 0.59 17.46 ± 0.59
σ 2=0.5, ρ2=0.02 19.47 ± 0.68 19.31 ± 0.68 19.33 ± 0.68 19.31 ± 0.68
σ 2=0.7, ρ2=0.5 16.29 ± 0.54 14.72 ± 0.47 14 ± 0.46 14.01 ± 0.46
σ 2=1.0, ρ2=0.05 17.77 ± 0.69 17.63 ± 0.69 17.64 ± 0.69 17.61 ± 0.69
σ 2=1.2, ρ2=0.5 17.68 ± 0.58 16.62 ± 0.54 15.9 ± 0.53 15.91 ± 0.53

Table 3.8 Estimated mean binary error ± standard deviation, of the estimators of t0

applied to eight datasets without replicates, by using in the regression K̂2, ν̂ , σ̂ 2 and
ρ̂2

1 . [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

dataset T̂ 01 T̂ joint T̂ BinErr T̂ BinErrAk

σ 2=0.1, ρ2=0.5 11.48 ± 0.45 8.79 ± 0.33 8.47 ± 0.34 8.46 ± 0.34
σ 2=0.3, ρ2=0.05 15.29 ± 0.53 13.73 ± 0.47 13.06 ± 0.46 13.05 ± 0.47
σ 2=0.5, ρ2=0.1 15.69 ± 0.54 13.81 ± 0.47 13.18 ± 0.47 13.08 ± 0.47
σ 2=0.5, ρ2=0.05 14.81 ± 0.49 13.31 ± 0.45 13.02 ± 0.44 12.97 ± 0.44
σ 2=0.5, ρ2=0.02 15.84 ± 0.55 14.2 ± 0.51 14.03 ± 0.5 14.05 ± 0.5
σ 2=0.7, ρ2=0.5 15.56 ± 0.5 13.29 ± 0.41 12.34 ± 0.4 12.34 ± 0.4
σ 2=1.0, ρ2=0.05 14.78 ± 0.56 13.38 ± 0.5 13.12 ± 0.5 13.08 ± 0.5
σ 2=1.2, ρ2=0.5 16.19 ± 0.53 14.17 ± 0.45 13.24 ± 0.43 13.22 ± 0.44

Therefore, the best estimators were T̂ BinErr, T̂ BinErrAk and T̂ joint , but
it seemed that T̂ BinErr, T̂ BinErrAk were slightly better than T̂ joint , when
we estimate the parameters. In fact, their definition of the error takes
into account that the segment number must be estimated. Moreover, be-
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tween these ones, we preferred the second one, because its computation
depended less on the estimation of k0 and thus it was more stable.

To choose between the estimators T̂ BinErrAk and T̂ joint , we performed
the segment level estimation, considering both ρ2 estimators. We com-
puted the M̂SE of the estimated segment level per probe and its upper
bound of the confidence interval at level 95% (the corresponding graphs
regarding some datasets can be found in Figure 3.5). The results showed
that, for a given estimator of ρ2, in general T̂ BinErrAk was better than T̂ joint

and the upper bound of the confidence interval of the M̂SE of the former
estimator was lower than that one of the latter. Moreover, using ρ̂2

1 the
error was generally lower.

In addition, we compared the behavior of our boundary estimators on
dataset Simulated Chromosomes. Similarly to [84], to assess the goodness
of the boundary estimation, we measured the sensitivity (proportion of
true breakpoints detected) and the false discovery rate (FDR, i.e. propor-
tion of false estimated breakpoints among the estimated ones), see Fig-
ure 3.6. The sensitivity and the FDR were computed not only looking at
the exact position of the breakpoints (w = 0), but also accounting for a
neighborhood of 1 or 2 probes around the true positions (w = 1, 2). To
assess the influence of the boundary estimation on the profile estimation,
we calculated the sum of squared distance (SSQ), the median absolute de-
viation (MAD) and the accuracy (proportion of probes correctly assigned
to an altered or unaltered state). We also computed the accuracy inside and
outside the aberrations separately, since the samples of dataset Simulated
Chromosomes contained only few small copy number changes and thus
the accuracy depended more on the correct estimation/classification of the
probes in the “normal” regions. The results are in Table 3.9.

Since we estimated σ̂2 = 0.026 and ρ̂2
1 = 0.031 (using the whole

dataset), we expected that we should obtain better results by using ρ̂2 be-
cause σ2 was lower than ρ2 and indeed the results obtained with ρ̂2 were
slightly better than the others (see Table 3.9 and Figure 3.6). Moreover,
we found in general that T̂ BinErrAk had the highest sensitivity but also a
higher FDR than T̂ 01 (Figure 3.6). This was due to the fact that, although
the estimated number of segments was the same, T̂ 01 could estimate some
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Fig. 3.5 Comparison of the segment level estimation by using T̂ joint or T̂ BinErrAk with
the different ρ2 estimators, on four datasets with replicates. The corresponding true
profiles are in Figure 3.2. In general, using T̂ BinErrAk we obtained a lower MSE per
probe than using T̂ joint . For a fixed boundary estimator, often the error was lower by
using ρ̂2

1 on the datasets with σ 2 � ρ2. [Reprinted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

breakpoints with the same position, reducing the total number of break-
points and thus reducing the FDR. We can see in Table 3.9 that the false
estimated breakpoints did not negatively influence the profile estimation.
In fact, the false breakpoints are often used by the algorithm in two ways:
either to divide a long segment into two or more segments with close levels
or, if it is difficult to determine the position of a breakpoint, to add, before
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Fig. 3.6 Comparison of the sensitivity and FDR computed on the results obtained on
dataset Simulated Chromosomes for all estimators of t0 (apart T̂BinErr). We always used
K̂2, ν̂ , σ̂ 2 and both ρ2 estimators as estimators of the other parameters involved. Using
ρ̂2 instead of ρ̂2

1 , the FDR was lower. The estimator T̂ BinErrAk had the highest sensitivity
and the second lowest FDR. The FDR of T̂ 01 was the lowest, but this is due to the fact
that it reduces the number of the estimated breakpoints by assigning the same position
to different breakpoints. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65],
copyright (2009), available under Creative Commons Attribution 2.0 Generic]

or after the aberration, a segment of one point. Overall, T̂ BinErrAk with ρ̂2

performed best on this dataset.
In conclusion, we suggest to use T̂ BinErrAk, even if T̂ joint is also a rel-

atively good estimator at least in some cases. Regarding the estimation of
ρ2, it seems that it is better to use ρ̂2

1 in presence of high noise.

3.1.7 Comparison with other methods

In this subsection we compare the original and modified versions of BPCR
with other existing segmentation methods for genomic copy number esti-
mation: CBS [59], CGHseg [63], GLAD [31], HMM [21], BioHMM [45]
and Rendersome [57]. For thoroughness, in the modified versions of
BPCR, we used both ρ̂2 and ρ̂2

1 as estimators of ρ2, K̂2 as estimator of
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Table 3.9 Comparison among the error measures for profile estimation, obtained on
dataset Simulated Chromosomes, for all estimators of t0 (apart T̂BinErr). We always
used K̂2, ν̂ , σ̂ 2 and both ρ2 estimators as estimators of the other parameters involved.
The estimator T̂ BinErrAk always had the lowest SSQ and MAD errors and the highest
accuracy both inside and outside the regions of aberration. Using ρ̂2 the performance
was slightly better, because σ 2 < ρ2 in this dataset. [Adapted from BioMed Central
Ltd: BMC Bioinformatics [65], copyright (2009), available under Creative Commons
Attribution 2.0 Generic]

accuracy accuracy
ρ2 T̂ SSQ MAD accuracy inside outside

estimator estimator aberrations aberrations

ρ̂2 T̂01 14.23 0.00877 0.889 0.961 0.883
ρ̂2 T̂ joint 2.22 0.00840 0.904 0.992 0.892
ρ̂2 T̂BinErrAk 1.70 0.00733 0.936 0.992 0.932
ρ̂2

1 T̂01 9.74 0.00952 0.881 0.960 0.877
ρ̂2

1 T̂ joint 2.67 0.00970 0.882 0.993 0.867
ρ̂2

1 T̂BinErrAk 1.85 0.00781 0.929 0.993 0.920

k0 and both T̂ joint and T̂ BinErrAk as estimators of the boundaries. We used
ρ̂2 when the noise was low (σ2 < ρ2) and otherwise ρ̂2

1 .
To assess the performance of the several methods, we used three types

of artificial datasets. The first type consisted of four datasets with repli-
cates used in the comparison among the estimators. This collection of
datasets is called Cases.

The second type consisted of datasets adapted from the datasets used
in [41] to compare several methods for copy number estimation. In these
datasets, each sample was an artificial chromosome of 100 probes, where
the copy number value was zero apart from the central part where there
was an aberration. The authors considered several widths of aberration:
40, 20, 10 and 5 probes. The noise was always distributed as N (0, 0.252),
while the signal to noise ratio (SNR) was 4, 3, 2 or 1. The SNR was defined
as the ratio between the height of the aberration and the standard deviation
of the noise. The data of the paper consisted of datasets of 100 samples for
each combination of width and SNR.
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Fig. 3.7 Estimated profiles of the data shown in Figure 3.1, obtained by applying sev-
eral piecewise constant methods. In each plot, the grey segments represent the true
profile and the dots are the raw data points. [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

We defined our datasets in the following way. For a fixed SNR value,
we constructed a chromosome with four aberrations of width of 40, 20,
10 and 5 probes, respectively, by joining the corresponding four types of
chromosome of the previous datasets. This collection of datasets is called
Four aberrations. In the following, we will consider only the datasets with
SNR=3 (medium noise) and SNR=1 (high noise).
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Fig. 3.8 The plots show the differences in the level estimation among the piecewise
constant methods on samples with SNR = 3 and SNR = 1: some algorithms are un-
able to identify the small aberrations in presence of high noise. In each graph, the grey
segments represent the true profile. [Reprinted from BioMed Central Ltd: BMC Bioin-
formatics [65], copyright (2009), available under Creative Commons Attribution 2.0
Generic]

The third type of dataset used was the Simulated Chromosomes dataset
(described in Subsection 3.1.6).

Figure 3.7 shows the estimated profiles with these segmentation meth-
ods of three examples of data in collection Cases (the true profile are in
Figure 3.1). Figure 3.8 displays examples of estimated profiles of data in
collection Four aberrations.
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Error measures used in the comparison

We used two different measures to examine the behavior of the different
methods on the collections Cases and Four aberrations: the root mean
square error (for both) and the ROC curve (only for the latter). Each point
of the ROC curve has as coordinates the false positive rate (FPR) and the
true positive rate (TPR) for a certain threshold. The TPR is defined as the
fraction of probes in the true aberrations whose estimated value is above
the threshold considered, while the FPR consists in the fraction of probes
outside the true aberrations whose estimated value is above the threshold.
Hence, the ROC curve measures the accuracy of the method in the detec-
tion of the true aberrations.

Instead, the evaluation of the several methods on dataset Simulated
Chromosomeswas accomplished using the errormeasures described in [84]
already used in the study of the boundary estimators (see Subsection 3.1.6).

Results

Fig. 3.9 Zoomed ROC curves of several piecewise constant methods applied to dataset
with SNR = 3. On this easy type of data, all the methods (apart from GLAD) performed
well, since their ROC curves were close to the top left corner of the plot. [Adapted
from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009), available under
Creative Commons Attribution 2.0 Generic]
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Fig. 3.10 RMSE of several piecewise constant methods applied to dataset with SNR =
3. The black segments on the horizontal axis correspond to the regions of aberration.
On this dataset, HMM and the modified BPCR with ρ̂2, K̂2 and T̂ BinErrAk achieved a
low RMSE both inside and outside the aberrations, compared to the other algorithms.
Nevertheless, HMM had the highest error at the breakpoint positions. Hence, the mod-
ified BPCR with ρ̂2, K̂2 and T̂ BinErrAk performed better than all other methods with
respect to the RMSE per probe measure. [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

In general, in presence of medium noise, the GLAD method performed
worst, since it had a high error in the level estimation of the small peaks,
while, for high noise, often both GLAD and Rendersome failed to de-
tect the aberrations (Figures 3.11 and 3.12). The CGHseg method did not
usually exhibit an appropriate level estimation except sometimes for seg-
ments of large width (for example in Figure 3.10). This is due to the fact
that CGHseg estimates the level of a segment with the arithmetic mean
of the data points in the segment and this estimator performs poorly if
the segment contains few data points and the breakpoint estimation is not
accurate. The CBS method, in general, performed quite well, but it was
unable to detect aberrations of small width, especially when the noise was
high (Figure 3.12).

On the collection Cases and the dataset of Four aberrations with
SNR=3, the RMSE plots and the ROC curves of the HMM method showed
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that it generally estimated the profile well, but sometimes it exhibited high
errors near breakpoint positions (see, for example, Figure 3.10), likely be-
cause it was unable to determine the true position of the breakpoints pre-
cisely. Moreover, on the dataset with SNR=1, we recognized the true is-
sues of the estimation with HMM. The RMSE plot showed that it had a
high error outside the regions of the aberrations, while inside these regions
the error was always more or less the same. Hence, it often failed also in
the estimation of the largest aberration, the easiest one to detect (see the
corresponding errors in Figure 3.12). The reason of this behavior of the
RMSE is the following. The method estimated the true profile either with
only one segment, or more often with a profile consisting of a lot of small
segments, but all with the same level. Since in the latter case the estimated
levels were close to that one of the true aberrations, the RMSE was low
in the regions of the aberrations but high outside them. However, the es-
timated profiles were not similar to the true one. In presence of medium
noise (SNR=3), the method BioHMM was more precise than HMM in the
determination of the breakpoint positions and in the level estimation (Fig-
ure 3.10), while for high noise it behaved similarly to HMM (Figure 3.12).

On collection Cases, sometimes the original version of BPCR had a
lower error than the modified versions, mostly in regions corresponding to
large segments. Nevertheless, the version of BPCR with T̂ BinErrAk and ρ̂2

1
seemed to be globally the best performing method on these datasets.

Zooming the ROC curve of dataset with SNR=3 (see Figure 3.9) and
comparing the original and the modified versions of BPCR, the versions
which used the boundary estimator T̂ BinErrAk were the best ones and they
were almost indistinguishable. They were also the best performing meth-
ods in comparison with the other segmentation methods. We can under-
stand better the different behavior of the methods by looking at the RMSE
in Figure 3.10. Comparing the different versions of BPCR, the methods
which used the estimator T̂ joint had higher error in the regions outside the
aberrations. In all the cases, using ρ̂1 we obtained a higher error than us-
ing ρ̂ . The original version of BPCR was very good at detecting the wider
aberration, but it was the worst at detecting the other aberrations. It was
also good in estimating the levels in the regions outside the aberrations.
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Fig. 3.11 ROC curves of several piecewise constant methods applied to dataset with
SNR = 1. On this type of dataset with high noise, the modified BPCR with ρ̂2

1 , K̂2

and T̂ BinErrAk was the best performing method with respect to the ROC curve measure,
because its curve was globally the highest one at the top left corner of the plot. GLAD,
Rendersome and BioHMM were the worse methods in detecting the aberrations on
this dataset. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

This means that the original BPCR is good only in the estimation of long
segments. Hence, the version which uses T̂ BinErrAk and ρ̂ is preferred.

In conclusion, when σ2 < ρ2 (when σ2 > ρ2), the version of BPCR
with T̂ BinErrAk and ρ̂2 (ρ̂2

1 ) generally gave the best estimation compared to
the other versions of BPCR and to the other methods (Figures 3.9, 3.10,
3.11 and 3.12). We will call this modified version of BPCR, mBPCR.

We could not choose the “best” performing method only on the dataset
with SNR=1, because this case showed the limits of all the methods con-
sidered. The problem regarding the modified versions of BPCR was es-
sentially represented by the estimation of the number of segments. The
ROC curves (Figure 3.11) of the modified versions of BPCR with ρ̂2

1 were
the closest to the left and the top sides of the box, while the RMSE plot
(Figure 3.12) showed that these methods were the best methods in the esti-
mation of the levels inside the aberrations, but not outside them. In general,
in case of very high noise, all the modified versions of BPCR well detected
the aberrations, but had problems in the estimation of the profile outside
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Fig. 3.12 RMSE of several piecewise constant methods applied to dataset with SNR =
1. The black segments on the horizontal axis correspond to the regions of aberration. On
this very noisy dataset, the modified BPCR with ρ̂2

1 , K̂2 and T̂ BinErrAk always had a low
RMSE per probe, even though its error was not the lowest one outside the aberrations
and inside the first one. On the contrary, CBS and CGHseg had the lowest error in these
regions, but the highest error inside the small aberrations. Hence, globally the modified
BPCR with ρ̂2

1 , K̂2 and T̂ BinErrAk performed better than the other algorithms on this
dataset, with respect to the RMSE measure. [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

them because of the poor estimation of the number of segments. In fact,
K̂2 tends to overestimate the number of segments and this problem wors-
ens using ρ̂2

1 . In conclusion, in a situation with very high noise, using ρ̂2
1

the BPCR methods detect better the small segments, but, at the same time,
the large ones are divided in small segments. On the other hand, using
ρ̂2, smaller segments are not detected and are joined to the closest large
segment.

Finally, the comparison performed on dataset Simulated Chromosomes
showed that CBS and mBPCR better estimated the profiles (see Ta-
ble 3.10). Regarding the breakpoint error measures (see Figure 3.13), we
found that mBPCR had the highest sensitivity (hence, it was the best
method in determining the exact position of the breakpoints), but also a
higher FDR than CBS. We have already explained in the previous subsec-
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Fig. 3.13 Comparison of the sensitivity and FDR computed on the results obtained
on dataset Simulated Chromosomes, using several piecewise constant methods. The
mBPCR method (considering both ρ2 estimators) had the highest sensitivity, hence it
was the method that determined the breakpoints location with highest precision. Nev-
ertheless, it had a higher FDR than CBS. [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

tion the possible reason of the high FDR of mBPCR and we can observe
again that this fact did not influence negatively the profile estimation (see
the SSQ error in Table 3.10). The GLAD method showed a low sensitiv-
ity and low FDR, apart from the case regarding the exact position of the
breakpoints (w = 0). This means that it underestimated the segment num-
ber and the estimated breakpoints were not located exactly at their true
positions. Also CGHseg underestimated the number of segments because
of low sensitivity and FDR, while HMM had low sensitivity and high FDR
when w = 0 and vice versa in the other cases, which means that it often
detected the true segment number, but it was unable to put the breakpoints
at their exact position. Instead, BioHMM solved the issue of HMM with w
= 0, but had an overall lower sensitivity than HMM. Rendersome missed
several true aberrations (lowest sensitivity) and detected some false aber-
rations (medium FDR).
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Table 3.10 Comparison of the level estimations obtained by using several piecewise
constant methods on dataset Simulated Chromosomes. In this comparison, the meth-
ods CBS and mBPCR exhibited the lowest SSQ error in the profile estimation and the
highest accuracy inside the aberrated regions. On the other hand, HMM, BioHMM and
Rendersome had the highest accuracy outside the aberrations, but a high SSQ error.
Therefore, the former group of algorithms globally estimated a better profile than the
latter. Because of its definition, the MAD error is less informative: it does not take into
account if a small number of probes are wrongly estimated, but these probes could cor-
respond to breakpoints or small aberrations. [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

accuracy accuracy
method SSQ MAD accuracy inside outside

aberrations aberrations

mBPCR ρ̂2 1.70 0.00733 0.936 0.992 0.932
mBPCR ρ̂2

1 1.85 0.00781 0.929 0.993 0.920
CBS 1.56 0.00705 0.953 0.985 0.950

CGHseg 5.42 0.00795 0.925 0.885 0.956
HMM 4.47 0.00350 0.993 0.968 0.997
GLAD 4.15 0.00846 0.939 0.930 0.952

BioHMM 5.69 0.003647 0.990 0.949 0.999
Rendersome 19.13 0 0.920 0.289 1

3.1.8 Definition of the mBPCR algorithm

In Subsections 3.1.3, 3.1.4 and 3.1.5, we introduced new estimators for the
parameters involved in BPCR. In Subsection 3.1.6 we selected the best
performing ones on the basis of the empirical results obtained on artifi-
cial datasets. In particular, we found that the best way is to estimate the
segment number with K̂2 and the boundaries with T̂ BinErrAk (or possibly
T̂ joint).

Concerning the estimation of the variance of the segment levels, we
found that the original estimator ρ̂2 overestimates ρ2 (variance of the seg-
ment levels) by an addendum proportional to σ2 (variance of the noise),
see Equation (3.34). Hence, the estimation fails when σ2 > ρ2. The new
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estimator ρ̂2
1 is more precise but slightly underestimates ρ2, leading to an

overestimation of the segment number. Applying both estimators on arti-
ficial datasets, we found that, in general, the best way is to use ρ̂2 when
σ2 < ρ2 (low noise), but to use ρ̂2

1 when σ2 > ρ2 (high noise), even if it
could lead to a slight overfitting. On real DNA copy number data, com-
monly σ2 > ρ2.

In Subsection 3.1.7, we compared the new versions of BPCR with other
methods which also estimate the copy number as a piecewise constant
function: CBS [59], HMM [21], CGHseg [63], GLAD [31], BioHMM [45]
and Rendersome [57]. As a whole, the results showed that the version of
BPCR which uses T̂ BinErrAk gave the best estimation on the dataset used.
However, when σ2 � ρ2 it is hard to understand which method is the most
appropriate. Most of the other methods were not able to detect aberrations
with a small width (5 and 10 probes) and the same was true for the version
of BPCR which uses T̂ BinErrAk and ρ̂2. On the other hand, the use of ρ̂2

1
led to the detection of the smaller segments, but the larger ones were often
divided in small segments and sometimes the segments consisted of only
one point.

Therefore, we define mBPCR as the BPCR version which uses K̂2 and
T̂ BinErrAk. As a general rule, we still suggest to use ρ̂2 when σ2 < ρ2 and
to use ρ̂2

1 when σ2 > ρ2. However, especially on real data, it is preferable
to estimate ρ2 either on a whole dataset or on a “typical sample”, which
shows a sufficient number of segments (i.e. level changes). In the context
of copy number estimation, such a “typical sample” could be a cell line
with many copy number aberrations.

3.1.9 Application to real data

In this subsection, we show how mBPCR performed compared to other
piecewise constant estimation methods on real data. We used samples from
three mantle cell lymphoma cell lines (JEKO-1, GRANTA-519, REC-1)
previously analyzed by us with the Affymetrix GeneChip Mapping 10K
Array (Affymetrix, Santa Clara, CA), [69]. We also used the data obtained
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on JEKO-1, by using the higher density Affymetrix GeneChip Mapping
250K Nsp Array (unpublished). We considered eight recurrent gene re-
gions of aberration in lymphoma plus other two gene regions (BIRC3 and
LAMP1) and we compared the corresponding copy numbers obtained by
the several piecewise constant methods with those obtained by the FISH
technique in [69]. Lastly, we show a comparison among the estimated pro-
files of chromosome 11 of JEKO-1.

Gene copy number estimation

The knowledge of the true underling profile is required to properly evalu-
ate the methods. In general, large aberrations on chromosomes can be de-
tected with conventional karyotype analysis or with FISH and one could
use this information for the evaluation procedure, but the width of these
aberrations is so large that all the methods can detect them well, leading
to a useless comparison. For this reason, we decided to take into account
only genes to compare the piecewise constant methods.

In the comparison, as previously published [69], when two FISH copy
numbers had been assigned to one gene, the first number should corre-
spond to the copy number detected in the majority of the cells. We as-
signed two estimated copy numbers to one gene, when the position of the
gene is between two SNPs and the method assigned two different values
to these SNPs.

The results on REC-1 (Table 3.11) did not show any significant dif-
ference among the methods, instead those on GRANTA-519 (Table 3.12)
showed that GLAD was unable to detect the true copy number in five
cases, while HMM, BioHMM and Rendersome detected an amplifica-
tion on MALT1 greater than what detected by FISH analysis. All methods
did not detect the true copy number of ATM, probably because the SNPs
around ATM are far away from the corresponding FISH region (about
1Mb) and the deletion affects only this region. Only mBPCR with ρ̂2

1 and
HMM detected a breakpoint between the two SNPs around ATM region,
indicating a copy number change.
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Table 3.11 Copy number estimation results obtained on sample REC-1. Globally, all
methods behaved equally well on this data. Only Rendersome was unable to detect the
correct copy number of D13S319. [Reprinted from BioMed Central Ltd: BMC Bioin-
formatics [65], copyright (2009), available under Creative Commons Attribution 2.0
Generic]

gene FISH mBPCR
region CN ρ̂2 ρ̂2

1 CBS CGHseg HMM GLAD BioHMM Rendersome

BCL6 2/3 2.89 2.85 2.89 2.90 2.05 2.79 2.85 2.86
C-MYC 2 2.02 1.99 2.06 2.12 2.05 2.07 2.02 2.02
CCND1 2 2.01 1.92 2.01 2.05 2.05 2.07 2.02 2.02
BIRC3 2/3 2.01 2.22 2.01 2.05 2.05 2.07 2.02 2.02
ATM 2 2.01 1.80 2.01 2.05 2.05 2.07 2.02 2.02

D13S319 2 2.03 2.40 1.98 2.03 2.05 2.01 2.02 2.89
LAMP1 2 1.82 1.76 1.98 1.98 2.05 2.01 2.02 2.02
TP53 1/2 1.11 1.17 1.11 1.11 1.10 1.55 1.10 1.20

MALT1 2/3 2.12 2.25 2.02 2.12 2.05 2.09 2.02 2.02
BCL2 2 2.12 2.25 2.02 2.12 2.05 2.09 2.02 2.02

Table 3.12 Copy number estimation results obtained on sample GRANTA-519. On
this data, the GLAD method often did not detect the correct gene copy number. The
method mBPCR with ρ̂2

1 estimated the gene copy number always well, apart from ATM
whose copy number was estimated different from the FISH copy number by all meth-
ods. [Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

gene FISH mBPCR
region CN ρ̂2 ρ̂2

1 CBS CGHseg HMM GLAD BioHMM Rend.

BCL6 2 2.11 2.10 2.11 2.07 2.11 1.85 2.12 2.04
C-MYC 2 2.07 2.00 2.08 2.11 1.99 6.22/1.37 2.12 2.04
CCND1 2 2.06 2.03 2.06 2.34 2.20 2.4 2.12 2.04
BIRC3 2/3 2.06 1.76 2.06 1.14/2.34 2.11 2.4 2.12 2.04
ATM 1 2.06 2.01/1.61 2.06 2.34 2.11/1.14 2.4 2.12 2.04

D13S319 2 2.01 2.00 2.03 2.05 2.07 2.26 2.12 2.04
LAMP1 2 2.01 2.00 2.03 2.05 1.98 1.58 2.12 2.04
TP53 1 1.10 1.16 1.13 1.01 1.13 1.85 1.36 1.08

MALT1 3 3.36 3.05 3.17 3.04 5.30 2.16 4.78 4.28
BCL2 ampl 5.46 5.10 5.52 6.12 5.30 2.16 4.78 7.22
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Table 3.13 Copy number estimation results obtained on 250K Array data of sample
JEKO-1. All methods behaved equally good. The method HMM had problem in deter-
mining the right position of one breakpoint around the C-MYC amplification. All meth-
ods estimated the copy number of CCND1 differently from FISH technique. [Reprinted
from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009), available under
Creative Commons Attribution 2.0 Generic]

gene FISH mBPCR
region CN ρ̂2 ρ̂2

1 CBS CGHseg HMM GLAD BioHMM Rendersome

BCL6 3/2 3.06 3.06 3.02 3.06 2.96 2.98 3.04 2.98
C-MYC ampl 7.12 7.10 7.14 6.87 6.70/2.63 7.28 6.51 7.72
CCND1 2 3.51 3.51 3.51 3.51 3.44 3.51 3.52 3.60
BIRC3 4/5 4.20 4.19 4.20 4.24 4.24 4.23 4.26 3.60
ATM 4 4.20 4.19 4.20 4.24 4.24 4.23 4.26 3.60

D13S319 4 3.72 3.72 3.81 3.82 3.72 3.81 3.73 3.64
LAMP1 4 3.67 3.67 3.82 3.67 3.72 3.69 3.73 3.64
TP53 2/3 2.57 2.69 2.22 2.76 2.34 2.76 2.83 2.90

MALT1 4 3.52 3.52 3.59 3.59 3.50 3.55 3.52 3.50
BCL2 4 3.52 3.52 3.59 3.59 3.50 3.55 3.52 3.50

Regarding the JEKO-1 data, since the cell line is triploid, to obtain more
realistic copy number value, we centered the estimated log2ratio around
log2 3. With the denser 250K Array data, all methods behaved equally
good. Only HMM had a problem in the detection of the breakpoint cor-
responding to the C-MYC amplification (see Table 3.13). On both arrays,
all methods identified a gain (copy number 3 or 4) at the CCND1 posi-
tion, while the copy number detected by FISH was 2. This fact cannot
be explained as previously for ATM, because this region is well covered
by SNPs. Instead, on the JEKO-1 10K Array data (Table 3.14), the nois-
iest among all samples, we can see several cases in which CBS, HMM
and GLAD did not detect correctly the gene copy number (for example,
BCL2 and MALT1). This occurred more frequently to BioHMM and Ren-
dersome, while only once to CGHseg (LAMP1). The method mBPCR with
ρ̂2

1 always estimated gene copy numbers correctly, apart from CCND1.
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Table 3.14 Copy number estimation results obtained on 10K Array data of sample
JEKO-1. On this noisy data, BioHMM and Rendersome often estimated the gene
copy number wrongly, while this occurred only sometimes to CBS, HMM and GLAD.
The method mBPCR with ρ̂2

1 correctly estimated the gene copy numbers, apart from
CCND1 whose copy number was estimated by all methods differently from the FISH
technique. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

gene FISH mBPCR
region CN ρ̂2 ρ̂2

1 CBS CGHseg HMM GLAD BioHMM Rendersome

BCL6 3/2 2.97 2.99 2.97 2.90 2.92 2.92 3.14 2.92
C-MYC ampl 12.11 9.35 10.27 10.27 13.95 9.82 8.26 13.10/3.11
CCND1 2 4.08 3.77 4.08 4.08 3.84 3.79 3.14 3.50
BIRC3 4/5 4.08 4.29 4.08 4.08 3.84 3.79 3.14 3.50
ATM 4 4.08 4.29 4.08 4.08 3.84 3.79 3.14 3.50/2.39

D13S319 4 3.72 3.59 3.57 3.72 3.62 3.58 3.14 3.43
LAMP1 4 3.41 3.82 3.41 3.41 3.62 2.49 3.14 3.43
TP53 2/3 2.81 3.00 2.83 2.50 3.52 2.93 3.14 2.93

MALT1 4 3.63 3.62 3.48 3.64 3.42 3.42 3.14 3.42
BCL2 4 3.63 3.62 3.48 3.64 3.42 3.42 3.14 3.42

Profile estimation

To compare the profile estimations, we chose the sample JEKO-1 because,
using the results obtained on both types of array, we could at least under-
stand which regions were more realistically estimated. Up to now, vali-
dated whole chromosome profiles are not available. Among all chromo-
somes, we chose chromosome 11 since three of the previous genes belong
to that: CCND1 (around 69.17Mb), BIRC3 (around 101.7Mb) and ATM
(around 107.6Mb).

From the graphs in Figure 3.14 we can observe that, among all the
piecewise constant methods, only mBPCR with ρ̂2

1 was able to detect the
high amplification after position 110Mb on the 10K Array data, while it
was recognized by all methods (apart from BioHMM) on the 250K Ar-
ray data. Moreover, on the 10K Array data, almost all methods detected a
false deletion around position 3Mb, due to the presence of a sequence of
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outliers, and BioHMM did not find any copy number change in the chro-
mosome. On the 250K Array data, HMM and Rendersome had problems
in recognizing the last part of the chromosome as a flat region. Moreover,
on the 10K Array data, Rendersome estimated several outliers as true aber-
rations and, on the 250K Array data, it was unable (contrary to all other
algorithms) to identify the whole region from about 78Mb to 111Mb as
gained.

Fig. 3.14 Comparison among the piecewise constant estimated profiles of chromosome
11 of JEKO-1 using both 10K Array and 250K Array data. Only mBPCR with ρ̂2

1 was
able to detect the high amplification after position 110Mb on the 10K Array data. On
the other hand, all methods (apart from BioHMM) recognized it on the 250K Array
data. [Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright (2009),
available under Creative Commons Attribution 2.0 Generic]

3.2 Estimation with a continuous curve: the mBRC and
BRCAk methods

Using the same hypotheses of the “piecewise constant setting” (see Sec-
tion 2.1), Hutter in [32, 33] derived also a way to estimate the function
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with a continuous/smoothing curve instead of a piecewise constant one. In
fact, we can estimate the segment level M̃s at a generic position s, using
the fact that it belongs to some segment p and in this segment M̃s = Mp.
Then, summing over all the possible segments, we can compute its poste-
rior distribution in the following way:

p(μ̃s |y,K = k0)

=
k0

∑
p=1

s−1

∑
i=0

n

∑
j=s

p(μp,Tp−1 = i,Tp = j |y,K = k0)

=
k0

∑
p=1

s−1

∑
i=0

n

∑
j=s

p(μp,y |Tp−1 = i,Tp = j,K = k0)P(Tp−1 = i,Tp = j |K = k0))

p(y |K = k0)

=
k0

∑
p=1

s−1

∑
i=0

n

∑
j=s

(
p(y0i |K0i = p− 1)p(μp,yi j |Ki j = 1)p(y jn |Kjn = k0 − p)

p(y |K = k0)

·
(

i−1
p−2

)(
n− j

k0−1−p

)
(

n−1
k0−1

)
⎞⎠

=
1(

n−1
k0−1

)
p(y |K = k0)

k0

∑
p=1

s−1

∑
i=0

(
i− 1
p− 2

)
p(y0i |K0i = p− 1)

·
n

∑
j=s

p(μp,yi j |Ki j = 1)

(
n− j

k0 − 1− p

)
p(y jn |Kjn = k0 − p). (3.39)

To obtain (3.39), we used Bayes’ rule, the independence of data points
belonging to different segments and the uniform prior distribution of the
boundaries.

Finally, the corresponding Bayesian estimate of M̃s given k̂ is

̂̃μs = E[M̃s |y, k̂] (3.40)

=
∫
R

μ̃s p(μ̃s |y,K = k̂)
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=
1(

n−1
k̂−1

)
p(y |K = k̂)

k̂

∑
p=1

s−1

∑
i=0

(
i−1
p−2

)
p(y0i |K0i = p−1)

·
n

∑
j=s

(
n− j

k̂−1− p

)
p(y jn |Kjn = k̂− p)

∫
R

μpp(yi j |μp,Ki j = 1)p(μp)dμp(3.41)

for all s = 1, . . . , n. The vector ̂̃μ is called Bayesian Regression Curve
(BRC).

In Subsection 3.2.1, we define another type of Bayesian regression
curve (called BRCAk) and, in Subsection 3.2.2, we compare the original
BRC with BRCAk and BRCs which use a different estimator of k0. Finally,
in Subsection 3.2.3 we evaluate the best performing BRCs in comparison
with existing smoothing methods.

3.2.1 Improved regression curve: the BRCAk

As we saw in Section 3.1, there are cases in which the estimation of a pa-
rameter of our interest can be made independently of other parameters by
integration. The computation of the BRC (see Equations (3.39) and (3.40))
suggests to average also over the number of segments by considering the
posterior probability of M̃s, given only the sample point y,

̂̃μs := E[M̃s |y]
=
∫
R

μ̃s p(μ̃s |y)dμ̃s

=
kmax

∑
k=1

p(k |y)
∫
R

μ̃s p(μ̃s |y,k)dμ̃s

=
kmax

∑
k=1

p(k |y)E[M̃s |y,k] (3.42)

Unfortunately, the computation of this quantity requires time O(n2k2
max)

(see Section 3.3), hence it could be a problem with samples of big size.
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This new type of M̃s estimation is referred to as Bayesian Regression
Curve Averaging over k (BRCAk).

The same procedure cannot be applied for the estimation of the levels
in the piecewise constant regression, because in that case we need to know
the partition of the whole interval.

3.2.2 Comparison among the regression curves on
simulated data

We compared the estimation of the levels of BRC with the one of BRCAk,
also taking into account the influence of the different estimators of the
parameters on the final results. To valuate the performance of the methods,
we used the root mean square error (RMSE) per probe, computed with
respect to the true profile of the levels. For this purpose, we necessarily
needed datasets with replicates and we used collection Cases (described
in Subsection 3.1.7).

Comparing the BRC using the true value of ρ2 and the three types of
segment number estimators, we saw that using K̂1 and K̂2 we obtained a
similar behavior which was better than using K̂01 (see Figure 3.15). When
we compared the BRC using the true value of the segment number and
the different estimators of ρ2 (see Figure 3.16), it was not clear which
estimator was better. The same happened also when we made the same
comparison using the BRCAk (see Figure 3.17).

Finally, we fixed an estimator of ρ2 and we made the comparison
among the BRC with the different segment number estimators and the
BRCAk. Using ρ̂2

1 (see Figure 3.18), the behavior of the RMSE per probe
was more or less the same for all the BRCs and the BRCAk. While using
ρ̂2 (see Figure 3.19), it seemed that it was better to use the BRCAk.

In conclusion, using BRCAk we generally obtained a better or equal
result with respect to the BRC. Moreover, we observed that, using BRC,
it was better to estimate the number of segments with K̂1 or K̂2. We define
mBRC the BRC which uses K̂2 as estimator of the number of the segments.
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Fig. 3.15 RMSE per probe of the BRCs by using different estimators of k0. The corre-
sponding true profiles are in Figure 3.2. In general, using K̂1 or K̂2 the RMSE per probe
error is lower, but when ρ2 is closer to 0 (graphs at the bottom), sometimes using K̂01
we obtain a better estimate.

Note that we still have to solve the problem to determine which is the
best estimator of ρ2. In most cases, the profile obtained by using ρ̂2

1 was
better than using ρ̂2 (for example, see the plots at the bottom of Fig-
ure 3.16). This is due to the fact that sometimes ρ̂2

1 slightly underestimated
ρ2, leading to overfitting. Still we recommend to use ρ̂2

1 , even if it could
lead to a slight overfitting especially in the case of few segments.
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Fig. 3.16 RMSE per probe of the BRCs by using different estimators of ρ2, on four
datasets with replicates. The corresponding true profiles are in Figure 3.2. The graphs
do not show clearly which ρ2 estimator was better with respect to this error measure.
Sometimes the error committed using ρ̂2

1 was lower than using ρ̂2, probably because
ρ̂2

1 can lead to a slight overfitting. [Reprinted from BioMed Central Ltd: BMC Bioin-
formatics [65], copyright (2009), available under Creative Commons Attribution 2.0
Generic]

3.2.3 Comparison with other smoothing methods

We compared the several versions of the Bayesian regression curves with
methods which estimate the copy number as a continuous curve: lowess,
wavelet [28], quantreg [18] and smoothseg [29]. Lowess is the acronym of
“Locally Weighted Smoothing” (implemented in the stats library of R) and
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Fig. 3.17 RMSE per probe of BRCAk by using different estimators of ρ2. The cor-
responding true profiles are in Figure 3.2. The graphs do not show clearly which ρ2

estimator is better with respect to this error measure. As in Figure 3.16, sometimes
the error committed using the estimated ρ2 is lower than using the true value of ρ2,
probably because of overfitting.

it is one of the methods considered in the comparison performed in [41].
As we saw previously, both the mBRC and the BRCAk perform well, so
we tested both versions with both estimators of ρ2.

To asses the performance of the methods, we considered collections
of artificial datasets already used in the comparison of the piecewise con-
stant methods (see Subsection 3.1.7):Cases andFour aberrations (datasets
SNR = 3 and SNR = 1). As previously, the error measure considered were:
the RMSE (for both) and the ROC curve (for the latter). Instead, since
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Fig. 3.18 RMSE per probe of the several Bayesian regression curves, using ρ̂2
1 as the

estimator of ρ2, on four datasets with replicates. The corresponding true profiles are
in Figure 3.2. Using the estimator ρ̂2

1 , all the regression curves gave similar RMSE per
probe curve. [Reprinted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

some error measures of [84] suppose that the estimated profile is piece-
wise constant, we did not apply this group of methods to dataset Simulated
Chromosomes. Figure 3.20 shows the profiles of three examples of data in
collection Cases estimated by these smoothing methods (the true profile
are in Figure 3.1). Figure 3.21 displays examples of estimated profiles of
data in collection Four aberrations.
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Fig. 3.19 RMSE per probe of the several Bayesian regression curves, using ρ̂2 as the
estimator of ρ2, on four datasets with replicates. The corresponding true profiles are in
Figure 3.2. The graphs show that, using ρ̂2, BRCAk always had the lowest RMSE per
probe and thus performed better than the other BRCs. [Reprinted from BioMed Central
Ltd: BMC Bioinformatics [65], copyright (2009), available under Creative Commons
Attribution 2.0 Generic]

Results

In general, we found that all methods detected the regions of aberration
quite well (see, for example, Figures 3.23 and 3.25). The wavelet method
showed a higher error in the level estimation of the aberrations in the
datasets SNR = 3 and SNR = 1 (Figures 3.23 and 3.25). The methods
lowess and quantreg had the highest RMSE in the collection Cases, while
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Fig. 3.20 Estimated profiles of the data shown in Figure 3.1, obtained by applying some
smoothing methods. In each plot, the grey segments represent the true profile and the
dots are the raw data points. [Adapted from BioMed Central Ltd: BMC Bioinformatics
[65], copyright (2009), available under Creative Commons Attribution 2.0 Generic]

their error was not significantly different outside and inside the aberrations
on datasets with SNR = 1, 3. Therefore, in the last cases the error was low
inside the aberrations and high outside them in comparison with the other
methods. The method smoothseg showed a similar behavior, but with a
lower error.

Regarding the BRCs, all of them obtained a quite good estimation when
applied to the datasets of collection Cases. On dataset SNR = 3, the ROC
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Fig. 3.21 The plots show the differences in the level estimation among the smoothing
methods on a samples with SNR = 3 and SNR = 1: some oscillate more in the regions
outside the aberrations. In cases of high noise, the more oscillating the profiles are, the
harder it is to identify which regions correspond to the aberrations. In each graph, the
grey segments represent the true profile. [Reprinted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

curves (see Figure 3.22) of the BRCs which use the estimator ρ̂2
1 were

slightly better than the other ones and, in general, all the modified versions
were better than the original one. But the mBRC with ρ̂2 and the BRCAk
with ρ̂2 obtained the best RMSE. All BRCs gave a similar ROC curve
on datasets SNR = 1, the corresponding RMSE (Figure 3.25) shown that
the BRCs which use the estimator ρ̂2

1 had an error more stable than the
other ones. In fact, they had also a low error in the aberrations with a small
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Fig. 3.22 Zoomed ROC curves of several smoothing methods applied to dataset with
SNR = 3. The intersection among the ROC curves was due to the differences of the
methods in the level estimation outside the aberrations. The more oscillating were the
estimated curves in these regions, the closer were the corresponding ROC curves to the
top side of the graph. In our case, an oscillating estimated profile is very different from
the true one. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copyright
(2009), available under Creative Commons Attribution 2.0 Generic]

Fig. 3.23 RMSE of several smoothing methods applied to dataset with SNR = 3. The
black segments on the horizontal axis correspond to the regions of aberration. On this
dataset, both the original BRC and the version of BRC with K̂2 and ρ̂2 had everywhere
the lowest error. [Adapted from BioMed Central Ltd: BMC Bioinformatics [65], copy-
right (2009), available under Creative Commons Attribution 2.0 Generic]
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width. On this data the mBRC with ρ̂2
1 seemed performing slightly better

than the BRCAk with ρ̂2
1 .

Fig. 3.24 ROC curves of several smoothing methods applied to dataset with SNR =
1. On this very noisy data, the methods smoothseg and lowess seemed to be the best
ones, since their ROC curves were the highest at the top left corner of the plot. The
third best method was BRC with K̂2 and ρ̂2

1 . [Adapted from BioMed Central Ltd: BMC
Bioinformatics [65], copyright (2009), available under Creative Commons Attribution
2.0 Generic]

We also found that the ROC measure was affected by oscillations in
the estimated curve, which led to ROC curves intersected and difficult to
be interpreted (Figure 3.22). This complex behavior is a consequence of
the way in which lowess, wavelet, quantreg and smoothseg yielded os-
cillating curves with positive and negative values outside the aberrations;
while BRCs estimated the true profile with a line almost flat and close to
zero (see the examples in Figure 3.21). Hence, when the threshold (used
for computing the ROC curve) is negative, the proportion of probes out-
side the aberrations which are above the threshold (FPR) of the BRCs is
greater than the one of the other methods. At the same time, the TPR of
wavelet and lowess increases, because the wrongly estimated levels of the
probes inside the aberrations are above the threshold.
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Fig. 3.25 RMSE of several smoothing methods applied to dataset with SNR = 1. The
black segments on the horizontal axis correspond to the regions of aberration. The
graphs show that the method lowess, quantreg and smoothseg had more or less the
same error inside and outside the aberrations. Instead, the BRC version with K̂2 and ρ̂2

1
and BRCAk with ρ̂2

1 had a very low error outside the aberrations and not the highest
error inside them, thus globally they performed better than the other algorithms with re-
spect to the RMSE measure. [Adapted from BioMed Central Ltd: BMC Bioinformatics
[65], copyright (2009), available under Creative Commons Attribution 2.0 Generic]

In conclusion, mBRC and BRCAk gave in general a better estimation
than the other BRCs and the other smoothing methods considered. Re-
garding the ρ2 estimation, we found that it is better to use ρ̂2, if σ2 < ρ2,
and ρ̂2

1 , if σ2 > ρ2.

3.3 Dynamic programming

As we saw in Sections 3.1 and 3.2, the Bayesian estimation needs the
computation of the posterior probabilities of the variables involved, but
the complexity of the problem does not allow us to find them analytically.
Fortunately the computation can be done by using dynamic programming
(a more detailed explanation can be found in [32, 33]).

First of all, we introduce some notations:
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Ml,m = (Ml+1, . . . , Mm)

T l,m = (Tl , . . . , Tm)

Y i, j = (Yi+1, . . . , Yj)

Ki, j = number of the segments in Y i, j.

The dynamic program is based on the fact that, for a fixed segment
number and partition, the data points that belong to different segments are
independent. Then, the joint probability distribution of the data points and
the levels in m− l segments can be decomposed in the product of the same
joint probability distribution in the first p− l segments and in the last m− p
segments, for any p such that l < p ≤ m:

p(ytl ,tm , μ l,m | tl,m, Ktl ,tm = m− l)

=
m−1

∏
i=l

p(yti,ti+1
|μi+1,ti,i+1,Kti ,ti+1 = 1)p(μi+1 | ti,i+1,Kti ,ti+1 = 1)

= p(ytl ,tp ,μ l,p | tl,p,Ktl ,tp = p− l)p(ytp,tm ,μ p,m | t p,m,Ktp,tm = m− p).

We define the following quantity to perform the dynamic program

Ar
i, j :=

∫
R

μ r
pp(yi, j,μp|Ki, j = 1)dμp for all i< p ≤ j,

where μ̃i+1 = . . .= μ̃ j = μp, since all the data points considered belong to
the same segment, which we call p. One should notice that, if r = 0,

A0
i, j = p(yi, j |Ki, j = 1),

i.e., it is the density of the data yi, j given that they belong to the same
segment, while if r ≥ 1, Ar

i, j is related to the moments of Mp with respect
to the conditional probability given y, t and k,

E[Mr
p |y, t,k] = E[Mr

p |yTp−1,Tp
,Tp−1 = i,Tp = j,KTp−1,Tp = 1]

=

∫
R μ r

pp(yi, j,μp|Ki, j = 1)dμp

p(yTp−1,Tp
|Tp−1 = i,Tp = j,KTp−1,Tp = 1)

=
Ar

i, j

A0
i, j

(3.43)
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where i= tp−1 and j = tp, for all p = 1, . . . , k.
The left and right recursion of the dynamic program are made on the

following quantities

Lk+1, j :=

(
j− 1
k

)
p(y0, j|K0, j = k+ 1) (3.44)

Rk+1,i :=

(
n− i− 1

k

)
p(yi,n|Ki,n = k+ 1).

Given the position of tk, the probability distribution of the data in k+ 1
segments can be decomposed in the product between the joint distribution
in the first k segments and the joint distribution in the last segment. Hence,
we can compute the probability distribution of the data in k+ 1 segments
summing this products for all possible positions of tk,

p(y0, j|K0, j = k+ 1)

=
j−1

∑
h=k

p(y0, j|Tk = h,K0, j = k+ 1)P(Tk = h |K0, j = k+ 1)

=
j−1

∑
h=k

p(y0, j|Tk = h,K0, j = k+ 1)

(
h−1
k−1

)
(

j−1
k

)
=

1(
j−1
k

) j−1

∑
h=k

(
h− 1
k− 1

)
p(y0,h|K0,h = k)p(yh, j|Kh, j = 1)

⇒ Lk+1, j =
j−1

∑
h=k

Lk,hA
0
h, j. (3.45)

Similarly, we can sum, over all possible position of t1, the products be-
tween the joint distribution in the first segment and the joint distribution in
the last k segments, obtaining

Rk+1,i =
n−k

∑
h=i+1

A0
i,hRk,h.
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The recursion starts with L0, j := δ0, j and R0,i := δi,n, because there are
zero segments only if the two endpoints are equal.

The Bayesian estimators of the original BPCR and BRC

For the definition of the Bayesian estimators, we need to compute the evi-
dence and the posterior distributions of the parameters. Since

Lk,n = Rk,0 = ( n−1
k−1 )p(y |k), (3.46)

the evidence of the sample point y turns out to be

E := p(y) =
kmax

∑
k=1

p(y |k)pK(k) =
1

kmax

kmax

∑
k=1

Lk,n(
n−1
k−1

) .
Then, the posterior probabilities of the number of segments and the bound-
aries can be written in the following way

p(k |y) = p(y |k)p(k)
p(y)

(3.47)

=
Lk,n

Ekmax

(
n−1
k−1

) ∀k ∈K (3.48)

P(Tp = h |y, k)
=

p(y |Tp = h,K = k)P(Tp = h |K = k)

p(y |k)

=
p(y0h |K0h = p)p(yhn |Khn = k− p)

p(y |k)

(
h−1
p−1

)(
n−h

k−1−p

)
(

n−1
k−1

) (3.49)

=
Lp,hRk−p,h

Lk,n
(3.50)
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for each p = 1, . . ., k0 − 1 and for all h ∈ {p, . . . , n− 1}.
Now we can compute the estimators. Equation (3.48) implies that the

MAP estimate of the segment number given the sample point y is

k̂01 := argmax
k∈K

p(k |y) = argmax
k∈K

Lk,n(
n−1
k−1

) .
As we can see in Equations (3.6) and (3.50), the estimate for the bound-
aries needs the knowledge of the true number of segments, thus we use k̂01

instead of k0,

t̂p := argmax
h∈{p, ..., n−(k̂−p)}

P(Tp = h |y,k̂01) = argmax
h∈{p, ..., n−(k̂01−p)}

Lp,hRk̂01−p,h,

for p= 1, . . ., k̂−1. The computation of the estimate of the rth moment of
the level of the pth segment needs the knowledge of the segment number
and the partition of the data (see Equation (3.43)), so we use the estimated
ones

μ̂ r
p := E[Mr

p |y, t̂, k̂01] =
Ar

i, j

A0
i, j

,

where i= t̂p−1 and j = t̂p, for all p = 1, . . . , k̂01.
To estimate the segment level M̃s at a generic position s with BRC, it

is sufficient to rewrite Equation (3.41) using the definitions of A0
i, j, Lk+1, j

and Rk+1, j:

̂̃μs =
s−1

∑
i=0

n

∑
j=s

F0
i, j(k̂01) with F0

i, j(k̂01) :=
1

Lk̂01,n

k̂01

∑
p=1

Lp−1,iA
0
i, jRk̂01−p, j,

(3.51)
for all s= 1, . . . , n.
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The boundary estimator T̂ joint

The boundary estimator T̂ joint is defined as

T̂ joint := argmax
t∈Tk0,n

p(t |K = k0,Y ). (3.52)

The explicit formula for the joint boundary distribution, given k0 and
the sample point y, is

p(t |y, K = k0) =

[
∏k0−1

p=0 p(ytp,tp+1
| tp, tp+1, Ktp,tp+1 = 1)

]
p(t |K = k0)

p(y |K = k0)

=

[
∏k0−1

p=0 A0
tp,tp+1

]
Lk0,n

, (3.53)

by using the definition of A0
i, j and Equation (3.46). Thus, the estimated

boundaries are

t̂ joint = argmax
t∈Tk0,n

k0−1

∏
p=0

A0
tp,tp+1

. (3.54)

If we look at Equation (3.54), the computation of T̂ joint seems to be

complex, because it needs to maximize ∏k0−1
p=0 A0

tp,tp+1
for all possible com-

bination of the boundaries. Actually, the computation can be done with a
dynamic program in time O(nkmax).

Equation (3.54) implies that if we know that there are two segments in
yi, j, we can estimate the inner boundary with

argmax
h∈{i+2,..., j−1}

A0
i,hA

0
h, j.

From this observation, we can define the following recursion,

W1
0,i := A0

0,i
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Wp+1
0,i := max

h∈{p,...,i−1}
Wp

0,hA
0
h,i for p = 1, . . . ,k̂− 2, (3.55)

where Wp
0,i represents the maximum probability that y0,i is divided into p

segments over all combinations of the boundaries. As a consequence, the
components of the vector of the boundary estimator turn out to be,

t̂k = argmax
h∈{k,...,̂tk+1−1}

Wk
0,hA

0
h,̂tk+1

for k = k̂− 1, . . . ,1, (3.56)

with t̂k̂ := n.

The boundary estimators T̂ BinErr and T̂ BinErrAk

In Section3.1, we defined the boundary estimators T̂ BinErr and T̂ BinErrAk

as the inverse image of τ̂ BinErr and τ̂ BinErrAk, respectively, under func-
tion (3.19). The latter were specified as

τ̂ BinErr = E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ Y , k̂
]

= ∑
{i=1,...,n−1 : τ ′

i =1}
P(τi = 1 |Y , k̂)

τ̂ BinErrAk = E

[
n−1

∑
i=1

τiτ
′
i

∣∣∣∣∣ Y
]

= ∑
{i=1,...,n−1 : τ ′

i =1}
P(τi = 1 |Y ).

To compute these estimators, we first find the indices i1, . . . , ik̂−1 corre-

sponding to the k̂−1 highest {P(τi = 1 |y, k̂)}n−1
i=1 or {P(τi = 1 |y)}n−1

i=1 ,
respectively, and then τ̂ BinErr or τ̂ BinErrAk, respectively, is the vector such
that τ̂ip = 1 for p = 1, . . ., k̂− 1.
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The calculation of {P(τi = 1 |y, k̂)}n−1
i=1 and {τi = 1 |y)}n−1

i=1 is derived
from Equations (3.24), (3.48) and (3.50) and the definitions of A0

i, j, Lk+1, j

and Rk+1, j:

P(τi = 1 |y, k̂) =
min(i,k̂−1)

∑
p=1

P(Tp = i |y,k̂)

=
min(i,k̂−1)

∑
p=1

Lp,iRk̂−p,i
Lk̂,n

P(τi = 1 |y) =
kmax

∑
k=2

P(τi = 1 |y,k)p(k |y)

=
kmax

∑
k=2

Lp,iRk−p,i
Lk,n

Lk,n(
n−1
k−1

)
kmaxE

.

The BRCAk

The computation of the BRCAk is derived similarly to the one of BRC.
Equations (3.42) and (3.51) imply that

̂̃Ms =
kmax

∑
k=1

p(k |y) ∑
i<t≤ j

F0
i, j(k)

=
kmax

∑
k=1

1

Ekmax

(
n−1
k−1

) k

∑
p=1

Lp−1,iA
0
i, jRk−p, j.

From the last equation, we can notice that the calculation of this quantity
required time O(n2k2

max), hence it might represent a problem with samples
of big size.
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3.4 Change of the prior distribution of K

In Section 3.1, we often observed that the estimation of a profile with k0=1
can be problematic. Namely, we explained in Subsection 3.1.1 that, in this
case, the variance of the levels ρ2 should be estimated with zero (since the
levels can assume only one value, if we know only the data). Also for this
reason, we proposed the estimator ρ̂2

1 in Subsection 3.1.5. Nevertheless,
we found that K̂2 wrongly estimated the number of segments in all samples
with k0=1 of the eight datasets without replicates used in Subsection 3.1.6.
The mean value (over the 48 samples) of K̂2 was 15. Therefore, here we
propose a modification of the model which avoid this issue.

In order to modify the model, we first study the reason of the failure
of the model. As stated before, if k0=1, then p(μ |ν,ρ2) = δμ,ν and the
distribution of the data, conditioned only on the hyper-parameters, is

A0
i, j = p(yi j |Ki, j = 1,ν,ρ2,σ2)

=

∫
R

p(μp |ν,ρ2)
j

∏
h=i+1

p(yh |μp,σ2)dμp

=
j

∏
h=i+1

p(yh |ν,σ2)

=

(
1

2πσ2

) j−i
2

e
− 1

2σ2 ∑ j
h=i+1(yh−ν)2

.

Consequently,
A0

i,hA
0
h, j = A0

i, j (3.57)

for all 0 ≤ i ≤ h ≤ j ≤ n.
In this particular case, we can derive an explicit formula of the posterior

distribution of K. By using the definition of Lk,n in Equation (3.44), the
posterior turns out to be,

p(k |y) = p(y |k)p(k)
∑kmax

k′=1 p(y |k′)p(k′)
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=
Lk,n

(
n−1
k−1

)−1
p(k)

∑kmax
k′=1 Lk′,n

(
n−1
k′−1

)−1
p(k′)

. (3.58)

In order to completely calculate the posterior, we derive an explicit for-
mula for Lk,n. We want to show by induction that, for all j = k, . . . , n,

Lk, j =

(
j− 1
k− 1

)
A0

0, j, k ≥ 1. (3.59)

For k = 1, L1, j=A0
0, j by definition (see Section 3.3) and the relation in

Equation (3.59) is true for this value of k. We assume that Equation (3.59)
holds for k, then we have to show that Equation (3.59) holds for k+ 1. By
using Equations (3.45) and (3.57), and

n

∑
j=k

(
j
k

)
=

(
n+ 1
k+ 1

)
,

(from [7]), we obtain

Lk+1, j =
j−1

∑
h=k

Lk,hA
0
h, j

=
j−1

∑
h=k

(
h− 1
k− 1

)
A0

0,hA
0
h, j

= A0
0, j

j−1

∑
h=k

(
h− 1
k− 1

)

= A0
0, j

j−2

∑
h=k−1

(
h

k− 1

)
=

(
j− 1
k

)
A0

0, j.
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Finally, by substituting Equation (3.59) in (3.58), we obtain the explicit
formula of the posterior distribution of K,

p(k |y) =
Lk,n

(
n−1
k−1

)−1
p(k)

∑kmax
k′=1 Lk′,n

(
n−1
k′−1

)−1
p(k′)

=

(
n−1
k−1

)
A0

0,n

(
n−1
k−1

)−1
p(k)

∑kmax
k′=1

(
n−1
k′−1

)
A0

0,n

(
n−1
k′−1

)−1
p(k′)

=
p(k)

∑kmax
k′=1 p(k′)

= p(k).

i.e. the posterior is equal to the prior. Also the prior and posterior of the
boundaries and the levels are equal,

p(t |y, k) = p(y | t, k)p(t |k)
p(y | k)

=
∏k

p=1A
0
tp−1,tp

(
n−1
k−1

)−1

(
n−1
k−1

)−1
Lk,n

=
∏k

p=1A
0
tp−1,tp

(
n−1
k−1

)−1

(
n−1
k−1

)−1(
n−1
k−1

)
A0

0,n

=
1(

n−1
k−1

) = p(t |k)

p(μp |y, t, k) = p(y |μp, t, k)p(μp)∫
R p(y |μp, t, k)p(μp)dμp

=
p(y |μp, t, k)δμp,ν

p(y |ν, t, k)
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= δμp,ν = p(μp), p = 1, . . . ,k.

We applied the definition of A0
i, j and Equations (3.46), (3.59) and (3.57),

to derive the equality p(t |y, k) = p(t |k). If the data belong to only one
segment, they cannot supply deep information about the distribution of the
levels and thus the posterior and the prior knowledge about the parameters
are equal.

The estimator K̂2 is defined as the argumentwhich minimizes the poste-
rior squared error and, since K assumes only discrete values, the estimator
is equal to the closest integer to the posterior expected value. Therefore,
with a uniform prior, K̂2 is the closest integer to the midpoint of the inter-
val [1,kmax], and thus the estimate of k0 is wrong. On the other hand, the
estimator K̂01 represents the argument which maximizes the posterior, but
with a uniform prior we do not have a maximum.

The prior of K does not include our prior default assumption that the
data consists of only one segment. The segments with levels different from
ν are “deviations”. To include this knowledge in the prior, we need a dis-
tribution which gives the highest probability to {K = 1} (and non-zero
probability to {K = k}, k = 2, . . . , kmax). With this type of prior, the cor-
rect estimator between K̂01 and K̂2 is K̂01, because k = 1 maximizes the
posterior.

We still need to define the form of the prior distribution. Since we previ-
ously used a uniform prior and an estimator which minimizes the posterior
expected squared error, now we consider a prior similar to 1/k2 and an es-
timator which minimizes the 0-1 error. In order to obtain a “nice” (easy to
compute) constant of normalization, we define the new prior as

p(k) =
kmax

kmax+ 1
1

k(k+ 1)
, k ∈K. (3.60)

The new version of mBPCR consists in this modification of both the prior
and the estimator of K.

In order to verify empirically the correctness of our modification, we
estimated again the profile of the 48 samples with k0 = 1, using the new
version of mBPCR and ρ̂1. Now, in 47 samples k̂ = 1 and only in one
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sample k̂ = 2. In order to verify that the estimation did not worsen in the
other cases (i.e. k0 �= 1), we re-estimated the samples of the collection Sim-
ulated chromosomes, because these artificial data are similar to real data
(although with lower noise). To compare the estimation of the original and
the new version of mBPCR, we used the same error measures as in the
comparison of the boundary estimators Subsection 3.1.6. As explained in
Subsection 3.1.6, on these data we expected to achieve a better estima-
tion by using ρ̂2, since σ2 < ρ2. Therefore, we comment only the results
obtained with ρ̂2.

The new version of mBPCR had a lower FDR in the breakpoint es-
timation and its sensitivity (only regarding w = 0,1) was only slightly
lower than the corresponding one of the original mBPCR (Figure 3.26).
The SSQ error slightly increased, but also the accuracy slightly increased
because the accuracy in the detection of normal regions slightly increased
(Table 3.15). Overall, the results of the two methods were not significantly
different and thus we decided to use the new version of mBPCR.

Table 3.15 Comparison among the error measures for profile estimation, obtained on
dataset Simulated Chromosomes, for the original and the new version of mBPCR. We
used both ρ2 estimators. The original mBPCR had the lowest SSQ, while the new ver-
sion the highest accuracy of normal regions. Nevertheless, the results of both methods
were overall similar.

accuracy accuracy
method SSQ MAD accuracy inside outside

aberrations aberrations

mBPCR, ρ̂2 1.70 0.00733 0.936 0.992 0.932
mBPCR, ρ̂2

1 1.85 0.00781 0.929 0.993 0.920
new mBPCR, ρ̂2 1.76 0.00729 0.940 0.990 0.936
new mBPCR, ρ̂2

1 1.90 0.00772 0.934 0.991 0.927
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Fig. 3.26 Comparison of the sensitivity and FDR computed on the results obtained on
dataset Simulated Chromosomes using the original and the new version of mBPCR. The
new mBPCR has a lower FDR and, only for w = 0,1, its sensitivity is slightly lower
than the one of the original mBPCR.





Chapter 4
Statistical model for the integration of copy
number and LOH data

Cancer and several human diseases are caused by genomic aberrations,
which can affect the homozygous status and/or the DNA copy number (see
Subsection 1.1.4). The former aberrations are often displayed by unusual
long stretches of homozygous SNPs, called loss of heterozygosity (LOH)
regions. The latter consist in genomic regions with DNA copy number
different from two.

SNP microarrays are able to measure simultaneously both the DNA
copy number and the genotype at each SNP position considered [30]. By
integrating both types of data, we can better identify several types of le-
sions of the genome (regarding combinations of both DNA copy number
and LOH aberrations). For example, when one copy of a chromosomal
segment is deleted, we usually detect a long stretch of homozygous SNPs
(since the microarray is unable to distinguish between the presence of only
one copy and the presence of two equal copies), but the same homozygous
status can also occur for other reasons, such as uniparental disomy (see
Subsection 1.1.4). In this situation, the knowledge of both types of data
can lead to the correct interpretation of the phenomenon, while with only
one type of data it would not be possible. Another example is when an
amplified genomic segment is present: if one of the two copies of the seg-
ment is highly amplified, then, even for heterozygous SNPs, all SNPs of

117
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the region will be likely detected as homozygous, because the DNA quan-
tity of one allele is much higher than the other one. In this case again, the
integration of both types of data is able to better identify the dosage of the
DNA aberration.

Manymethods have been developed for the estimation of the copy num-
ber profile (see, for example, [21, 31, 59, 63, 65]) and others for the dis-
covery of LOH regions, without distinguishing if they are caused by either
the loss of one copy or other genomic events like uniparental disomy or
autozygosity (see, for example, [2, 8, 56]). To the best of our knowledge,
only one method integrates these two types of data for the estimation of
both copy number and LOH aberrations and it uses HMM [72]. Other
two methods use both copy number and LOH data to find copy number
changes: QuantiSNP [13] and PennCNV [81]. The former employs an Ob-
jective Bayes HMM, instead the latter uses HMM and can be applied only
to Illumina high-density SNP microarray.

In this chapter, we propose a method which estimates the copy num-
ber profile and the stretches of homozygous SNPs at the same time, using
both LOH and DNA copy number data. The estimation procedure consists
of a Bayesian piecewise constant regression, thus we call our algorithm
genomic Bayesian Piecewise Constant Regression (gBPCR). Our model is
more general than [72], since the latter cannot be applied to data, whose
DNA sample come from a mixture of cell populations (which is usually
the case for samples of patients affected by cancer). Moreover, the algo-
rithm in [72] needs the specification of some parameters by the user and is
sensitive to their values.

Because of the complexity of the biological model, we first describe (in
Section 4.1) a preliminary simplified model (called Model 1), which es-
timates the copy number events exploiting the relationship between copy
number and LOH data. Therefore, it does not detect the LOH regions with-
out copy number changes (called copy-neutral LOH), which are due to
events like uniparental disomy, and does not distinguish the normal re-
gions from the gained one (because we suppose that the capability of de-
tection of the homozygous status is the same in these two types of regions).
Subsequently, in Sections 4.2 and 4.3, we add to the model the detection
of copy-neutral LOH regions (Model 2) and of gained ones (Model 3). In
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Section 4.4, we show how we estimated the parameters of the models and
in Section 4.5 how we adjust the values of some of these parameters with
respect to the noise of the sample that we want to estimate. In Section 4.6,
we use artificial data to compare the estimators of the breakpoints pro-
posed in Section 4.1, and to compare gBPCR with dChip and CNAT 4.01
(described in Section 2.3). Finally, in Section 4.7, we apply gBPCR to real
data and in Section 4.8, we show how to modify the dynamic programming
used for the computation of mBPCR (Section 3.3), to perform gBPCR.

A preliminary version of the method has been published in [66], while
a complete version has been submitted [67].

4.1 Model 1: relationship between LOH and copy
number data

Although in nature copy number are integers, the raw copy number de-
tected by the microarray are usually continuous values, due to technical
procedures. Also, the samples often contain a percentage of normal cells
together with the neoplastic cells, which can contribute.

As we explained in Chapter 2, it is common practise to treat copy num-
ber data in a log2ratio scale (to assume that the errors are normally dis-
tributed) and to estimate the copy number profile with a piecewise con-
stant function where the levels assume real values. For the purpose of our
model, we estimate this profile by mBPCR (see Chapter 3), that we have
shown to outperform well-known other methods on several datasets.

Commonly, in biomedical/cancer research, after estimating the log2ratio
profile, the copy number aberrations are defined as those regions with val-
ues outside an interval around zero (we recall that, in the log2ratio scale,
zero represents CN = 2, i.e. a normal copy number). Often, the interval is
a statistical confidence interval computed on the basis of the samples of
the whole dataset.



120 4 Statistical model for the integration of copy number and LOH data

In Model 1, our aim is to better classify the copy number changes,
trying to reduce the number of false positive, by exploiting the relationship
between copy number and LOH data.

4.1.1 Mathematical model of the biology mechanism

The aim of Model 1 is to obtain a better estimation of the true underlying
copy number events, using both the information given by copy number
and LOH data. In a genomic region, a copy number event is defined as a
particular class of copy number values. The definition of the categories, in
which the copy number values are divided will follow from the description
of the LOH data.

For the purpose of better identifying the copy number events, we can
consider two classes of SNP conditions: Heterozygosity (Het) and Ho-
mozygosity (Hom). The microarray is unable to distinguish among a ho-
mozygosity due to the presence of two equal nucleotides or the one due
to the loss or high amplification of one of them. Hence, the presence of
heterozygosity can ensure that the copy number is normal or gained with
a high probability, while the homozygosity can be due to different events.
It follows that there are only four relevant classes of copy number events,
that can be distinguished by looking at the LOH data. Therefore, if we call
Z̃i the random variable which represents a copy number event at SNP i, it
can assume only the following values:

• Z̃i = 2 when CN > 4 (“amplification”)
• Z̃i = 0 when 1 < CN ≤ 4 (“normal or gain”)
• Z̃i =−1 when CN = 1 (“loss”)
• Z̃i =−2 when CN = 0 (“homozygous deletion”).

The homozygous deletion corresponds to the loss of both copies of a ge-
nomic region. Ideally, the microarray should detect a “NoCall” genotype
at the corresponding SNP position (i.e. it should not be able to identify the
genotype of the SNP). Although not common since cancer DNA samples
usually contain a mixture of tumor and normal cells, the information given
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by the “NoCall” genotype can be useful to better distinguish between a
mono-allelic deletion and a bi-allelic (homozygous) deletion.

Therefore, three different LOH variables are present in the model: the
true homozygous status in normal cells (XN), the homozygous status in
“cancer” cells (X), which is the consequence of copy number changes
(now we do not consider other biological events), and the homozygous
status detected by the microarray (Y ). The components of the first two
random vectors can assume only values in X = {Het, Hom} and X∗ = { /0,
Het, Hom}, respectively, and we suppose that they are independently dis-
tributed as Bernoulli random variable. Instead, the components of Y can
assume values in Y = {NoCall, Het, NHet} (NHet stands for “not het-
erozygous”, since the microarray cannot distinguish between two equal
nucleotides, i.e. homozygosity, and a loss of one copy).

Figure 4.1 shows a summary of the model. Ideally, at each SNP i, the
homozygous status in “cancer” cells Xi is completely determined by the
corresponding value in normal cells XN

i and the copy number event oc-
curred Z̃i, by the following relations:

P(Xi = x |XN
i = x, Z̃i = 2) = 1, x ∈ X,

P(Xi = x |XN
i = x, Z̃i = 0) = 1, x ∈ X,

P(Xi = Hom |XN
i = x, Z̃i =−1) = 1, x ∈ X,

P(Xi = /0 |XN
i = x, Z̃i =−2) = 1, x ∈ X.

Nevertheless, the homozygous status of “cancer” cells measured by the
microarray (Yi) is affected by several sources of errors (that will be ex-
plained in Subsection 4.1.2).

4.1.2 Hypothesis of the model

The genome of cancer cells can be divided in subregions where the copy
number is constant. Since we divided the copy number values in four
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Fig. 4.1 Scheme of Model 1. The vector X of the homozygous status of all SNPs in
cancer cells is completely determined, given the vector XN of their homozygous status
in normal cells and the vector Z̃ of their corresponding copy number events. Using this
relationship among X , XN and Z̃, we can estimate Z̃, given the observations Y cn and
Y (respectively, the raw log2ratio of the copy number and the homozygous status in
cancer cells detected by the microarray) and by specifying the prior distribution of XN .
The observations Y cn are used to defined the prior distribution of Z̃ in the Bayesian
model.

classes (i.e. the copy number events), we can also consider regions with
the same copy number event.

Let us consider a genomic region where the microarray measures the
DNA copy number and the genotype at n SNP loci. Then, from the previ-
ous discussion, the vector of the copy number events at all positions Z̃ =(
Z̃1, . . . , Z̃n

)
can be seen as a piecewise constant function. This function

consists of k0 intervals with the same copy number event and with bound-
aries 0= t00 , < t01 , . . . < t0k0−1 < t0k0 = n, so that Z̃t0p−1+1 = . . .= Z̃t0p

= Zp for

all p = 0, . . ., k0. Therefore, to estimate this function we use a Bayesian
piecewise constant regression, which determines the number of segments
k0, the boundaries t0 and the copy number events Z =

(
Z1, . . . , Zk0

)
.

For any sample, we assume to have the LOH data given by the microar-
ray (Y ) and the mBPCR estimated profile of the log2 ratio of the copy num-
ber. The estimated log2ratio profile consists of k̂cn intervals with bound-
aries t̂ cn=(0= t̂ cn0 , t̂ cn1 , . . ., t̂ cnk0 = n) and levels of the segments μ̂ ∈Rk̂cn . This
estimated profile is used only to define the prior distribution of the random
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vector Z (see Subsection 4.1.3), while the genotyping data are used to in-
fer Z. Notice that we do not suppose to know XN , i.e. the homozygous
status in normal cells. Moreover, we assume that, given the true value of
the homozygous status in normal cells XN and the copy number event Z
at each position, the LOH data points {Yi}n

i=1 are independent, since their
values depend only on both noise and genotyping detection errors.

The model implies that, given k0 and t0, the posterior distribution of Z̃
is

p(̃z |y, t0, k0)∝
k0

∏
p=1

t0p

∏
i=t0p−1+1

∑
x∈X

p(yi |XN
i = x, Zp = zp)P(XN

i = x)P(Zp = zp),

and thus, only conditioning with respect to the LOH data points y, the
posterior becomes

p(̃z |y) ∝ ∑
k∈K

∑
t∈Tk,n

p(̃z |y, t, k)P(T = t |K = k)P(K = k),

where K and Tk,n are the domains of k and t, respectively (defined as in
Subsection 3.1.1).

To specify the model (see Figure 4.1), we need to define the likelihood,
i.e. the conditional distribution of Y , given Z̃ and XN . To model it, we
take into account all the variability that can affect the genotype detection,
such as the polymerase chain reaction (PCR) amplification, the presence
of different cancer cell subpopulations or normal cells and the amplifica-
tion of only one copy. For example, the probabilities P(Yi = NHet |XN

i =

Het, Z̃i = 0) and P(Yi = Het |XN
i = Hom, Z̃i = 0) are not zero, because

of the error in the genotyping detection even in case of a normal DNA
sample. The probabilities P(Yi = Het |XN

i = Het, Z̃i = −2) and P(Yi =

NHet |XN
i =Hom, Z̃i =−2) are related to detection errors due to the pres-

ence of normal cells and/or different types of cancer cell subpopulations,
or to PCR amplification errors, while P(Yi = NHet |XN

i = Het, Z̃i = 2) is
related to errors that can be due to amplification of only one allele. Also
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P(Yi = Het |XN
i = Het, Z̃i = −1) and P(Yi = NHet |XN

i = Het, Z̃i = −2)
account for the errors that can be due to the presence of subpopulations.

To complete the Bayesian model, we need to define the prior distri-
butions of the other random variables. For the parameters K and T , we
consider the same distributions of the last version of mBPCR (see Sec-
tion 3.4):

P(K = k) =
kmax+ 1

kmax

1
k(k+ 1)

, k ∈K,

P(T = t |K = k) =
1(

n−1
k−1

) , t ∈ Tk,n,

where K = {1, . . . , kmax} and Tk,n is a subspace of Nk+1
0 such that t0 = 0,

tk = n and tq ∈ {1, . . . , n− 1} for all q = 1, . . . , k− 1, in an ordered way
and without repetitions.

The {XN
i }n

i=1 are assumed to be independent and Bernoulli distributed,
but with a different parameter qi := P(XN

i = Het). This set of parameters
{qi}n

i=1 does not need to be estimated, because the documentation related
to the microarray already provides the probabilities of heterozygosity of
all SNPs in the array.

4.1.3 Definition of the prior distribution of Z

The only prior that we have not yet defined is the one of Z. While the es-
timated levels of the log2ratio profile are continuous variables, Z classifies
the copy number as discrete events. Then, the major problem consists in
mapping the continuous values into the discrete values of Z, i.e. in defin-
ing a partition of the log2ratio values such that each interval corresponds
to a particular copy number event.

In literature, most methods determine a confidence interval around zero
and then consider all the log2ratio values above this interval “gain” and all
values below “loss” (see, for example, [55, 79]). This method is not suit-
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Fig. 4.2 Example of a den-
sity histogram of estimated
log2ratio levels. The data
come from the mBPCR esti-
mated log2ratio levels of the
profiles of 14 HIV lymphoma
cell lines in [10].

able in our case, since we want to classify also the events {CN=0} and
{CN>4}. Looking at the density histogram of the estimated log2ratio val-
ues (see, for example, Figure 4.2), we can see that they have a multimodal
density with peaks corresponding to {CN=1}, {CN=2} and {CN=3,4}.
Sometimes, as in Figure 4.2, we can separate the peaks of {CN=3} and
{CN=4}. Similarly to [27], we model this density as a mixture of normal
distributions. Once the parameters of the density are estimated, we can
define a function to map the log2ratio values into the copy number event
values:

fLOGtoZ(x) =

⎧⎪⎪⎨⎪⎪⎩
2 if x > m̂4 + 3ŝ4
0 if m̂2 − 3ŝ2 < x ≤ m̂4+ 3ŝ4

−1 if m̂1 − 3ŝ1 < x ≤ m̂2 − 3ŝ2
−2 if x < m̂1 − 3ŝ1,

(4.1)

where (m̂cn, ŝ2cn) are, respectively, the estimated mean and variance of the
normal distribution corresponding to {CN=cn}.

From the definition of fLOGtoZ , for all p= 1, . . ., k̂cn, we define the prior
distribution of Zp as:

P(Zp = 2) = P
(
Mp ≥ m̂4+ 3ŝ4

∣∣ cn)
P(Zp = 0) = P

(
m̂2 − 3ŝ2 < Mp ≤ m̂4+ 3ŝ4

∣∣ cn)
P(Zp =−1) = P

(
m̂1 − 3ŝ1 < Mp ≤ m̂2 − 3ŝ2

∣∣ cn)
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P(Zp =−2) = P
(
Mp ≤ m̂1 − 3ŝ1

∣∣ cn)
where we cn represents all copy number information (both raw data and
estimated profile by mBPCR) and Mp is the random variable representing
the log2ratio value in the pth segment. From the mBPCR model, given
cn, the conditional posterior distribution of any Mp is N (μ̂p, V̂p), where
(μ̂p, V̂p) are the posterior mean and variance of Mp estimated by mBPCR.

Remark 4.1. We notice that this definition of the prior distribution of Z
takes into account that often the DNA sample comes from a mixture of cell
populations and thus the measured copy numbers are not integers. There
are also other technical reasons in the procedure that lead to this change
of domain of the copy number values. It follows that it is not possible
to partition the log2ratio values in intervals around the log2ratio of the
corresponding true copy number, such as:

fLOGtoZ (x)=

⎧⎪⎪⎨⎪⎪⎩
2 if x > log2

4
2 +

1
2

(
log2

4
2 + log2

5
2

)
0 if log2

1
2 +

1
2

∣∣log2
1
2

∣∣< x ≤ log2
4
2 +

1
2

(
log2

4
2 + log2

5
2

)
−1 if log2

1
2 − 1

2

∣∣log2
1
2

∣∣< x ≤ log2
1
2 +

1
2

∣∣log2
1
2

∣∣
−2 if x < log2

1
2 − 1

2

∣∣log2
1
2

∣∣ ,
i.e.

fLOGtoZ(x) =

⎧⎪⎪⎨⎪⎪⎩
2 if x > 2.16
0 if − 0.5< x ≤ 2.16

−1 if − 1.5< x ≤ −0.5
−2 if x <−1.5.

In fact, as example, in Figure 4.2, we can observe how poorly the above
function can partition the log2ratio values of 14 HIV lymphoma cell lines
in [10].



4.1 Model 1: relationship between LOH and copy number data 127

4.1.4 The estimation

To estimate the piecewise constant profile of the copy number events, first
we use the estimators for k0 and t0 of the last version of the mBPCR
method (see Chapter 3):

K̂01 = argmax
k∈K

p(k |Y , cn), (4.2)

T̂ BinErrAk = argmax
t′ ∈T

k̂,n

E

[
k̂−1

∑
q=1

k0−1

∑
p=1

δt′q,t0p

∣∣∣∣∣ Y , cn
]
. (4.3)

As we previously saw, T̂ BinErrAk corresponds to the k̂01 positions which
have the highest posterior probability to be a breakpoint. A difference with
respect to mBPCR consists in the level estimation. While in the copy num-
ber model the levels were continuous random variables, now they assume
categorical values. Hence, they are estimated separately (as before) with
the MAP estimator instead of the posterior expected value,

Ẑp = argmax
z=−2,−1,0,2

P(Zp = z |Y , t̂, k̂, cn), (4.4)

where t̂ and k̂ are any estimate of t0 and k0, respectively.
Let us define yi j = (yi+1, . . . , y j), representing the LOH data points in

the interval [i+ 1, j], and Ki j as the random variable which represents the
number of segments in the interval [i+ 1, j]. Using Bayes Theorem and
the independence of the LOH data points belonging to different segments,
the probability in Equation (4.4), given the LOH data y, can be written as,

P(Zp = z |y, t̂, k̂, cn)
= P(Zp = z |yt̂p−1 ,̂tp

, t̂p−1, t̂p, K̂t̂p−1 ,̂tp
= 1, cn)

=
P(yt̂p−1 ,̂tp

|Zp = z, t̂p−1, t̂p, K̂t̂p−1 ,̂tp
= 1)P(Zp = z | t̂p−1, t̂p, K̂t̂p−1 ,̂tp

= 1, cn)

P(yt̂p−1 ,̂tp
| t̂p−1, t̂p, K̂t̂p−1 ,̂tp

= 1, cn)
.(4.5)
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Therefore, if the boundary estimator misses a clear boundary between t̂p−1

and t̂p, then the probability at the denominator of Equation (4.5) could be
zero and thus the level would not be estimated. The only way to prevent
this event consists in using a good estimator for the boundaries.

Fig. 4.3 Example of esti-
mated posterior probabilities
to be a breakpoint. The graph
shows, for each probe, the es-
timated posterior probability
to be a breakpoint on a sample
of dataset B.

Previously, in Subsection 3.1.6, we found that the boundary estimator
T̂ BinErrAk is an estimator with a high sensitivity, but medium FDR. The
problem of this estimator is the following. The vector p of the posterior
probabilities to be a breakpoint at each point of the sample usually rep-
resents a multimodal function with maxima at the breakpoint positions,
but often in a neighborhood of each maximum there are other points with
high probability because of the uncertainty (see Figure 4.3). If we take the
first k0 points with the highest probability (according to the definition of
T̂ BinErrAk), we could take points in the neighborhood of the higher maxima
and not some maxima with a lower probability (see Figure 4.3). Thus, if
k0 was estimated with its exact value then the sensitivity of the T̂ BinErrAk

would be lower. In this case, we could lose important breakpoints so that
the denominator in Equation (4.5) would become zero. In practice, K̂01

often slightly overestimates k0, because of the high noise of the data, and
thus this phenomenon should not happen, but to prevent even this rare case
we searched for a way to improve the estimation of the boundaries.
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Since the vector of the posterior probabilities usually shows the posi-
tion of the breakpoints clearly in correspondence to the maxima, we es-
timate the number of the segments and the breakpoints with the number
of peaks and the locations of their maxima, respectively (see the next sub-
subsection). After applying a kernel method to reduce the noise of the
function, the algorithm for the determination of the peaks uses two thresh-
olds: for the determination of the peaks (thr1) and for the definition of the
values close to zero (thr2). We will denote the corresponding estimators
by K̂Peaks,thr1,thr2 and T̂ Peaks,thr1,thr2 .

In Subsection 4.6.1, we will consider several pairs of thresholds and we
will apply the corresponding estimators to simulated data, in order to de-
termine the best paired thresholds and to compare their performance with
T̂ BinErrAk. We will also compare T̂ BinErrAk with T̂ Joint , another boundary
estimator described in Subsection 3.1.4.

Algorithm to determine maxima of a multimodal function

We have just introduced the paired estimators (K̂Peaks,thr1,thr2 , T̂ Peaks,thr1,thr2)
for the number of segments and the breakpoints. They correspond to the
number and the locations of the peaks of the vector p of the posterior prob-
abilities to be a breakpoint at each SNP location. We derived an algorithm
for the determination of the maxima in a multimodal function to compute
them.

Let us assume that we have to determine the positions of the maxima
of a multimodal function f and we know its values at positions {1, . . ., n}
(called f = { f1, . . ., fn}). Moreover, the values f are affected by noise (in
fact, in our case f is the posterior probability to be a breakpoint at each
position, which depends on the estimates of parameters).

In this framework, we have derived an algorithm to determine the posi-
tions of the maxima of f :

1. Denoising of f . In order to denoise the function, we use a regression
method with kernel basis, obtaining f̂ .
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2. Selection of only one position per peak. We identify the positions
which belong to the same peak through a threshold thr1 (i.e. an interval
A corresponds to a peak if all elements of f̂ A are greater than thr1).
Then, among the positions belonging to the same peak, we select the
one with the highest value of f̂ . The vector of guess locations is called
q0.

3. Final selection of the peak locations. Lastly, we choose all locations
i ∈ q0 such that f̂i > thr2. The new vector of locations is denoted by q1.
The use of a second threshold is necessary, because the function f (i.e.
the estimated posterior probabilities, in our case) can have small peaks
also when it assumes values very close to zero (due to the noise).
Moreover, since we cannot estimate more than kmax breakpoints (be-
cause of the definition of the prior of K), if more than kmax peaks are
selected, then the algorithm chooses the ones corresponding to the kmax

highest values of the set { f̂i | i ∈ q1}.
The described algorithm depends on the value of the thresholds thr1

and thr2. In the simulations in Section 4.6, we will try several pairs of the
following types of thresholds:

• thr005 = max(0.005,quantile of p̂ at 0.95)
• thr01 = max(0.01,quantile of p̂ at 0.95)
• thr01 90 = max(0.01,quantile of p̂ at 0.90)
• thrmad = median(p̂)+ 3 ∗mad(p̂)

where mad is the median absolute deviation. All these thresholds derive
from different definitions of which probability values are to be considered
significant.

4.2 Model 2: addition of the IBD/UPD region detection

LOH data are used in biology not only to better identify regions of loss and
amplifications, but, especially, to detect regions of copy-neutral LOH, i.e.
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long genomic segments with both copies equal. These regions can be iden-
tified by unusual long stretches of homozygous SNPs, with normal copy
number. In the past, copy-neutral LOH regions were usually explained as
a consequence of an uniparental disomy event (UPD) (see [40]). Recently,
long homozygous segments have also been detected in genomes of nor-
mal individuals, supporting the hypothesis that some copy-neutral LOH
segments might represent autozygosity (see, for example, [9, 48, 43]). In
literature, it has been shown a relationship between some tumors and both
types of aberrant event (see, for example, [4, 5, 22]).

As explained in Subsection 1.1.4, the uniparental isodisomy (iUPD) oc-
curs when two copies of a part of a chromosome are two replicates of one
homologue of one parent, while the uniparental heterodisomy (hUPD) oc-
curs when both homologues are inherited from the same parent. In cancer
cells, iUPD can also occur when an homologue of a part of a chromosome
is lost and the remaining homologue is duplicated. Instead, the autozygos-
ity describes a situation where the homologues are identical by descendent
(IBD), because they are inherited from a common ancestor. Consequently,
the iUPD or IBD can be detected because they appear as a long sequence
of homozygous SNPs with a low probability to occur, while the hUPD
consists in a sequence of both homozygous and heterozygous SNPs as in
a normal condition. It follows that, without the genotypes of the parents,
from SNP data we can only detect the uniparental isodisomy or IBD seg-
ments. In the following, we will consider only these two events, referring
to them as IBD/UPD events.

Since an IBD/UPD event, by definition, only exists in regions of normal
copy number, the only probabilities which are affected by the presence of
this event are those involving {Z = 0}. Therefore, we define the follow-
ing sets of conditional probabilities {P(Yi = y |XN

i = x, Z̃i = 0, Ũi = 0),
y ∈ Y, x ∈ X} and {P(Yi = y | Z̃i = 0, Ũi = 1), y ∈ Y}, where the variable
Ũi indicates if an IBD/UPD event occurred at SNP i. We can notice that,
given {Ũi = 0, Z̃i = 0}, the distribution of Yi is equal to the conditional
distribution with respect to only {Z̃i = 0} in Model 1, since the latter was
modeled with no possibility of an IBD/UPD event. Instead, in case of an
IBD/UPD event, we do not need to condition with respect to XN

i , since,
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in case of a somatic iUPD event, the genotype of an iUPD region is inde-
pendent of the homozygosity or heterozygosity of same region in a normal
cell. Otherwise, in case of autozygosity or germ line iUPD, the genotypes
of normal and cancer cells are the same and it has no sense to condition
one to the other.

Fig. 4.4 Scheme of Model 2 and 3. The vector W̃ of aberration events represents the le-
sions derived from both IBD/UPD events (Ũ ) and copy number event (Z̃), at each SNP
position. The vector X of the homozygous status of all SNPs in cancer cells is com-
pletely determined, given the vector XN of their homozygous status in normal cells and
the vector W̃ of their corresponding aberration events. Using this relationship among X ,
XN and W̃ , we can estimate W̃ , given the observations Y cn and Y (respectively, the raw
log2ratio of the copy number and the homozygous status in cancer cells detected by the
microarray) and by specifying the prior distributions of Ũ and XN . The observations
Y cn are used to defined the prior distribution of Z̃ in the Bayesian model.

In the new framework, we define the vector of the aberration events at n
SNP loci with W̃=(W̃1, . . . , W̃n). Each component i of the vector assumes
values: -3 (Z̃i=0 and Ũi=1), -2 (Z̃i=-2), -1 (Z̃i=-1), 0 (Z̃i=0 and Ũi=0), 2
(Z̃i=2); a graphical representation of the model is given in Figure 4.4.
As previously, we can divide the genome in intervals corresponding to
the same aberration event, i.e the profile of the aberrations consists of k0

intervals, with boundaries 0 = t00 < t01 < .. . < t0k0−1 < t0k0 = n, so that
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W̃t0p−1+1 = . . .= W̃t0p
=:Wp, for all p= 1, . . ., k0. The estimation procedure

is similar to the one of Model 1. The estimators of k0 and t0 are the same
and, given k̂ and t̂ (any estimate of k0 and t0, respectively), we estimate
the aberration events in each interval with their MAP estimators,

Ŵp = argmax
w=−3,−2,−1,0,2

P(Wp = w |Y , t̂, k̂, cn). (4.6)

Notice that, forw=−2,−1,2, the posterior probability P(Wp =w |Y , t̂, k̂, cn)
is equal to P(Zp = w |Y , t̂, k̂, cn), while for w=−3, 0 we have,

P(Wp =−3 |Y , t̂, k̂, cn) = P(Zp = 0 |Up = 1, Y , t̂, k̂, cn)P(Up = 1)(4.7)

P(Wp = 0 |Y , t̂, k̂, cn) = P(Zp = 0 |Up = 0, Y , t̂, k̂, cn)P(Up = 0),(4.8)

and we assume that pupd := P(Up = 1), for any p = 1, . . . , k̂.

Remark 4.2. The addition of the IBD/UPD detection to the model is nec-
essary for the analysis of real data, in case of either a normal or a “cancer”
sample. As we explain before, the IBD regions can be present also in the
genome of normal sample, and both IBD and UPD regions can be poten-
tially related to the disease of a patient and thus present in his genome.
Therefore, in any sample we can expect to find IBD/UPD regions. With-
out considering the IBD/UPD aberration in the model, many regions with
this alteration would be seen as mono-allelic or bi-allelic deletion, due to
the high percentage of homozygous SNPs in them, leading to a poor esti-
mation of the aberration event profile of the patient.

4.3 Model 3: addition of the gained region detection

In the description of Model 1, we explained our assumption that there is no
difference in the genotyping detection between a normal or gained region.
Therefore, in Model 1 (and in Model 2), we defined a single class for
the normal or gained regions. But, for the biological studies, it is relevant
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to distinguish these two copy number events and this distinction is based
essentially on the estimated copy number (since there is no difference in
the distribution of the detected genotypes, due to the previous discussion).
As a consequence, the probability of Yi given a normal (i.e. {Z̃i = 0}) or
gained copy number (i.e. {Z̃i = 1} = {W̃i = 1}) is the same,

P(Yi = y |XN
i = x, Z̃i = 1) = P(Yi = y |XN

i = x, Z̃i = 0)

= P(Yi = y | Z̃i = 0, Ũi = 1)pupd

+ P(Yi = y |XN
i = x, Z̃i = 0, Ũi = 0)(1− pupd).

We need also to define two distinct prior probabilities for the normal copy
number and the gain event. Similarly to its previous definition in Subsec-
tion 4.1.3, for all p = 1, . . ., k̂cn, the new prior of Zp is simply given by,

P(Zp = 2) = P
(
Mp ≥ m̂4 + 3ŝ4

∣∣ cn)
P(Zp = 1) = P

(
m̂2 + 3ŝ2 < Mp ≤ m̂4+ 3ŝ4

∣∣ cn)
P(Zp = 0) = P

(
m̂2 − 3ŝ2 < Mp ≤ m̂2+ 3ŝ2

∣∣ cn)
P(Zp =−1) = P

(
m̂1 − 3ŝ1 < Mp ≤ m̂2 − 3ŝ2

∣∣ cn)
P(Zp =−2) = P

(
Mp ≤ m̂1 − 3ŝ1

∣∣ cn) .
In the following, Model 3 (which is the complete model) will be called

genomic Bayesian Piecewise Constant Regression (gBPCR).

4.4 Estimation of the parameters of the model

In the previous sections we have described the gBPCR model, which de-
pends on the specification of several parameters regarding both the likeli-
hood and the priors. Here, we described how we estimated these parame-
ters, by using mainly published datasets.
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4.4.1 Estimation of the parameters of the likelihood

The set of conditional probabilities {P(Yi = y |XN
i = x, W̃i = w), y ∈ Y,

x∈X, w=-2, -1, 0, 2} are considered as parameters of the model. To quan-
tify them, we needed paired normal-cancer samples, since they are related
to the probability of detecting a certain homozygous status in a cancer cell,
given the corresponding one in a normal cell of the same patient and under
some copy number event. Therefore, to compute maximum likelihood es-
timates of these parameters, we used some breast cancer cell line samples
of [42, 87], suitable for our purpose. The genotyping calling algorithm
used was BRLMM [1].

The following two probabilities are related to a normal copy number
event and they represent errors due to the detection of NoCall instead of
NHet and Het, respectively,

P(Yi = NoCall |XN
i = Hom, W̃i = 0) = δ1

P(Yi = NoCall |XN
i = Het, W̃i = 0) = δ2.

To estimate them, we used chromosome 1 of two replicates of the normal
cell line HCC38 BL. In this chromosome we did not find any SNP with
homozygous call in one sample and heterozygous call in the other one,
thus we assumed that the detected genotypes (different from NoCall) were
all correct. Instead, we found 27 NoCall SNPs in both samples, so that we
eliminated them from the analysis. The estimated parameters were:

δ̂1 =
#{ SNPs homozygous in one sample and NoCall in the other}

#{homozygous SNPs in at least one sample}
δ̂2 =

#{ SNPs heterozygous in one sample and NoCall in the other}
#{heterozygous SNPs in at least one sample}

Regarding the other probabilities related to a normal copy number P(Yi =
Het |XN

i = Hom, W̃i = 0) and P(Yi = NHet |XN
i = Het, W̃i = 0), we set

them as the genotyping detection error.
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{P(Yi = y |XN
i = x, W̃i = w), y ∈ Y, x ∈ X, w=-2, -1, 2} are related

to errors due also to the presence of a subpopulation of cells in the tumor
sample (normal cells or tumor cells in another stage of the disease). Hence,
to estimate them, we used the human breast carcinoma cell lines HCC1143
and HCC38, because we had samples containing 0, 60, 70, 80, 90, 100%
of tumor cells for each cell line [42, 87]. We defined some regions of
amplification, loss and homozygous deletion on the basis of the regions of
copy number changes indicated by [42, 87]. For each region, we looked
at the copy number value of the SNPs to better identify the start/end SNP
of the aberrant region, since, in [87, 42], they were only denoted by the
corresponding cytobands. Finally, the estimations of the probabilities were
performed using the maximum likelihood estimators averaging over all the
samples of the same cell line with some percentage of tumor cells, for w =
-2, -1, 2,

P̂(Yi =Het |XN
i = x, W̃i = w) =

1
5∑c nc

∑
c∈{HCC38,
HCC1143}

5

∑
h=1

nc

∑
j=1

(SNP2
j,c,h+SNPj,c,h)

P̂(Yi = NoCall |XN
i = x, W̃i = w) =

1
5∑c nc

∑
c∈{HCC38,
HCC1143}

5

∑
h=1

nc

∑
j=1

(SNP2
j,c,h −SNPj,c,h)

where nc is the total number of the SNPs in the regions with {XN
i = x,

W̃i = w} of cell line c, and SNPj,c,h is a value assign to jth SNP of sample
h of cell line c, based on its homozygous status Yj,c,h:

SNPj,c,h =

⎧⎨⎩
−1 if Yj,c,h = NoCall

0 if Yj,c,h = NHet
1 if Yj,c,h = Het.

It remains to estimate the following probabilities related to the IBD/UPD
events,

P(Yi = NHet |W̃i =−3) = δ3

P(Yi = NoCall |W̃i =−3) = δ4.

For their estimation, we used 11 IBD/UPD regions previously found by
us on 5 samples of patients with hairy cell leukemia [19] and on the B-
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cell lymphoma cell line KARPAS-422 (unpublished). All regions were
detected by dChip [8]. Their width is between 3Mb and 100Mb (cover-
ing from 300 to 9800 SNPs), so that they are large enough to be really
considered IBD/UPD regions.

We computed the estimators for δ3 and δ4 simply using the frequency
of NHet and NoCall in the selected IBD/UPD regions, respectively. We
found δ̂4 equal to the arithmetic mean of δ̂1 and δ̂2 (the errors of detecting
a NoCall in a normal region instead of NHet or Het, respectively), which
is a realistic result since we can have both homozygous and heterozygous
SNPs in a UPD region.

4.4.2 Estimation of the parameter pupd

We expect the prior probability of an IBD/UPD event to be low. In order
to estimate the order of magnitude of this parameter, we considered two
studies on IBD regions: [4] and [48]. In the former, they considered as
IBD regions only stretches of at least 50 homozygous SNPs (with at maxi-
mum 2% of heterozygous) longer than 4Mb and the platform used was the
Affymetrix GeneChip Human Mapping 50K Array. In the latter, a denser
microarray was used and the stretches considered were longer than 1Mb
(with at least 50 probes) or longer than 3Mb. Hence, using the data of the
former paper (only the normal samples), we estimated pupd ≈ 1.7 · 10−3.
Instead, with the data of the latter, we estimated pupd ≈ 1.5 ·10−3, consid-
ering all regions greater than 1Mb, while pupd ≈ 1.46 · 10−4, considering
only the regions greater than 3Mb. The differences in the estimated val-
ues are due to the different resolution of the technologies used (in fact,
in the former the number of SNPs used was 58,960, while in the latter
was 3,107,620). Moreover, the probability depends also on the minimum
length allowed for these regions. The wider the regions are, the higher is
the probability that the regions represent “abnormalities” and the lower
becomes the probability of their occurrence (so that pupd is lower). There-
fore, in the following applications in Sections 4.6 and 4.7, we will use two
values: pupd = 10−3 and pupd = 10−4.
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Another possible way to solve the problem could be to assign a prior
probability to pupd (for example, we could know its range and use a uni-
form distribution in this range) and integrate it out in the equations of the
model. In this way, the equations would depend only on the expected value
of pupd .

4.5 Adjustment of the parameters related to NoCall

The probabilities {P(Yi =NoCall |XN
i = x, W̃i =w), x ∈X, w−3,−2,−1,

0,2} are related to the detection of NoCalls under some conditions. Gen-
erally, the presence of NoCalls is not only due to difficulties of the mi-
croarray in the detection of the genotype (technical noise), but also to the
noise of the sample because of the differences in quality of extracted DNA.
Therefore, we need to adjust the estimated values of these parameters on
the basis of the sample noise.

Since usually the NoCall rate (i.e. percentage of NoCalls in the sample)
increases with the noise of the sample, we assume that, given {XN

i = x,
W̃i = z}, the probability of detecting a NoCall at SNP i in sample s is
proportional to a parameter px,z (which depends on the technical noise) by
a factor θs (which depends on the sample noise),

P(Yi = NoCall |XN
i = x, W̃i = z, s)≈ px,zθs. (4.9)

By conditioning over the values of XN
i and estimating P(XN

i = Het) = 1/2
for a generic SNP i, we compute the NoCall rate in regions with copy
number event z,

P(Yi = NoCall |W̃i = z, s) (4.10)

= P(Yi = NoCall |XN
i = Hom,W̃i = z, s)P(XN

i = Hom)

+ P(Yi = NoCall |XN
i = Het,W̃i = z, s)P(XN

i = Het) (4.11)

≈ pHet,zθsP(XN
i = Het)+ pHom,zθsP(XN

i = Hom)
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≈ θs
pHet,z + pHom,z

2
. (4.12)

Therefore, for any pair of samples (sample 1 and 2), we can write the con-
ditional probability of NoCall, given {XN

i = x, W̃i = z}, in sample 1 in
terms of the corresponding probability in sample 2,

P(Yi = NoCall |XN
i = x,W̃i = z, s = 1)

≈ P(Yi = NoCall |XN
i = x,W̃i = z, s = 2)

P(Yi = NoCall |W̃i = z, s = 1)

P(Yi = NoCall |W̃i = z, s = 2)
(4.13)

because, applying Equations (4.9) and (4.12),

P(Yi = NoCall |XN
i = x, W̃i = z,s = 1) ≈ θ1

1
2 (pHet,z + pHom,z)

θ2
1
2 (pHet,z + pHom,z)

px,zθ2

= px,zθ1.

In the following, we will denote the sample to estimate with s= 1 and the
reference sample with s = 2.

By using Equation (4.13), the values of the parameters related to
NoCall detection are adjusted for sample 1,

P̂(Yi = NoCall |XN
i = x,W̃i = z, s = 1) =

r1(z)
r2(z)

P̂(Yi = NoCall |XN
i = x,W̃i = z, s = 2),

for z=-2,-1,0,2, where r1(z) and r2(z) are an estimate of the NoCall rate,
in regions with copy number event z, for sample 1 and 2, respectively. By
applying Equation (4.11) with P(XN

i =Het) = 1/2, r2(z) can be computed
from the estimated values of P(Yi =NoCall |XN

i =Het,W̃i = z) and P(Yi =

NoCall |XN
i = Hom,W̃i = z),

r2(z) := P̂(Yi = NoCall |W̃i = z, s= 2)

=
1
2
P̂(Yi = NoCall |XN

i = Het,W̃i = z,s = 2)

+
1
2
P̂(Yi = NoCall |XN

i = Hom,W̃i = z,s = 2),
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for z = −2,−1,0,2. Instead, r1(z) is the frequency of NoCall in regions
with copy number event z of sample 1, for z =−2,−1,0,2.

The estimated value of the probability P(Yi = NoCall |W̃i =−3) is ad-
justed in a different way. As expected, on the reference samples we found
that

P̂(Yi = NoCall |W̃i =−3, s) =
1
2
P̂(Yi = NoCall |XN

i = Het, W̃i = z, s)

+
1
2
P̂(Yi = NoCall |XN

i = Hom, W̃i = z, s)

≈ P̂(Yi = NoCall |W̃i = 0, s),

that is the NoCall rate in IBD/UPD regions is approximately equal to the
NoCall rate in normal regions. Therefore,

P̂(Yi = NoCall |W̃i =−3, s= 1) = r1(0).

In Subsection 4.6.2, we will compare the estimations resulting from
gBPCR with and without the adjustment of these parameters.

4.6 Simulations

In this section, we apply gBPCR to artificial data. First, we compare the
boundary estimators (described in Subsection 4.1.4) on data simulated us-
ing Model 1. Then, we evaluate the detection of IBD/UPD regions on the
artificial dataset of [85], in comparison with two well-known methods for
LOH estimation. Using the same data, we also show the difference in the
estimation by using the adjustment of the parameters.
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4.6.1 Comparison among the breakpoint estimators on
simulated data

In Subsection 4.1.4, we have described several possible boundary estima-
tors: T̂ BinErrAk, T̂ Joint and T̂ Peaks,thr1,thr2 . The last one actually defines a
class of estimators which depend on the values of the thresholds thr1 and
thr2. In the comparisons, we tried several pairs of the thresholds defined
in Subsection 4.1.4.

We assessed the quality of all the estimators of k0 and t0 considered,
by applying them on two artificial datasets (called datasets A and B), each
of 100 samples. We used as prior probabilities of heterozygosity the ones
given by the annotation file of Affymetrix for the SNPs of chromosome 22
in the Affymetrix GeneChip Mapping 250K NspI microarray (Affymetrix,
Santa Clara, CA, USA), hence the number of data points in each sample is
n= 2520. Since our complete model (Model 3) does not provide a realistic
way to simulate IBD/UPD regions and the identification of gained regions
depends mainly on copy number data, the samples were generated using
Model 1.

Simulation description

Since the method assumes to know the estimated copy number profile
given by mBPCR, for both datasets we fixed the estimated segment num-
ber k̂cn = 15, the estimated boundaries t̂ cn = (0, 27, 31, 161, 273, 585,
633, 1006, 1050, 1054, 1309, 1607, 1754, 2100, 2432, 2520) (generated
uniformly random given k̂cn = 15) and the prior probabilities of Z (in Ta-
ble 4.1, for dataset A, and Table 4.2, for dataset B). The profiles of the
samples in dataset A should be estimated easily, since in each segment the
prior distribution of Z is more peaked with respect to dataset B.

Given the previous parameters and the estimated values of the other
parameters of the model, we used the following steps to generate each
LOH sample:
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Table 4.1 Prior distribution of Z in the simulated dataset A.

segment
prior I II III IV V VI VII VIII IX X XI XII XIII XIV XV

P(Zp = 2) 0 0 0 0 0.8 0 0 0 0 0.8 0 0 0.8 0 0
P(Zp = 0) 0.1 0.8 0.1 0.8 0.2 0.8 0.1 0 0.8 0.2 0.1 0.8 0.2 0.8 0.1

P(Zp =−1) 0.8 0.2 0.8 0.2 0 0.2 0.8 0.2 0.2 0 0.8 0.2 0 0.2 0.8
P(Zp =−2) 0.1 0 0.1 0 0 0 0.1 0.8 0 0 0.1 0 0 0 0.1

Table 4.2 Prior distribution of Z in the simulated dataset B.

segment
prior I II III IV V VI VII VIII IX X XI XII XIII XIV XV

P(Zp = 2) 0 0.1 0 0.1 0.5 0.1 0 0 0.1 0.5 0 0.1 0.5 0.1 0
P(Zp = 0) 0.1 0.6 0.1 0.6 0.4 0.6 0.1 0.1 0.6 0.4 0.1 0.6 0.4 0.6 0.1

P(Zp =−1) 0.6 0.3 0.6 0.3 0.1 0.3 0.6 0.4 0.3 0.1 0.6 0.3 0.1 0.3 0.6
P(Zp =−2) 0.3 0 0.3 0 0 0 0.3 0.5 0 0 0.3 0 0 0 0.3

1. we generated a true profile of the homozygous status XN , by using the
prior probabilities of heterozygosity, described previously,

2. we generated a true copy number event profile Z̃, by using the prior
distribution of Z (notice that in some cases the final profile can have
less than 15 segments, since if consecutive segments have the same
copy number event they are joined together),

3. given the true copy number event profile and the profile of the homozy-
gous status, we generated Y (the profile of the homozygous status in
cancer cells detected by the microarray), by using the conditional prob-
ability distributions of Model 1.

Description of the error measures

To evaluate the performance of the estimators, we used several error mea-
sures, that we have already employed for the comparisons in Chapter 3.
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For the estimation of the number of segments, we considered the follow-
ing errors:

0-1 error = 1− δk̂,k0

absolute error = |k̂− k0|
squared error = (k̂− k0)

2.

For the evaluation of the boundary estimation, we computed the binary
error, i.e.

k0 − 1−
k̂−1

∑
q=1

k0−1

∑
p=1

δt̂q,t0p
,

the sensitivity (proportion of true breakpoints detected) and the false dis-
covery rate (FDR, i.e. proportion of false estimated breakpoints among the
estimated ones). The last two measures were calculated not only looking
at the exact position of the breakpoints (w = 0), but also accounting for
a neighborhood of up to 6 SNPs around the true position (w = 1, . . ., 6).
Finally, to asses the influence of the boundary estimation on the profile es-
timation, we calculated the sum 0-1 error and the sum of squared distance
(SSQ), which are defined as

sum 0-1 error =
n

∑
i=1

(
1− δ̂̃Zi,Z̃0

i

)
SSQ =

n

∑
i=1

(̂̃Zi − Z̃0
i )

2.

We also measured the sensitivity and the FDR for all copy number events.
To compare the estimators, we considered not only the error measures

computed on their estimates but also on their “final” estimates (denoted by
“final” or F). In fact, since the levels are categorical variables and they are
estimated separately (see Equation (4.4)), if the estimated levels of con-
tiguous segments are the same, then they are joined together (“merging”
step). Therefore, after the “merging”, the number of the segments can be
lower than the estimated one.
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Table 4.3 Binary error of the boundary estimations obtained with several boundary
estimators on datasets A and B. On the former dataset (K̂01, T̂ BinErrAk) outperforms
all other methods, while on the latter (K̂Peaks,01,mad , T̂ Peaks,01,mad), (K̂01, T̂ BinErrAk),
(K̂Peaks,01,01 , T̂ Peaks,01,01) and (K̂Peaks,005,005, T̂ Peaks,005,005) give the lower binary errors.

dataset method type binary error

estimated 4.19
(K̂01, T̂ BinErrAk) final 4.43

estimated 7.23
A (K̂01, T̂ Joint) final 7.23

estimated 6.09
(K̂Peaks,005,005 , T̂ Peaks,005,005) final 6.16

estimated 6.53
(K̂01, T̂ BinErrAk) final 7.37

estimated 6.97
(K̂Peaks,005,005 , T̂ Peaks,005,005) final 7.33

estimated 6.97
(K̂Peaks,01,01 , T̂ Peaks,01,01) final 7.33

estimated 7.21
B (K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) final 7.46

estimated 7.40
(K̂Peaks,mad,mad , T̂ Peaks,mad,mad) final 7.51

estimated 6.59
(K̂Peaks,01,mad , T̂ Peaks,01,mad) final 7.00

estimated 7.53
(K̂Peaks,mad,01, T̂ Peaks,mad,01) final 7.64

Results of the comparisons

We applied the following pairs of estimators to dataset A: (K̂01, T̂ BinErrAk),
(K̂01, T̂ Joint) and (K̂Peaks,005,005, T̂ Peaks,005,005). We found that (K̂01, T̂ BinErrAk)

and (K̂Peaks,005,005, T̂ Peaks,005,005) were the best performing methods. In
particular, the former had the lowest binary error, regarding both the esti-
mated boundaries and the “final” ones (see Table 4.3) and the lowest “fi-
nal” FDR (see Figure 4.5), while the errors regarding the “final” estimation
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of the number of segments were similar (see Table 4.4). As a consequence,
regarding the level estimation, (K̂01, T̂ BinErrAk) had the lowest errors (see
Table 4.5) and almost always the highest sensitivity and lowest FDR (see
Tables 4.6 and 4.7).

Table 4.4 Error measures regarding the estimation of the number of segments on
both datasets A and B. The estimations were obtained using several types of es-
timators. On the former dataset (K̂01, T̂ BinErrAk) and (K̂Peaks,005,005 , T̂ Peaks,005,005)
perform equally good, on the latter the best performing methods are
(K̂Peaks,mad,01, T̂ Peaks,mad,01) and (K̂01, T̂ BinErrAk), followed by (K̂Peaks,01,01 , T̂ Peaks,01,01)

and (K̂Peaks,005,005 , T̂ Peaks,005,005).

dataset method type err 0-1 err 1 err 2 #(k̂ > k0)

estimated 1 15.74 256.2 100
(K̂01, T̂ BinErrAk) final 0.85 1.73 4.35 20

estimated 1 15.74 256.2 100
A (K̂01, T̂ Joint) final 1 15.69 254.51 100

estimated 0.99 7.43 65.55 99
(K̂Peaks,005,005, T̂ Peaks,005,005) final 0.84 2.33 9.55 65

estimated 0.98 6.61 57.29 96
(K̂01, T̂ BinErrAk) final 0.89 2.46 9.22 16

estimated 1 12.72 177.22 100
(K̂Peaks,005,005, T̂ Peaks,005,005) final 0.92 3.75 20.31 82

estimated 1 12.62 175.98 100
(K̂Peaks,01,01, T̂ Peaks,01,01) final 0.92 3.74 20.28 81

estimated 1 15.12 246.38 100
B (K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) final 0.98 5.75 40.61 94

estimated 1 17.08 300.16 100
(K̂Peaks,mad,mad , T̂ Peaks,mad,mad) final 0.99 7.03 58.09 99

estimated 1 12.62 175.98 100
(K̂Peaks,01,mad , T̂ Peaks,01,mad) final 0.98 5.47 38.25 91

estimated 0.9 2.98 14.3 75
(K̂Peaks,mad,01, T̂ Peaks,mad,01) final 0.83 1.73 4.95 40

From these results, we decided to not apply the estimators (K̂01, T̂ Joint)
on dataset B and we also decided to try other paired thresholds for
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Table 4.5 The table shows some error measures regarding the copy number
event estimation obtained with several methods on datasets A and B. While
(K̂01, T̂ BinErrAk) outperforms the other methos on the former dataset, on the lat-
ter it obtains a poor estimation of the copy number events in comparison with
the other methods. On dataset B, the methods which achieve the lowest errors are:
(K̂Peaks,01,01 , T̂ Peaks,01,01), (K̂Peaks,005,005, T̂ Peaks,005,005), (K̂Peaks,01,mad , T̂ Peaks,01,mad)

and (K̂Peaks,mad,01, T̂ Peaks,mad,01).

dataset method sum 0-1 err SSQ
√

SSQ/n

(K̂01, T̂ BinErrAk) 51.53 86.08 0.19
A (K̂01, T̂ Joint) 146.91 596.78 0.49

(K̂Peaks,005,005 , T̂ Peaks,005,005) 91.99 345.64 0.37
(K̂01, T̂ BinErrAk) 421.79 1226.59 0.70

(K̂Peaks,005,005 , T̂ Peaks,005,005) 110.39 287.21 0.34
(K̂Peaks,01,01 , T̂ Peaks,01,01) 109.39 286.15 0.34

B (K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) 141.65 370.78 0.38
(K̂Peaks,mad,mad , T̂ Peaks,mad,mad) 154.56 424.2 0.41
(K̂Peaks,01,mad , T̂ Peaks,01,mad) 109.39 286.15 0.34
(K̂Peaks,mad,01, T̂ Peaks,mad,01) 111.75 283.77 0.34

T̂ Peaks,thr1,thr2 , in order to reduce the FDR of the boundary estimation.
The results showed that the methods which obtained a better estimation of
the number of segments were, in order: (K̂Peaks,mad,01, T̂ Peaks,mad,01), (K̂01,
T̂ BinErrAk), (K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,005,005, T̂ Peaks,005,005); see
Table 4.4. Instead, regarding the boundary estimation, the methods with
the lowest binary error were: (K̂01, T̂ BinErrAk), (K̂Peaks,01,mad , T̂ Peaks,01,mad),
(K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,005,005, T̂ Peaks,005,005); see Table 4.3.

In general, the methods (K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,005,005,
T̂ Peaks,005,005) always obtained similar results and the latter perform slightly
worse than the former (e.g. in the estimation of k0). Moreover, the meth-
ods (K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) and (K̂Peaks,mad,mad , T̂ Peaks,mad,mad)

had always all the error measures higher than (K̂Peaks,01,01, T̂ Peaks,01,01).
Therefore, the pair of estimators (K̂Peaks,005,005, T̂ Peaks,005,005),
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Fig. 4.5 Sensitivity (on the top) and FDR (at the bottom) of all boundary estimators
applied to dataset A. The estimator T̂ BinErrAk achieves the lowest “final” FDR and T̂ Joint

has the highest FDR. For w = 6, the sensitivity of all estimators look similar.

(K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) and (K̂Peaks,mad,mad , T̂ Peaks,mad,mad)will
not be considered in the following discussions.

The lowest errors in the estimation of the number of the segments
were achieved by (K̂Peaks,mad,01, T̂ Peaks,mad,01); see Table 4.4. Moreover,
using this procedure, k0 was underestimated in about half of the cases and
thus also the FDR regarding the boundary estimation was the lowest one
(see Figure 4.6). As a consequence, all the error measures regarding the
level estimation were among the best ones (see Table 4.5, and Tables 4.6
and 4.7). Instead, using (K̂Peaks,01,mad , T̂ Peaks,01,mad), the number of seg-
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Table 4.6 Sensitivity in the detection of each type of copy num-
ber event on datasets A and B. On dataset A, (K̂01, T̂ BinErrAk) and
(K̂Peaks,005,005 , T̂ Peaks,005,005) seem to have globally the highest sensitivity, while,
on the latter dataset, (K̂Peaks,005,005 , T̂ Peaks,005,005), (K̂Peaks,01,01 , T̂ Peaks,01,01) and
(K̂Peaks,01,mad , T̂ Peaks,01,mad) outperform all other methods.

sensitivity
dataset method Z = 2 Z = 0 Z =−1 Z =−2

(K̂01, T̂ BinErrAk) 0.803 0.987 0.984 0.995
A (K̂01, T̂ Joint) 0.912 0.977 0.926 0.931

(K̂Peaks,005,005 , T̂ Peaks,005,005) 0.849 0.985 0.963 0.961
(K̂01, T̂ BinErrAk) 0.681 0.932 0.968 0.555

(K̂Peaks,005,005 , T̂ Peaks,005,005) 0.894 0.983 0.961 0.946
(K̂Peaks,01,01, T̂ Peaks,01,01) 0.896 0.983 0.961 0.946

B (K̂Peaks,01 90,01 90, T̂ Peaks,01 90,01 90) 0.884 0.981 0.940 0.930
(K̂Peaks,mad,mad , T̂ Peaks,mad,mad) 0.893 0.979 0.928 0.923
(K̂Peaks,01,mad , T̂ Peaks,01,mad) 0.896 0.983 0.961 0.946
(K̂Peaks,mad,01, T̂ Peaks,mad,01) 0.889 0.984 0.963 0.942

ments was almost always overestimated (see Table 4.4) and thus the al-
gorithm detected the highest number of true breakpoints (in fact, it had
the highest sensitivity, in Figure 4.7, and a low binary error, in Table 4.3).
But due to the higher number of segments, the algorithm found also a
higher number of false breakpoints than (K̂Peaks,mad,01, T̂ Peaks,mad,01) (see
Figure 4.6).

From the study of the behavior of (K̂Peaks,mad,01, T̂ Peaks,mad,01) and
(K̂Peaks,01,mad , T̂ Peaks,01,mad), we can understand the role of the two thresh-
olds in our algorithm for the determination of the maxima in a multi-
modal function (see Subsection 4.1.4). The threshold thr1 is used to de-
cide which points belong to the same peak: all the points, between two
regions of points below thr1, are considered in the same peak. Hence, with
a low threshold, more points are considered belonging to the same peak
and thus we can eliminate lot of false breakpoints (like in (K̂Peaks,mad,01,
T̂ Peaks,mad,01)). But, at the same time, if two true peaks are close, then it is
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Table 4.7 FDR in the detection of each type of copy number event on datasets A
and B. On dataset A, (K̂01, T̂ BinErrAk) and (K̂Peaks,005,005 , T̂ Peaks,005,005) seem to have
globally the lowest FDR, while, on the latter dataset, (K̂Peaks,005,005 , T̂ Peaks,005,005),
(K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,01,mad , T̂ Peaks,01,mad) outperform all other meth-
ods.

FDR
dataset method Z = 2 Z = 0 Z =−1 Z =−2

(K̂01, T̂ BinErrAk) 0.039 0.020 0.036 0.000
A (K̂01, T̂ Joint) 0.232 0.110 0.027 0.002

(K̂Peaks,005,005, T̂ Peaks,005,005) 0.141 0.064 0.029 0.001
(K̂01, T̂ BinErrAk) 0.017 0.047 0.306 0.025

(K̂Peaks,005,005, T̂ Peaks,005,005) 0.044 0.031 0.069 0.020
(K̂Peaks,01,01, T̂ Peaks,01,01) 0.043 0.031 0.068 0.020

B (K̂Peaks,01 90, T̂ Peaks,01 90) 0.085 0.036 0.081 0.028
(K̂Peaks,mad,mad , T̂ Peaks,mad,mad) 0.106 0.041 0.079 0.034
(K̂Peaks,01,mad , T̂ Peaks,01,mad) 0.043 0.031 0.068 0.020
(K̂Peaks,mad,01, T̂ Peaks,mad,01) 0.038 0.026 0.075 0.023

possible that they are considered as only one peak, losing a true breakpoint
(low sensitivity). Instead, the threshold thr2 is used to choose which esti-
mated breakpoints are significant for the regression, i.e. if their posterior
probabilities are to be considered different from zero. Therefore, using a
lower value of thr2, we select a higher number of breakpoints obtaining
a higher percentage of both false ones (high FDR) and true ones (high
sensitivity, as in (K̂Peaks,01,mad , T̂ Peaks,01,mad)).

In conclusion, from these results we suggest the use of the following
pairs of estimators: (K̂Peaks,01,01, T̂ Peaks,01,01), (K̂Peaks,01,mad , T̂ Peaks,01,mad)

or (K̂Peaks,mad,01, T̂ Peaks,mad,01).
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Fig. 4.6 FDR of all boundary estimators applied to dataset B computed on both
the original estimates (on the top) and the final ones (at the bottom). The estimator
T̂ Peaks,mad,01 has the lowest FDR. Instead, T̂ BinErrAk achieves the lowest final FDR, fol-
lowed by T̂ Peaks,mad,01.

4.6.2 Comparisons on simulated data with LOH regions

In order to evaluate the IBD/UPD detection of gBPCR, we applied it to
simulated data of [85]. These data are based on three real samples of the
HapMap dataset [47], obtained with the Affymetrix GeneChip Mapping
250K NspI. For each sample and signal to noise ratio (SNR) value, they
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Fig. 4.7 Sensitivity of all boundary estimators applied to dataset B computed on both
the original estimates (on the top) and the final ones (at the bottom). The estimator
T̂ Peaks,01,mad has the highest sensitivity (and also the highest final one).

simulated two profiles: one with regions of copy-neutral LOH and one
with regions of loss. In both cases the number of regions was 50 and
their width ranged from 20 SNPs to a whole chromosome. The values
of SNR considered were: 5, 2 and 1.25. The simulated samples were in
.CEL file format, thus we used BRLMM [1] to extract the genotyping data
and CNAT 4.01 [2] for the raw copy number data.
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Similar to [85], we compared the estimation of gBPCR with the ones
given by two well-knownmethods in the field: dChip [8] and CNAT 4.01 [2],
that we have both described in Section 2.3. The evaluation has been done
computing the true positive rate (TPR) and the false positive rate (FPR),
i.e. the proportion of SNPs inside the LOH regions that are correctly iden-
tified (as belonging to a LOH region) and the proportion of SNPs out-
side these segments that are wrongly identified (as belonging to them),
respectively. We also calculated the average 0-1 error over the SNPs
(the 0-1 error is zero, if the SNP is correctly classified, and one, other-
wise). We used (K̂Peaks,01,01, T̂ Peaks,01,01), (K̂Peaks,01,mad , T̂ Peaks,01,mad) or
(K̂Peaks,mad,01, T̂ Peaks,mad,01) as paired estimators of the number of seg-
ments and the boundaries, and either pupd = 10−3 or pupd = 10−4 as the
prior probability of IBD/UPD.

Since CNAT does not consider theNoCall SNPs (called non-informative
SNPs) for the estimation of the LOH profile, first we compare the TPR and
FPR computed using only the informative SNPs.

Fig. 4.8 TPR and FPR (com-
puted only on informative
SNP) of all methods applied
to the samples, with regions
of copy-neutral LOH, of the
dataset in [85]. The FPR is al-
most always below 0.2, for all
methods. All methods, apart
from dChip, always have a
TPR close to 1. The three
points per SNR correspond to
the three samples used.

Regarding the IBD/UPD detection (see Figure 4.8), all methods main-
tained a similar and low FPR (usually below 0.2), for all samples and all
SNRs. The TPR of CNAT and all versions of gBPCR was always closed
to one, while dChip achieved a lower TPR (about 0.9) in the samples with



4.6 Simulations 153

SNR = 1.25. The average 0-1 error (over the informative SNPs) of all
methods was similar (see Figure 4.10).

Fig. 4.9 TPR and FPR (com-
puted only on informative
SNP) of all methods applied
to the samples, with regions
of loss, of the dataset in [85].
The FPR is almost always
below 0.2, for all methods.
The TPR of dChip and CNAT
decreases as the noise in-
creases. Instead, all versions
of gBPCR always maintain
a TPR close to 1. The three
points per SNR correspond to
the three samples used.

Fig. 4.10 Average 0-1 error (computed on both informative and non-informative SNPs)
of all methods applied to the samples of the dataset in [85]. All methods have a similar
error in the samples with regions of copy-neutral LOH. In the samples with regions of
loss, the error of gBPCR is always small and, when SNR=1.25, the errors of CNAT and
dChip are more than twice the one of gBPCR.
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In the estimation of losses (see Figure 4.9), we observed that, again,
the FPR was always below or close to 0.2. In case of dChip and CNAT,
we saw that the FPR decreased as the noise increased, while the opposite
occurred for the versions of gBPCR. It is natural to observe an increasing
of the FPR with the noise, because the higher the noise, the more difficult
it is to perform the estimation. Therefore, the unnatural behavior of the
FPR of dChip and CNAT is related to the fact that they lose in “power of
detection” in presence of high noise. In fact, also their TPR decreased as
the noise increased and dChip even achieved a TPR close to zero in the
samples with SNR = 1.25. Only gBPCR maintained a TPR always close
to one. We also observe that the average 0-1 error (over the informative
SNPs) of CNAT was at least twice the one of gBPCR in the samples with
SNR = 1.25 (see Figure 4.10).

Fig. 4.11 TPR and FPR (computed only on non-informative SNP) of all methods ap-
plied to the samples of the dataset in [85]. All versions of gBPCR have a higher TPR
than dChip in samples with high noise (especially in the samples with regions of loss),
while the FPR of dChip is usually lower than gBPCR. Among the versions of gBPCR,
(K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,01,mad , T̂ Peaks,01,mad) with pupd = 10−4 more often
achieve a lower FDR than the others. The three points per SNR correspond to the three
samples used.

Using only the non-informative SNPs, we obtained that the TPRs, re-
garding the estimation of both the copy-neutral LOH and the loss, were
similar to the ones previously described, for both dChip and all versions of
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gBPCR (see Figures 4.11). The FPR of dChip never exceeded 0.06 and the
one of gBPCR was usually lower than 0.2. Moreover, among the versions
of gBPCR, (K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,01,mad , T̂ Peaks,01,mad) with
pupd = 10−4 more often achieved a lower FDR than the others.

Globally, all versions of gBPCR behaved similarly on these data and
they outperformed CNAT and dChip. We also observed that dChip failed
to give a good estimation in presence of high noise. Due to the results
obtained on the non-informative SNPs, we suggest to use (K̂Peaks,01,01,
T̂ Peaks,01,01) or (K̂Peaks,01,mad , T̂ Peaks,01,mad) with pupd = 10−4.

Finally, on these data we observed the effect of the adjustment of the
model parameters related to the NoCall detection (see Section 4.5). At low
or medium noise, we could not see any significant differences in the good-
ness of the estimation (see, for example, Figure 4.12). Instead, in presence
of high noise, the FPR regarding the IBD/UPD detection without the ad-
justment of the model parameters was close to one. In fact, in this situation
a segment with normal copy number is more often classified as IBD/UPD,
since the NoCall rate is higher and, without the correction, the IBD/UPD
segments are allowed to contain a higher percentage of NoCalls with re-
spect to the normal ones. Instead, with the adjustment, we allow all types
of regions to have a higher number of NoCalls in proportion to the noise,
obtaining a less biased estimation.

4.7 Application to real data

In this section, we show the behavior of gBPCR on real data. We will
use (K̂Peaks,01, T̂ Peaks,01), (K̂Peaks,01,mad , T̂ Peaks,01,mad) or (K̂Peaks,mad,01,
T̂ Peaks,mad,01) as paired estimators of the number of segments and the
boundaries, and either pupd = 10−3 or pupd = 10−4 as prior probability
of IBD/UPD.

One of the two datasets we used consisted of paired samples of patients
affected by chronic lymphocytic leukemia (CLL), which then progressed
in diffuse large B-cell lymphoma (DLBCL), see [70, 71]. For two patients
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Fig. 4.12 TPR and FPR (computed only on informative SNP) of the versions of
gBPCR, which use (K̂Peaks,01,01, T̂ Peaks,01,01), pupd = 10−4 and with or without the ad-
justment of the parameters, applied to the samples of the dataset in [85]. In case of
high noise, the version without the correction has a FPR close to 1, in the detection of
copy-neutral LOH regions. The three points per SNR correspond to the three samples
used.

we had also a third sample. In general, samples coming from the same
patient should present the same copy-neutral LOH regions (the germ line
ones) for the majority of the genome. Hence, we used them to evaluate
the IBD/UPD detection of our method. The second dataset consisted of 18
patients affected by CLL, see [20].

In [20, 70, 71], the copy number of some genomic regions was also
measured with FISH. Therefore, on these regions we compared the copy
number event estimation of our procedure.

Results regarding the copy number event identification

We recall that a sample of a patient can contain also normal cells and/or
other subpopulations of tumor cells in a subsequent stage of the disease.
Therefore, some aberrations may be present in just a small percentage of
the cells. In fact, we can see in Figure 4.13 that the log2ratio values corre-
sponding to normal, gain, loss regions are sufficiently well separated only
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when the copy number changes are borne in at least 60% of the cells in
the sample. As a consequence, we aim to detect the copy number changes
borne in at least the 60% of the cells, otherwise we cannot ensure that the
identified aberrations are true and not due to the noise of microarray data
(the noise is so high that aberrations borne in only a small percentage of
cells can be seen as noise and viceversa). To detect aberrations in even less
cell content, it is sufficient to change the prior of Z with thresholds closer
to zero. In practice, the prior of Z influences stronger the discovery of the
gains than the one of the other copy number events, because the determi-
nation of gains depends mainly on the estimated log2ratio values (instead
of the LOH data).

Fig. 4.13 Example of CN
event classification. The plot
shows the estimated log2ratio
values (given by mBPCR),
as function of the estimated
percentage of cells bearing the
aberration (given by FISH).
The CN changes are classified
as loss, gain or normal, using
the results given by the FISH.
For the normal regions, we
set the percentage as 100%.
We can observe that only the
aberrations borne in at least
60% of the cells are clearly
separated. For the graph, we
used the data of the patients
in [70, 71].

In the samples considered for the comparison, we had a total of 169
regions measured by FISH (which provides also an estimate of the per-
centage of cells bearing the aberration): 38 regions were gains or losses
in at least 60% of the cells (called detectable aberrations), 33 were gains
or losses in less than 60% and 98 were identified as normal segments. Re-
garding the detectable aberrations, only two copy number events were not
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identified by all versions of the method. One loss was not found, because
the estimated log2ratio was very close to zero, and the other, because of a
different percentage of Het SNPs from what expected by the algorithm.

All versions found 11 of the 33 less detectable copy number changes
and other 2 were discovered by (K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,01,mad ,
T̂ Peaks,01,mad) (with both values of pupd). In two of the 98 normal segments,
all our estimators discovered an aberration, but one of these copy number
changes was equal to the one discovered in the same region of the paired
sample, thus it was likely to be true.

Instead, by simply using the thresholds of the prior of Z for the classi-
fication of the copy number events (similarly to what is usually done), we
detected one alteration less than what found by (K̂Peaks,01,01, T̂ Peaks,01,01)

and (K̂Peaks,01,mad , T̂ Peaks,01,mad), and other 5 normal regions were seen as
aberrations.

For the analysis of the results, we have to consider that the samples
used for FISH came from peripheral blood, for the CLL samples, and from
paraffin embedded tissues or lymph node, for the DLBCLs. Because of the
consequently different cell content, in the former case, the results are better
estimated. Moreover, the samples used for microarray and FISH might
not be exactly the same, hence the percentage of cells which carry the
aberrations can be different and a discordance between the two techniques
is possible.

In conclusion, all the versions behaved similarly and equally good in es-
timating the copy number changes on these samples. The best performing
estimators were (K̂Peaks,01,01, T̂ Peaks,01,01) and (K̂Peaks,01,mad , T̂ Peaks,01,mad)
(with both values of pupd).

Results regarding IBD/UPD region detection

For the evaluation of the IBD/UPD region detection, we considered the
two patients with three samples. For the first patient (called Patient 1), we
had: one sample from normal cells in peripheral blood (called sample 1.1),
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one from neoplastic cells in peripheral blood at CLL phase (called sam-
ple 1.2) and the last one from neoplastic cells in lymph node at DLBCL
phase (called sample 1.3). For the second patient (Patient 2), we had: one
sample from neoplastic cells in peripheral blood at CLL phase (called sam-
ple 2.1), one from neoplastic cells in lymph node at DLBCL phase (called
sample 2.2) and the last one from neoplastic cells in peripheral blood at a
further progression of the DLBCL (called sample 2.3).

Applying the six versions of the method to the three samples of Pa-
tient 1, we found that the number of aberrations in each sample increased
with the progression of the disease. The lower number of segments discov-
ered in sample 1.1 could be also due to a higher NoCall rate in comparison
to the other samples. The same happened for sample 2.3 of Patient 2.

We compared the IBD/UPD segments found in the three samples of
each patient and we divided them into three classes (see Table 4.8):

• equal regions: segments that are exactly the same in two or three sam-
ples;

• overlapping regions: segments that are common in at least two samples
but do not have the same boundaries;

• single sample regions: the remaining segments.

Then, we defined the number of distinct regions as the sum of all these
regions and the number of validated ones as the sum of all types of regions
except the single sample regions. For both patients, the lowest number of
distinct regions was found by all estimators with pupd = 10−4, while the
highest by (K̂Peaks,mad,01, T̂ Peaks,mad,01) with pupd = 10−3. In general, the
estimator (K̂Peaks,mad,01, T̂ Peaks,mad,01) (with both values of pupd) gave the
highest proportion of equal regions (24-30%) and, consequently, the low-
est proportion for the overlapping regions (49-52%). For all the methods,
the single sample regions were about the 20% of the distinct regions in
Patient 2, but the majority of them had length less than 50 SNPs. Instead,
since the samples of Patient 1 belonged to different stages of the disease, in
this patient we found a higher number of single sample regions and most
of them were wider than 50 SNPs. In fact, the majority of these regions
was detected in sample 1.3, thus they were likely to be somatic. In gen-
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Table 4.8 Results regarding the IBD/UPD region detection, obtained on two pa-
tients using the three pairs of estimators (K̂Peaks,01,01, T̂ Peaks,01,01), (K̂Peaks,01,mad ,

T̂ Peaks,01,mad) and (K̂Peaks,mad,01, T̂ Peaks,mad,01) and, as probability of IBD/UPD, either
pupd = 10−4 or pupd = 10−3.

Patient 1:

pupd = 10−4 pupd = 10−3

types of regions 01,01 01,mad mad,01 01,01 01,mad mad,01

in sample 1.1 (total) 213 213 212 330 330 351
in sample 1.2 (total) 337 337 347 443 443 480
in sample 1.3 (total) 391 391 412 468 468 511
distinct (total) 438 438 456 567 567 604
equal (%) 22 22 24 21 21 25
overlapping (%) 52 52 49 53 53 52
validated (%) 73 73 73 74 74 77
single sample (%) 27 27 27 26 26 23
% of single sample < 50 SNPs 28 28 30 53 53 48

Patient 2:

in sample 2.1 (total) 376 376 400 470 470 511
in sample 2.2 (total) 384 384 401 400 470 514
in sample 2.3 (total) 177 177 177 292 292 306
distinct (total) 438 438 461 555 555 603
equal (%) 27 27 30 26 26 28
overlapping (%) 52 52 49 54 54 52
validated (%) 79 79 79 80 80 80
single sample (%) 21 21 21 20 20 20
% of single sample < 50 SNPs 62 62 58 68 68 67

eral, we validated about 73-77% of the regions detected in Patient 1 and
∼79-80% of the regions in Patient 2.

Finally, we observed that in both patients the number of identified re-
gions was higher using pupd = 10−3 than pupd = 10−4. For the first pa-
tient, the average length of the regions was ∼77 SNPs with pupd = 10−3

and ∼87 SNPs with pupd = 10−4, while for the second ∼74 SNPs with
pupd = 10−3 and ∼82 SNPs with pupd = 10−4. The estimators (K̂Peaks,01,
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T̂ Peaks,01) and (K̂Peaks,01,mad , T̂ Peaks,01,mad) gave always the maximum av-
erage length (measured in SNPs). Although the average length of this kind
of DNA lesions has not been defined yet, it is better to be more conser-
vative (i.e. find a lower number of regions, but with a higher number of
SNPs) to avoid false positives. Considering the latter and taking into ac-
count the previous results, we suggest to use pupd = 10−4 and preferably
(K̂Peaks,01,01, T̂ Peaks,01,01) or (K̂Peaks,01,mad , T̂ Peaks,01,mad).

4.8 Computation of the posteriors and dynamic
programming

Since we assume a uniform prior distribution for the boundaries (see Sub-
section 4.1.2), we can use the same recursion employed in mBPCR to
calculate the posterior distributions (see Section 3.3). Then, for compu-
tational purpose, we only need to make explicit the formula of A0

i j (the
conditional density of Y i j at yi j, given cn and knowing that Y i j belongs to
only one segment called p).

First, let us consider Model 1. Conditioning with respect to Zp and us-
ing the independence of the data points Ys (s = i+ 1, . . ., j) given Zp, we
obtain

A0
i j = p(yi j |Ki j = 1, Tp−1 = i, Tp = j, cn)

= ∑
z∈{−2,−1,0,2}

p(yi j, Zp = z |Ki j = 1, Tp−1 = i, Tp = j, cn)

= ∑
z∈{−2,−1,0,2}

p(yi j |Zp = z, Ki j = 1, Tp−1 = i, Tp = j)Gi, j(z)

= ∑
z∈{−2,−1,0,2}

j

∏
s=i+1

p(ys | Z̃s = z)Gi, j(z), (4.14)

where Gi, j(z) = P(Zp = z |Ki j = 1, Tp−1 = i, Tp = j, cn). The computation
of Gi, j(z), given cn, can be done by using Bayes Theorem and the equiva-
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lence between the events {Ki j = 1} and {Z̃s = Zp = z for all s = i+1, . . .,
j, for some z ∈ {−2,−1, 0, 2}},

Gi, j(z) = P(Zp = z |Ki j = 1, Tp−1 = i, Tp = j, cn)

= P

(
j⋂

s=i+1

{Z̃s = z}|Ki j = 1, Tp−1 = i, Tp = j, cn

)

=
P(
⋂ j

s=i+1{Z̃s = z}, Ki j = 1 |Tp−1 = i, Tp = j, cn)

P(Ki j = 1 |Tp−1 = i, Tp = j, cn)

=
P(
⋂ j

s=i+1{Z̃s = z}|cn)
∑z∈{−2,−1,0,2}P(

⋂ j
s=i+1{Z̃s = z}|cn) , (4.15)

where,

P

(
j⋂

s=i+1

{Z̃s = z}
∣∣∣∣∣ cn
)
= ∏

t̂cnq̃ ∈Ti, j

P(Zt̂cnq̃
= z |cn), (4.16)

with Ti, j = {t̂ cnq̃ | t̂ cnq̃ ∈ [i+ 1, j), q̃ = 1, . . . , k̂cn} ∪ min{t̂ cnq̃ | t̂ cnq̃ ≥ j,

q̃ = 1, . . . , k̂cn} (we denote the cardinality of Ti, j with |Ti, j| =: NT ,i, j

and the indices of the boundaries in Ti, j with q̃1, . . ., q̃NT ,i, j ). Notice that

the prior probability of Z̃i j is based on the copy number estimation and
that only the Z̃s belonging to different segments are independent. There-
fore, in Equation (4.16) we partitioned the interval [i+1, j] in subintervals

{Ip}NT ,i, j
p=1 , by using the boundaries {t̂ cnq̃ | t̂ cnq̃ ∈ [i+ 1, j], q̃ = 1, . . . , k̂cn}:

I1 = [i+ 1, t̂ cnq̃1
]⊆ (t̂ cnq̃0

, t̂ cnq̃1
]

Ip = (t̂ cnq̃p−1
, t̂ cnq̃p

], p = 2, . . . ,NT ,i, j − 1,

INT ,i, j =
(
t̂ cnq̃NT ,i, j−1

, j
]
⊆
(
t̂ cnq̃NT ,i, j−1

, t̂ cnq̃NT ,i, j

]
,

where t̂ cnq̃0
= t̂ cnq̃1−1. We can notice that, by definition, any interval Ip of

[i+1, j] is either equal or contained in a segment of the partition generated
by the estimated log2ratio profile (called Iq̃p = (t̂ cnq̃p−1

, t̂ cnq̃p
]). Consequently,
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P

⎛⎝⋂
s∈Ip

{Z̃s = z}
∣∣∣∣∣∣ cn
⎞⎠= P

⎛⎝ ⋂
s∈Iq̃p

{Z̃s = z}
∣∣∣∣∣∣ cn
⎞⎠= P

(
Zt̂cnq̃p

= z |cn
)
,

and thus,

P

(
j⋂

s=i+1

{Z̃s = z}
∣∣∣∣∣ cn
)

=

NT ,i, j

∏
p=1

P

⎛⎝⋂
s∈Ip

{Z̃s = z}
∣∣∣∣∣∣ cn
⎞⎠

= ∏
t̂cnq̃ ∈Ti, j

P(Zt̂cnq̃
= z |cn).

Using the dynamic programming defined in Section 3.3, we can com-
pute both p(k |Y ,cn) and p(t |Y ,cn) and thus estimate k0 and t0 as de-
scribed in Subsection 4.1.4. Finally, from Equations (4.5) and (4.14), it
follows that the posterior distribution of Zp can be written as

P(Zp = z |y, t̂, k̂, cn) =
∏t̂p

i=t̂p−1+1 P(yi | Z̃i = z)Gt̂p−1 ,̂tp
(z)

A0
t̂p−1 ,̂tp

(4.17)

for z =−2,−1, 0, 2, and we can derive the MAP estimate of Zp, for each
p = 1, . . ., k̂.

If we consider Model 2, Equation (4.14) for the computation of the
quantity A0

i j becomes,

A0
i j = P(y

i j
|Ki j = 1, Tp−1 = i, Tp = j, cn)

= ∑
z∈{−2,−1,2}

j

∏
s=i+1

P(ys | Z̃s = z)Gi, j(z)+

[
j

∏
s=i+1

P(ys | Z̃s = 0, Ũs = 1)

· pupd +
j

∏
s=i+1

P(ys | Z̃s = 0, Ũs = 0)(1− pupd)

]
Gi, j(0). (4.18)

Moreover, for any p = 1, . . . , k̂, the posterior probability of Wp is
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P(Wp = w |y, t̂, k̂, cn) = P(Zp = w |y, t̂, k̂, cn),

for w = -2, -1, 2, and

P(Wp = w |y, t̂, k̂, cn)

= p−w/3
upd (1− pupd)

(3+w)/3
∏t̂p

i=t̂p−1+1 P(yi |W̃i = w)Gt̂p−1 ,̂tp
(0)

A0
t̂p−1 ,̂tp

,

for w=−3, 0, by using a derivation similar to the one of Equation (4.17).
Since we assume that there is no difference in the genotype detection

between normal and gained regions, in Model 3 the probabilities p(y |Zp =

0, t̂, k̂, cn) and p(y |Zp = 1, t̂, k̂, cn) are equal. Therefore, the computation
of A0

i j in Equation (4.18) becomes

A0
i j = P(yi j |Ki j = 1, Tp−1 = i, Tp = j, cn)

= ∑
z∈{−2,−1,2}

j

∏
s=i+1

P(ys | Z̃s = z)Gi, j(z)+

[
j

∏
s=i+1

P(ys | Z̃s = 0, Ũs = 1)

· pupd +
j

∏
s=i+1

P(ys | Z̃s = 0, Ũs = 0)(1− pupd)

]
[Gi, j(0)+Gi, j(1)] .

where now Gi j(z) is calculated taking into account five classes of copy
number events, instead of four as in Equation (4.15),

Gi, j(z) =
P(
⋂ j

s=i+1{Z̃s = z}|cn)
∑2

z=−2 P(
⋂ j

s=i+1{Z̃s = z}|cn) .

Moreover, the posterior probabilities of {Wp = w} are the same as before
for w =−2, -1, 0, 2, while for w= 1,

P(Wp = 1 |y, t̂, k̂, cn) = P(Zp = 1 |y, t̂, k̂, cn)
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=
p(yt̂p−1, t̂p |Zp = 1, t̂, k̂, cn)P(Zp = 1 | t̂, k̂, cn)

p(yt̂p−1, t̂p | t̂, k̂, cn)

=
P(yt̂p−1, t̂p |Zp = 0, t̂, k̂, cn)P(Zp = 1 | t̂, k̂, cn)

A0
t̂p−1 t̂p

=
[
p(yt̂p−1, t̂p |Zp = 0,Up = 1, t̂, k̂, cn)P(Up = 1)

+ p(yt̂p−1, t̂p |Zp = 0,Up = 0, t̂, k̂, cn)P(Up = 0)
]

· P(Zp = 1 | t̂, k̂, cn)
A0

t̂p−1 t̂p

,

by using Equation (4.5), the definition of A0
i j, the equality between p(y |Zp =

0, t̂, k̂, cn) and p(y |Zp = 1, t̂, k̂, cn) (given by the previous discussion) and
the conditioning with respect to Up.





Conclusion

In this first part of the Thesis, I developed four statistical methods for the
analysis of genomic data: mBPCR, mBRC, BRCAk and gBPCR. mBPCR,
mBRC and BRCAk are three Bayesian regression algorithms for the es-
timation of the DNA copy number profile either as a piecewise constant
function (mBPCR) or as a continuous curve (mBRC and BRCAk). These
algorithms represent an improvement of the corresponding algorithms
(BPCR and BRC) presented by Hutter in [32, 33], by changing the def-
inition of most of the parameter estimators involved in the statistical pro-
cedure. The main changes regarded the estimation of the variance of the
segment levels ρ2 and the estimation of the breakpoints T because of the
following issues:

• the original estimator of ρ2 (ρ̂2) was biased for ρ2 and almost asymp-
totically unbiased for the variance of the noise σ2 when ρ2 � σ2

(which is usually the case in real data);
• the original estimator of T (T̂ 01) did not take into account the depen-

dency among the boundaries and could estimate multiple breakpoints
at the same position, loosing segments.

Since ρ2 represents also the covariance between any two data points be-
longing to the same segment, I defined a new estimator ρ̂2

1 , which is simi-
lar to the estimator of the autocovariance of a stationary time series. ρ̂2

1 is
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asymptotically unbiased for ρ2. Regarding the boundaries, after applying
a binary transformation on the vector of breakpoints, I defined a binary
error (i.e. a measure of dissimilarities between binary vectors). The new
estimator T̂ BinErrAk is the inverse image (through the binary transforma-
tion) of the argument which minimizes the posterior expected value of the
binary error.

I tested the performance of mBPCR versus BPCR and other well-
known methods, for the estimation of the copy number profile as a piece-
wise constant function, and I showed that mBPCR outperformed all other
algorithms on both simulated and real data. Moreover, I compared mBRC
and BRCAk with BRC and other well-known smoothing methods for the
analysis of copy number data, by using simulated datasets, and I obtained
that the both proposed algorithms gave a better estimation of the profiles
than the others. Finally, some results obtained with mBPCR on real data
have been validated by using FISH technique.

Since several relationships can be found between the homozygous sta-
tus measured by the microarray and the presence of an altered copy num-
ber, I developed a statistical method (gBPCR) for the estimation of both
copy number and LOH aberrations by integrating the information given
by both copy number and LOH data. To the best of my knowledge, only
another algorithm exists in literature which uses the same input data for
the same purpose [72]. But the latter is not able to handle with data whose
DNA sample come from a mixture of cell populations (which is usually the
case in cancer data). Instead, the Bayesian statistical model employed in
gBPCR to describe the relationship among the random variables involved
allows the identification of the aberrations present in only a percentage of
the cells in the DNA sample.

The estimation procedure of gBPCR is a Bayesian regression method
similar to mBPCR, with an improvement of the breakpoint estimator to ob-
tain an highest sensitivity. I compared gBPCR with other two well-known
algorithms for LOH estimation, by using simulated datasets. The results
showed that gBPCR is comparable with the others on data with low and
medium noise, but it outperformed them on data with high noise. More-
over, I applied gBPCR on samples coming from cancer patients, also di-
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rectly providing useful data for cancer research, and I validated some of
the results found.

In the last years, new algorithms have been developed for the prepro-
cessing of SNP microarray data. Since now they allow also the estimation
of the allelic copy number, in the future I would like to extend the model
of gBPCR to account also this type of information which should be less
noisy than the LOH data.





Part II
Estimators of the intensity of

stationary fibre processes applied to
angiogenesis





Chapter 5
Statistics of fibre processes

Fibre processes are randomgeometric objects that can be used in medicine,
biology, material science, to model structures like capillaries, radices and
nervature of fibrous material. For stationary processes (i.e. with distribu-
tion invariant under translations), a quantity that characterize the process
is the density of its length (called intensity). Therefore, statistical meth-
ods for the estimation of the intensity of a fibre process may offer relevant
tools for applications.

In [53, 64], we introduced some estimators of the intensity of a station-
ary two-dimensional fibre process, obtained by intersecting the fibre pro-
cess under study with another (simulated) test fibre process in R2, satisfy-
ing sufficient regularity properties, and considering the associated count-
ing measure of the intersection points. Asymptotic properties of the esti-
mators and, especially, strong consistency are thus retrieved, based on the
regularity of the test process (in particular, on ergodicity). The proposed
estimators were a generalization of some estimators presented in literature
in [58, 78], which had no asymptotic properties, since were obtained via
the intersection with a finite deterministic fibre system.

In Section 5.1 we recall from the literature some basic definitions and
notations related to fibre processes; in Section 5.2 we introduce the estima-
tors present in literature which have inspired our estimators; in Section 5.3
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we describe our estimators and their properties and in Section 5.4 we con-
sider some particular examples of fibre processes of which the ergodicity
is easily proven, and which thus can be used as test processes in the esti-
mation procedure.

5.1 Preliminaries

In this section we will briefly introduce the basic definitions and concepts
of the theory of fibre processes. A further description of the general theory
of fibre processes can be found, for example, in [78], while we suggest [73]
for the theory of weighted fibre processes and [15] for the general theory
of random measures and for the Palm theory.

Definition 5.1. A fibre is a subset of R2 which can be represented as the
image of a curve γ(t) = (γ1(t), γ2(t)), with t ∈ [0, 1], such that γ : [0, 1]→
R2 is a one-to-one mapping with continuous derivative.

From its definition, a fibre has finite length and it cannot intersect itself
(because γ is one-to-one). Thus, we can define the measure of a fibre as its
length:

μγ(B) =
∫ 1

0
IB(γ(t))

√
(γ ′

1(t))
2 +(γ ′

2(t))
2 dt ∀B ∈B2,

(here and in the following, we will denote by Bk the Borel σ -algebra in
Rk).

Definition 5.2. A fibre system is a set ϕ ⊂ R2 which can be repre-
sented as a union of at most countably many fibres γ(i), with the prop-
erty that any compact set is intersected by only a finite number of fi-
bres and such that distinct fibres have only endpoints in common, i.e.
γ(i)((0, 1))∩ γ( j)((0, 1)) = /0 for i �= j.

This definition provides computational advantages, since from real
(2D) images, in general, it would be difficult to assign in a unique way
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different branches of an intersection of two lines to two different fibres.
Moreover, the definition implies that we can define the measure corre-
sponding to a fibre system ϕ as the sum of the measures of its fibres γ(i),

μϕ(B) = ∑
γ(i)∈ϕ

μγ(i) (B) ∀B ∈B2.

It can be shown that the measure μϕ is σ -finite, i.e. is finite for every
bounded Borel set (see [78]).

Let S be the set of all possible fibre systems and S be the σ -algebra
of subsets of S generated by the sets

{
ϕ ∈ S : μϕ (B) ∈C

}
, with B ∈

B2,C ∈B1.

Definition 5.3. A fibre process Φ is a random variable over a probability
space (Ω , F, P) assuming values in (S ,S). The distribution of Φ is
the probability measure P induced on (S ,S). We will denote by μΦ the
random measure associated to Φ .

Remark 5.1. From the previous definition of a fibre process, we can iden-
tify the fibre process with its random measure and study the distribution
of μΦ instead of P to characterize the process.

Another approach for defining and studying a fibre process is the one
introduced by Zähle [86]. The previous definitions of a fibre and a fibre
system allow to use basic tools of differential geometry to define and com-
pute their lengths. Alternatively, we can model a system of fibres as a
Hausdorff (H 1) rectifiable set of dimension 1 [6, 86] and a fibre pro-
cess can be considered a random set. This definition allows to consider
more general geometric objects and other estimation procedures, than the
ones proposed in the following sections, could be deduced (see for exam-
ple [64]). Anyway, since the purpose of this thesis is to concentrate on
the asymptotic properties of three particular estimators (see Sections 5.2
and 5.3), we will stick to our definitions to model a fibre process, because
they are the most suitable for our study.

The most important properties that a fibre process may have are sta-
tionarity, isotropy and ergodicity. To define these properties, we need to
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introduce the definition of translation and rotation of a fibre process, and
of the corresponding measures, as follows,

Txφ = {y− x : y ∈ φ} ⇒ μTxφ (B) = μφ (TxB)

Rβ φ = {Rβ y : y ∈ φ} ⇒ μRβ φ (A) = μφ (R−β A)

where Rβ (x1, x2) = (x1 cos(β )− x1 sin(β ), x1 sin(β )+ x2 cos(β )).

Definition 5.4. a

1. A fibre process is stationary if its distribution P is stationary, i.e.
P(TxA) = P(A) for each x ∈ R2, A ∈S.

2. A fibre process is isotropic if its distribution P is isotropic, i.e. P(Rβ A)=
P(A) for each β ∈R, A ∈S.

3. A fibre process is ergodic if its distribution P is ergodic, i.e. for any
A∈S, such that P(TxA∩A) =P(A) for each x∈R2, then P(A) = 0
or 1.

Any random measure can be characterized by its moments. In the fol-
lowing we will use only the first and the second moment measure, called
M1 and M2, respectively, which are defined as follows,

E

[∫
R2

f (x)μΦ (dx)

]
=:
∫
R2

f (x)M1(dx)

E

[∫
R2

∫
R2

g(x,y)μΦ (dx)μΦ (dy)

]
=:
∫
R2

∫
R2

g(x,y)M2(dx× dy),

for all non-negative measurable functions f on R2 and g on R2 ×R2.
In particular, when f (x) = IB(x) and g(x,y) = IB(x)IB(y), where B ∈

B2 and IB is its corresponding indicator function, we obtain that M1(B) =
E [μΦ (B)] and M2(B×B) = E

[
(μΦ (B))2

]
, i.e. the first moment measure

is the expected length of the process in the Borel set B and the second
moment measure is the second moment of the random variable μΦ(B).

In case of stationary fibre processes, the Radon-Nikodym derivative of
M1 with respect to the Lebesgue measure is constant and is called intensity
(see Theorem 3.2 in [51]). We will denote it by LA. Moreover, the second
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moment measure can be factorized in the following way (see [77])

M2(dx1 × dx2) = L2
A dx×K (dh) with h = x2 − x1 and x = x1,

where K (dh) is called reduced second moment measure. As observed
in [77], this measure can be described by the following function

K(r, α) := K (s(0, r, α)), with r ≥ 0, α ∈ [0, 2π), (5.1)

where s(0, r, α) denotes a circular sector with radius r and angle α cen-
tered at the origin. By applying the Palm theory, it can be easily seen that
the quantity LA K(r, α) is the mean total length of the fibres in a sector
with radius r and angle α centered at a “typical” fibre point (see [77]). If
the process is also isotropic, K does not depend on α and in this case we
define K(r) := K(r, 2π).

If the second moment measure of a fibre process is finite, we can also
define its variance in the following way: given B ∈ B2, Var(Φ(B)) =
M2(B×B)− (M1(B))

2 . Moreover, if the process is stationary,

Var(Φ(B)) = L2
A

(∫
R2

∫
R2

IB(x)IB(x+ h)dxK (dh)− (ν2(B))
2
)

= L2
A

(∫
R2

ν2(B∩ThB)K (dh)− (ν2(B))
2
)
, (5.2)

and if it is also isotropic

Var(Φ(B)) = L2
A

(∫ ∞

0

∫ 2π

0
ν2(B∩B(r,α))

dα
2π

K(dr)− (ν2(B))
2
)
.

For a stationary fibre process, it is possible to define another important
quantity: the angle distribution ϑP. Let S0 be the set of all ϕ ∈ S which
contain the origin and whose tangent at the origin is uniquely determined,
then we define the direction of the fibre at the origin 0 via the following
function w : S → [0, π ]:
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w(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
the angle in [0, π) formed in the if ϕ ∈ S0

upper half-plane by the tangent of ϕ at 0
and the positive abscissa axis

π if ϕ ∈ S \S0.

As a consequence, w(Txϕ) denotes the direction of the fibre system
ϕ at point x ∈ ϕ . The distribution ϑP can be seen as the distribution of
the direction in a “typical” fibre point and its definition comes from the
following theorem:

Theorem 5.1 (Theorem 3.3 in [51]). Let Φ be a stationary fibre process
with intensity LA. Then there exists a unique probability measure ϑP on
[0, π) such that for all measurable functions f : R2 × [0, π ]→ [0, ∞),∫

S

∫
R2

f (x, w(Txϕ))μϕ (dx)P(dϕ) = LA

∫
R2

∫
[0, π)

f (x, α)ϑP(dα)dx.

When the fibre process is motion invariant (i.e. stationary and isotropic),
the angle distribution is uniform on [0, π) (see Theorem 5.3 in [51]).

A quantity that characterizes a fibre system ψ is its projection on a
straight line with direction β⊥,

Definition 5.5. Let rβ be a line forming an angle β with the abscissa axis,
r⊥β be a line orthogonal to rβ and ψ ∈S be a fibre system. Then we define
the total length (computed with multiplicity) of the projection of ψ in the
direction β⊥ as

ρψ(β ) =
∫
r⊥β

χ(ψ ∩Tyrβ )dy=
∫

ψ

∣∣sin(w(Tyψ)−β )
∣∣ μψ(dy), β ∈ [0, π),

where χ is the Euler-Poincaré characteristic.

Analogously to the case of marked point process, we can consider the
direction of a fibre in any of its points as a weight. Hence, we can general-
ize the theory of fibre processes defining the weighted fibre processes with
a general weight (see [73, 78]), of which the unweighted fibre processes
are a particular case.
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5.2 Intensity estimators in literature

Let us consider a compact window of observation W for the fibre process
Φ . If we want to estimate the intensity of the process, the simplest and
unbiased estimator is the ratio between the length of the fibres in W and
the area of W

L̂measure
A (W ) :=

μΦ(W )

ν2(W )
. (5.3)

Note that this estimator has variance Var(Φ(W ))/ν2(W )2. If Φ is an er-
godic process, a direct consequence of Corollary 10.2.V in [15], is that the
estimator is also strongly consistent, i.e.

L̂measure
A (An) →

n→∞
LA a.s. and in L1 norm,

where {An}n∈N is a convex averaging sequence of sets in B2, defined as
follows,

Definition 5.6 (Definition 10.2.I in [15]). The sequence {An}n∈N of bounded
Borel sets in Rn is a convex averaging sequence if

1. each An is convex;
2. An ⊆ An+1, for n ≥ 1;
3. r(An)→∞ as n→∞, where r(A)= sup{r: A contains a ball of radius r}.

Note that the sequence {An}n∈N can be revisited as a sequence of en-
larging windows of observation, converging to R2. Since the fibre process
under study is assumed to be stationary, this is a straightforward way to
“enrich the sample”.

Although the estimator L̂measure
A has good theoretic properties, it gives

poor results in practice because it is not easy to measure the length of
fibres from digital images of the process. In fact, the easiest way to mea-
sure it is to count the pixels belonging to the fibres, obtaining thus only
a rough measure. In R2 a pixel is two-dimensional, while a fibre is one-
dimensional, so it is necessary to correct the counting of the pixels with
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a factor that represents the mean length of fibres contained in one pixel.
This factor usually depends on the specific geometry of the fibre and the
resolution of the image and is not easy to be retrieved.

Because of this problem, we need to find alternative estimators, based
on suitable counting measures. A first way to define some estimators of
this type is through the intersection between the fibre process and a deter-
ministic fibre system (called test fibre system).

Let Φ be a stationary fibre process with intensity LA and angle distribu-
tion ϑP and let ψ be a deterministic fibre system with finite total length lψ .
Mecke [50] and Ohser [58] studied the properties of the intersection point
process Φ ∩ψ (subsequently considered also in [78]). This point process is
finite, because ψ has finite total length, and can be seen as a marked point
process, if we consider w(TyΦ) as the mark in each intersection point y.

In [58], Ohser derived the following unbiased estimator of the quantity
LA ϑP([γ1, γ2)), through the intersection between Φ and ψ ,

∑
y∈Φ∩ψ

I[γ1, γ2)(w(TyΦ))

ρψ(w(TyΦ))
. (5.4)

Its unbiasedness is a consequence of Lemma 2.3 in [50] and Theorem 2.1
in [58]. Moreover, setting γ1 = 0 and γ2 = π in (5.4), we can obtain an
unbiased estimator for LA,

∑
y∈Φ∩ψ

1
ρψ(w(TyΦ))

. (5.5)

Examples of test systems ψ considered in literature for this type of
estimation are:

1. a set of segments of total length lψ with direction β
2. two systems of segments with, respectively, direction β and β + π

2 and
total length l1 and l2

3. N circles of radius R.

Their corresponding estimators are:
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L̂segms
A = ∑

y∈Φ∩ψ

1

lψ
∣∣sin(w(TyΦ)−β )

∣∣ ,
L̂orthog segms

A = ∑
y∈Φ∩ψ

1

l1
∣∣sin(β −w(TyΦ))

∣∣+ l2
∣∣cos(β −w(TyΦ))

∣∣
L̂circles

A =
#(Φ ∩ψ)

4NR
. (5.6)

As Osher observed, the first estimator is not so good in practice because
the denominator is close to zero, when w(TyΦ) is close to β . This can not
happen to the second estimator, but, in any case, its computation can be af-
fected by high computational errors, because it requires the approximation
of the angle of the tangent in each of the intersection points. The last esti-
mator is very good in practice, because we need only to count the number
of intersections between the system and the process.

Osher’s estimators are Crofton-like estimators and, in literature, other
estimators of the length of a curve, which derives from Cauchy-Crofton
Theorem or Crofton Theorem [6, 11], can be found. These estimators are
especially emploied in sterology.

5.3 Intensity estimators due to the intersection with
another fibre process

In general, any estimator of type (5.5) has no asymptotic properties. In
fact, as we said before, the point process generated by the intersection
between the fibre process and the test fibre system is finite, since the test
fibre system has finite length. As a consequence the estimate does not
changewhen we enlarge the window of observation. In [64] our aim was to
recover an estimator based on a countingmeasure (thus easily computable)
and strongly consistent.

In order to obtain an intersection point process defined on the whole
space R2 (instead of a finite one), we can intersect our fibre process with
another fibre process (called test process), independent from the first one.
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We will see that the test fibre process must satisfy some regularity condi-
tions, in order to obtain a strongly consistent estimator.

We will first introduce some properties of the point process generated
by the intersection between two independent and stationary fibre processes
and then we will use them to define estimators with good asymptotic prop-
erties. In general, we suppose that the two processes are independent, be-
cause we generate the test process independently of the fibre process that
we want to estimate. We suppose also that both processes are stationary,
since we can choose a stationary test process.

Let us recall the following proposition (see [78]),

Proposition 5.1. Let Φ1 and Φ2 be two independent and stationary fibre
processes, then the point process Φ1 ∩Φ2 is stationary.

Let Φ1 be the fibre process under study, having (unknown) intensity
LA,1, and let Φ2 be a test fibre process of (known) intensity LA,2. Then,
from Lemma 3.2 in [50], the intensity PA of the intersection point process
is

PA = LA,1 LA,2

∫ π

0

∫ π

0
|sin(α2 −α1)| ϑP1(dα1)ϑP2(dα2).

If Φ2 is also isotropic, then the intensity PA becomes

PA = LA,1 LA, 2
2
π
. (5.7)

In this case, LA,1 and PA are proportional, thus a good estimator for PA is
also a good estimator for LA,1. Since Φ2 represents the test process, we
can easily choose it isotropic.

Given a bounded window of observationW ∈B2, an unbiased estima-
tor for PA is

P̂A(W ) =
NΦ1∩Φ2(W )

ν2(W )
,

where NΦ1∩Φ2 denotes the counting measure associated to the point pro-
cess Φ1∩Φ2. Therefore, if the test process Φ2 is isotropic, by using Equa-
tion (5.7), the corresponding unbiased estimator for LA,1 is
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L̂A,1(W ) =
NΦ1∩Φ2(W )

ν2(W )

π
2LA,2

. (5.8)

Proposition 5.2. Let Φ1 and Φ2 be independent and stationary fibre pro-
cesses with intensity LA,1 and LA,2, respectively. Moreover, let us assume
that Φ2 is also isotropic. If the point process Φ1 ∩ Φ2 is ergodic, then
the estimator L̂A,1(An) is strongly consistent, for any convex averaging
sequence {An}n∈N of Borel sets in R2.

Proof. The proof follows from Corollary 10.2.V in [15], from which we
obtain that

NΦ1∩Φ2(An)

ν2(An)
−→
n→∞

PA a.s. and in norm L1, (5.9)

where {An}n∈N is any convex averaging sequence of Borel sets in R2. As
a consequence,

L̂A,1(An)−→
n→∞

PA
π

2LA, 2
= LA,1 a.s. and in norm L1.

��
We can obtain another estimator for LA,1, if we mimic L̂segms

A , described
in Section 5.2. Thus, for any given bounded window W ∈B2,

̂̂LA,1(W ) =
1

ν2(B)LA,2
∑

y∈Φ1∩Φ2

IW (y)∣∣sin(w(TyΦ2)−w(TyΦ1))
∣∣ . (5.10)

In order to show the unbiasedness of this estimator, we need to general-
ize Lemma 3.1 in [50] for a point process of intersection with two weights,
as follows.

Lemma 5.1. Let Φ1 and Φ2 be two stationary and independent fibre pro-
cesses with, respectively, distribution P1 and P2, intensity LA,1 and LA,2

and angle distribution ϑP1 and ϑP2 . Let h : R2 × [0, π)× [0, π) → [0, ∞)
be a measurable function, then
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E

[
∑

y∈Φ1∩Φ2

h(y, w(TyΦ1), w(TyΦ2))

]

= LA,1 LA,2

∫
R2

∫ π

0

∫ π

0
h(y, α1, α2) |sin(α2 −α1)| ϑP1(dα1)ϑP2(dα2)dy.

We omit the proof because it is quite similar to the proof of Lemma 3.1
in [50] (anyway it can be found in [64]).

The unbiasedness of ̂̂LA, 1(B) follows from the previous lemma using

h(y, w(TyΦ1), w(TyΦ2)) =
IB(y)∣∣sin(w(TyΦ2)−w(TyΦ1))

∣∣ .
This result does not need any hypothesis of isotropy of Φ2, hence this

estimator can also be used in presence of an anisotropic test process.
Like for the previous estimator, we are interested in showing also

the strong consistency of ̂̂LA, 1(B). In order to do that, it is necessary
to define a different set of marks for the point process. We now use
the pair of tangent angles with respect to both Φ1 and Φ2 in each in-
tersection point. In order to define the distribution of this mark, analo-
gously to the definition of the angle distribution (see Section 5.1), we set
h(y, w(TyΦ1), w(TyΦ2)) = IU2(y) f (α, β ), where U2 = [0, 1]× [0, 1] and
f : [0, π)× [0, π) → [0, ∞) is a measurable function. The expected value
of h, with respect to the point process, can be computed by applying The-
orem 1 in [73], or the previous Lemma 5.1. Then, the distribution of the
marks of the point process is such that∫ π

0

∫ π

0
f (α, β )Θ̃(dα , dβ )

=
LA,1LA, 2

PA

∫ π

0

∫ π

0
f (α1, α2) |sin(α2 −α1)|ϑP1(dα1)ϑP2(dα2),(5.11)

for each measurable function f : [0, π)× [0, π)→ [0, ∞).

Proposition 5.3. Let Φ1 and Φ2 be two stationary and independent fibre
processes with intensity LA,1 and LA,2, respectively. If the point process
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Φ1 ∩Φ2 is ergodic, then estimator ̂̂LA,1(An) is strongly consistent, for any
convex averaging sequence {An}n∈N of Borel sets in R2.

Proof. The proof follows from Corollary 10.2.VII in [15], which gives the
following asymptotic result for any convex averaging sequence {An}n∈N
of Borel sets in R2

1
ν2(An)

∑
y∈Φ1∩Φ2

IAn (y)
|sin(w(TyΦ2)−w(TyΦ1))| −→n→∞

PA

∫ π

0

∫ π

0

1
|sin(β −α)| Θ̃ (dα , dβ )

a.s. and in norm L1. Thus, by using the previous limit and Equation (5.11),
we obtain

̂̂LA,1(An)−→
n→∞

PA

LA, 2

∫ π

0

∫ π

0

1
|sin(β −α)| Θ̃(dα , dβ ) = LA,1 a.s. ��

Remark 5.2. We can observe that the definition of estimator L̂measure
A de-

rives from the theory of random measures: the fibre process is identified
with its random measure of the length. On the other hand, Osher’s estima-

tors, L̂A,1 and ̂̂LA,1 are based on the theory of fibre processes, defined as
we did in Section 5.1.

5.4 Ergodicity and choice of the test process

An example of fibre process is the stationary Boolean fibre process,

Φ = ∑
n
(Γn ⊕Xn),

where {Xn}n∈N is a homogeneousPoisson point process inR2 and {Γn}n∈N
is a sequence of i.i.d. random fibres (which have a.s. finite length), inde-
pendent of the point process. We denote with ⊕ the Minkowski sum, de-
fined as A⊕B= {x1+ x2 |x1 ∈ A, x2 ∈ B} with A, B ∈B2.

Examples of this type of process are: the stationary isotropic Poisson
segment process and the stationary isotropic Poisson circle process. In the
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first example the process {Γn}n∈N consists in segments having midpoint at
the origin, fixed length and random uniform direction, while in the second
example {Γn}n∈N consists in deterministic circles centered at the origin,
having fixed radius.

Some stationary Boolean processes are also ergodic. In [64], we showed
the ergodicity of the processes which satisfy the following conditions:

Conditions 5.1.

• for any Borel set B, it is possible to determine a region KB such that all
the points Xn for which Γn+Xn intersects B, belong to KB, i.e.

μΦ(B) =
N(KB)

∑
n=0

μΓn⊕Xn(B), (5.12)

where N(A) denotes the number of points of the Poisson process that
belong to the Borel set A;

• the fibres {Γn}n∈N have maximum length l < ∞.

Proposition 5.4. Let Φ be a stationary Boolean process, which satisfies
Conditions 5.1. Then, Φ is an ergodic process.

The two examples of Boolean processes considered above satisfy Con-
ditions 5.1, so they are ergodic.

We note that, given B∈B2, KB is defined so that all fibres belonging to
Kc

B do not intersect B. As a consequence, if KB ∩KTxB = /0, then the fibres
that intersect B cannot intersect TxB and viceversa. To give an example of
the set KB, let us consider the stationary isotropic Poisson segment process
with segment length l < 1. For a fixed fibre direction α , if B = U2, the
region Kα

B is depicted in Figure (5.1), so that KB is the union of all Kα
B

with α ∈ [0, π).
We have defined intensity estimators based on the intersection between

two fibre processes and we have proven that they are strongly consistent
if the intersection point process is ergodic. In [64], we also proved the
following proposition.
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Fig. 5.1 Kα
B in case of a

stationary isotropic Poisson
segment process with segment
length l < 1, when B =U2.

Proposition 5.5. Let Φ1 and Φ2 be two independent stationary Boolean
processes, such that both Φ1 and Φ2 satisfy Conditions 5.1. Then, the in-
tersection process Φ1 ∩Φ2 is ergodic.

This last proposition ensures that if the fibre process that we are ana-
lyzing is well approximated by a stationary Boolean fibre process satisfy-
ing Conditions 5.1, then it is sufficient to choose as test process another
Boolean fibre process satisfying Conditions 5.1, in order to obtain consis-
tent estimators of the intensity.





Chapter 6
A central limit theorem for functionals of
point processes

In Chapter 5, we showed that a technique to estimate the intensity of a sta-
tionary planar fibre process Φ1 is to intersect the process with another fibre
process Φ2 [53, 64]. The counting measure corresponding to the point pro-
cess of the intersection Φ1 ∩Φ2 is related (by a Crofton-type Formula) to
the intensity of the fibre process under study and, if a suitable test fibre
process Φ2 is used, the obtained estimators are unbiased and strongly con-
sistent. The main difficulty is now to prove the asymptotic normality, that
is a Central Limit Theorem (CLT), for such estimators.

In [34], Ivanoff established central limit theorems (CLTs) for the count-
ing measure of a spatially homogeneous point process in Rn. Penrose and
Yukich (for example, in [61]) proved several CLTs for functionals of two
types of point processes in Rn: the Poisson and the binomial point process.
In their proofs it is crucial the independence of the points of the process
which fall in disjoint Borel sets (that is having independent increments).
The spatial point process of intersections of fibres on a plane has in general
not independent increments, since the (not null) length of fibres implies
that points located at a distance lower than the maximum length of a fibre
(if it exists) are correlated. But if we assume that the fibres have a.s. finite
length, lower than l ∈ R+, then intersection points at a distance greater
than l are independent (if those fibres are generated independently). Fur-

189
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thermore the point process of intersections is in general not isotropic, if
the fibres have a non-uniform random orientation.

Based on the previous motivations, in this chapter we prove a CLT for
functionals of point processes in R2, which are stationary and independent
in Borel sets at distance greater than l. The point process does not need to
be isotropic, differently from the assumptions in the theorems in [34, 61].
Like in [61], our CLT considers increasing windows of observation and,
for simplicity, we will consider only rectangular windows, but extensions
to windows of more general shape can be easily proven.

The proof of our CLT, that is stated in Section 6.4, is based on the
application of the Central Limit Theorem for Martingale Differences
(CLTMD) [49]; thus in Sections 6.2 and 6.3 we need to show that the
three main conditions needed to apply the CLTMD are satisfied under our
assumptions. In particular, the first two conditions needed for the CLTMD
are proven assuming particular mixing conditions, which are milder than
the independence at distance l, in the view of a possible future extension
of our CLT to point processes derived by the intersection of two fibre pro-
cesses whose fibres do not have (a.s.) finite length.

In Section 6.5, we retrieve the asymptotic normality of the estimators
of the intensity described in Section 5.3, by applying our CLT. For further
details on the proof of our CLT see [52].

6.1 Notations and basic assumptions

To prove our CLT in R2, we will try to mimic the R2-version of the proof
of Theorem 3.1 in [61]. Therefore, we will now explain all objects involved
in that theorem and the ingredients used for its proof.

In [61], the CLT (in its R2-version) is defined on a sequence of sets
{Bn}n≥1 ⊆ R2, which satisfies the following conditions,

Conditions 6.1.

1. Bn is a bounded Borel set in R2, for all n ≥ 1,
2. ν2(Bn) =

n
λ , for some constant λ > 0 and for all n ≥ 1,



6.1 Notations and basic assumptions 191

3. limn→∞ Bn = R2 (in the sense that
⋃

n≥1
⋂

m≥n Bm = R2),

4. limn→∞
ν2(∂rBn)

n = 0, for all r > 0,
5. there exists a constant β1 such that diam(Bn)≤ β1nβ1 for all n ≥ 1,

where ∂rA =
⋃

x∈∂A Qr(x), with Qr(x) = [−r, r]2 + x, for any r > 0, and
∂A is the boundary of A, for any Borel set A ⊂ R2.

For example, Conditions 6.1 hold for a sequence of squares centered at
the origin with side

√ n
λ (i.e. Bn =Q 1

2

√ n
λ
(0)), for n ≥ 1, or a sequence of

Euclidean balls centered at the origin with ray
√ n

πλ , for n ≥ 1.
In Theorem 3.1 of [61], Penrose and Yukich consider a generic func-

tional H on a Poisson point process P , which satisfies the following con-
ditions (in R2):

Conditions 6.2.

1. H is a real-valued functional defined for all subsets of R2,
2. H is translation-invariant,
3. H is weakly stabilizing on B with respect to the point process P ,

i.e. there exists a random variable Δ(∞) such that for any B-valued
sequence {An}n≥1 that tends to R2 (i.e.

⋃
n≥1
⋂

m≥n Am = R2),

Δ(P ∩An)−→
n→∞

Δ(∞), a.s.,

4. H satisfies the bounded moments condition on B with respect to the
point process P , i.e.

sup
A∈B:0∈A

{
E[Δ(P ∩A)4]

}
< ∞,

where Δ(A) =H(A∪{0})−H(A), for all A ⊂R2, and B is the collection
of all regions A⊂R2 of the form A= {Bn+x : x∈R2, n≥ 1}, for a given
sequence of sets {Bn}n≥1 ⊆ R2 satisfying Conditions 6.1.

Given a Poisson point process P of intensity λ and a functional H
which satisfies Conditions 6.2, in Theorem 3.1 in [61] it is established that
there exists σ2 ≥ 0 such that
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n−1Var(H(Pn))−→
n→∞

σ2

and
n−1/2(H(Pn)−E[H(Pn)])

D−→
n→∞

N (0,σ2), (6.1)

where Pn = P ∩Bn and {Bn}n≥1 ⊆ R2 is a sequence of sets satisfying
Conditions 6.1. Therefore, in the following, we will show a convergence
similar to (6.1) for a point process P satisfying lower regularity condi-
tions, and a functional H such that:

Conditions 6.3.

1. H is a positive real-valued functional defined for all subset of R2,
2. H is translation-invariant,
3. H is additive,
4. H({0})< ∞.

We observe that the additivity of the functional and the fact that H({0})<
∞ ensure both Property 3 (with Δ(∞) =H({0})I{0∈/P}) and Property 4 in
Conditions 6.2. Moreover, we will require that H(P ∩ .) has finite second
or fourth moment measure.

Proposition 6.1. Let H be a functional for which Conditions 6.3 hold and
{Bn}n≥1 be a sequence of sets in R2, satisfying Conditions 6.1. Then, H
is weakly stabilizing on B and it satisfies the bounded moments condition
on B, for every point process P .

Proof. First, we notice that, since H is additive,

Δ(P ∩A) = H(P ∩A∪{0})−H(P∩A) = H({0})I0∈/P∩A, (6.2)

for all A ⊂ R2. Let {An}n≥1 be any B-valued sequence that tends to R2,
then there exists n̄ such that for each n ≥ n̄, 0 ∈ An. Thus, by setting
Δ(∞) = H({0})I{0∈/P}, it turns out that, for each n ≥ n̄,

|Δ(P ∩An)−Δ(∞)| = H({0}) ∣∣I0∈/P∩An − I0∈/P
∣∣

= H({0}) ∣∣I0∈/P − I0∈/P
∣∣= 0,
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i.e. limn→∞ |Δ(An)−Δ(∞)|= 0 a.s.. Since this limit is independent of the
chosen B-valued sequence of sets {An}n≥1, H is weakly stabilizing on B
with Δ(∞) = H({0})I{0∈/P}. Moreover, Equation (6.2) and Property 4 of
Conditions 6.3 imply that

sup
A∈B: 0∈A

{
E[Δ(P ∩A)4]

}
= (H({0}))4 sup

A∈B: 0∈A
P(0 ∈/P ∩A)≤ (H({0}))4 < ∞,

i.e. H satisfies the bounded moments condition on B. ��
Since we will relax the regularity of the point process, we need to

change the convergency properties of the sequence of Borel sets {Bn}n≥1.
We suppose that the sequence of Borel sets {Bn}n≥1 satisfies the following
properties:

Conditions 6.4.

1. Bn ⊆ Bn+1, for all n ≥ 1;
2. for each n ≥ 1, Bn is a rectangle with horizontal side L ·on and vertical

side L · vn, on, vn ∈ N and L> 0;
3. there exists n1 > 0 such that vn ≤ on for all n ≥ n1;
4. there exists α > 0 such that

on

nα −→
n→∞

c1; (6.3)

5. there exists β > 0 such that {vn/o
β
n }n∈N is a monotone sequence and

vn

oβ
n

−→
n→∞

c2. (6.4)

For each rectangle Bn, we define a grid of squares of side L that covers
it. If we call QL/2(xi, j) the square of side L centered at the point xi, j having
abscissa i and ordinate j of the grid, then we can write

Bn =
on⋃
i=1

vn⋃
j=1

QL/2(xi, j).
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The choice of the constant L will depend on the characteristics of the
point process. For example, if we consider a point process independent
at distance l (l > 0), then the choice L ≥ l guarantees the independence
of H(P ∩ .), when computed in non contiguous squares. Let us define
rigorously the property of independence at distance l.

Definition 6.1. Let P be a point process in R2. We say that P is a point
process independent at distance l, if there exist 0 < l < ∞ such that
P ∩A and P ∩B are independent for each A, B ∈ B2 with d(A,B) > l,
where d(., .) is the distance defined by

d(A,B) = inf
x∈A,y∈B

‖x− y‖2, A,B ⊆ R2,

and ‖.‖2 denotes the Euclidean norm.

Note that if a point process is independent at distance l then it is also
independent at any distance l′ ≥ l.

The proof of Theorem 3.1 in [61] requires the definition of a martingale
difference in order to apply the CLT for martingale differences (Theorem
2.3 of [49]). We will now define the martingale difference suitable for our
setting.

Since the point process is stationary, without loss of generality, we can
suppose that the centers of the squares of the grid belong to Z2

L={xL :
x ∈ Z2} and, for each x = (x1,x2) ∈ Z2

L, we define the σ -algebra Fx =
σ({P ∩QL/2(y) |y = (y1,y2) ∈ Z2

L,y1 ≤ x1}). We can observe that, for
any x,y ∈ Z2

L, Fx=Fy, if x1=y1, and Fx ⊂ Fy, if x1 < y1.
For a fixed n ∈ N, we define the filtration {G0, . . ., Gon}, where G0 is

the trivial σ -algebra and Gi = Fxi,1 , for i = 1, . . ., on. Then, we can write

H(Pn)−E[H(Pn)] =
on

∑
i=1

[E[H(Pn) |Gi]−E[H(Pn) |Gi−1]] =:
on

∑
i=1

Di,

where Di = E[H(Pn) |Gi]−E[H(Pn) |Gi−1], for i = 1, . . ., on. We ob-
serve that {Di}on

i=1 is a martingale difference, since {H(Pn) |Gi}on
i=0 is a

martingale.
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Note that our filtration is different from the one used in [61], since the
definition of {Gi}on

i=0 allows us to use the independence at distance l = L
(or milder mixing conditions; see Conditions 6.5). In fact, in [61], since
the authors considered point processes P having independent increments
(note that a process with independent increments is independent at dis-
tance l = 0), any choice for the side L > 0 of the squares of the grid led
to the definition of a suitable filtration. Thus they used a grid of squares
of side L = 1 (to cover each set Bn) and, for each x ∈ Z2, they defined the
σ -algebra Fx = σ({P ∩QL/2(y) |y ∈ Z2,y � x}), where � denotes the
lexicographic order in Z2.

For the next Propositions and computations, we need to decompose Di,
i= 1, . . ., on, into the following sums:

Di =
vn

∑
j=1

[
i−1

∑
h=1

H(P ∩QL/2(xh, j))−H(P ∩QL/2(xh, j))

]

+
vn

∑
j=1

on

∑
h=i

E[H(P ∩QL/2(xh, j)) |Gi]−E[H(P∩QL/2(xh, j)) |Gi−1]

=:
vn

∑
j=1

on

∑
h=i

Δxh, j ,xi,1 , (6.5)

where Δxh, j ,xi,1 = E[H(P ∩QL/2(xh, j)) |Gi]-E[H(P ∩QL/2(xh, j)) |Gi−1],
for each triple of indices (h, j, i). For the stationarity of the process, we
can easily see that, fixed h ≥ i and i > 1, the elements of the family
{Δxh, j,xi,1}vn

j=1 have all the same distribution and thus also {∑on
h=i Δxh, j ,xi,1}vn

j=1
for i > 1. For i = 1,

Δx1, j ,x1,1 = H(P ∩QL/2(x1, j))−E[H(P ∩QL/2(xh, j))]

Δxh, j ,x1,1 = E[H(P ∩QL/2(xh, j)) |G1]−E[H(P ∩QL/2(xh, j))], h > 1,

because of the definition of the filtration. In general, for each x,y∈ Z2
L, we

define

Δ0
y = H(P ∩QL/2(y))−E[H(P∩QL/2(y))]



196 6 A central limit theorem for functionals of point processes

Δ0
y,x = E[H(P ∩QL/2(y)) |Fx]−E[H(P ∩QL/2(y))]

Δy,x = E[H(P ∩QL/2(y)) |Fx]−E[H(P ∩QL/2(y)) |Fx−Le1 ],

where e1=(1,0). We can observe that if H(P∩ .) has finite fourth moment
measure, then we can prove that E[(Δ0

y )
4], E[(Δ0

y,x)
4], E[(Δy,x)

4] < ∞, by
using Jensen’s inequality. In fact, given any two σ -algebras F and G, the
following inequalities hold

E[(E[H(P ∩QL/2(y)) |F]−E[H(P ∩QL/2(y)) |G])4]

≤ E[(E[H(P ∩QL/2(y)) |F]2 +E[H(P∩QL/2(y)) |G]2)2]

≤ 2E[E[H(P ∩QL/2(y))
4 |F]+E[H(P ∩QL/2(y))

4 |G]]

= 4E[H(P ∩QL/2(y))
4] =: 4E0,4 < ∞ (6.6)

E[(E[H(P ∩QL/2(y)) |F]−E[H(P ∩QL/2(y)) |G])2]

≤ E[E[H(P ∩QL/2(y))
2 |F]+E[H(P∩QL/2(y))

2 |G]]

= 2E[H(P ∩QL/2(y))
2] =: 2E0,2 < ∞ (6.7)

where

E0,2 = E[H(P ∩QL/2(0))
2] (6.8)

E0,4 = E[H(P ∩QL/2(0))
4]. (6.9)

Moreover, if the point process is independent at distance l = L, the
following lemma holds.

Lemma 6.1. If P is a point process independent at distance l = L, then
Δ0

x,x−Le1
and Δ0

(x1,x2+Ld),x−Le1
are independent, for any x = (x1,x2) ∈ Z2

L

and d ∈ N with d ≥ 4.

Proof. Since the point process P is independent in Borel sets with dis-
tance greater than L, we have that, for each x = (x1,x2) ∈ Z2

L, H(P ∩
QL/2(x)) can depend only on the events in

σ
({

P ∩QL/2(x1 + d1L,x2 + d2L) |d1,d2 =−1,0,1
})

.
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As a consequence,

Δ0
x,x−Le1

= E[H(P ∩QL/2(x)) |Fx−Le1 ]−E[H(P ∩QL/2(x))]

= E
[
H(P ∩QL/2(x)) |σ

({
P ∩QL/2(x1 −L,x2+ d2L) |d2 =−1,0,1

})]
− E[H(P ∩QL/2(x))],

and

Δ0
(x1,x2+Ld),x−Le1

= E
[
H(P ∩QL/2((x1,x2 +Ld))) |σ ({P ∩QL/2(x1 −L,x2+(d+ d2)L) |

d2 =−1,0,1})]−E[H(P ∩QL/2((x1,x2+Ld)))].

Then, Δ0
x,x−Le1

and Δ0
(x1,x2+Ld),x−Le1

are independent if d ≥ 4, because

the σ -algebras involved in the conditional expectations in Δ0
x,x−Le1

and

Δ0
(x1,x2+Ld),x−Le1

are independent. ��

In case of a point process independent at distance l = L, Equation (6.5)
becomes,

Di =
vn

∑
j=1

i+1

∑
h=i

E[H(P ∩QL/2(xh, j)) |Gi]−E[H(P ∩QL/2(xh, j)) |Gi−1]

+
vn

∑
j=1

on

∑
h=i+2

[
E[H(P ∩QL/2(xh, j))]−E[H(P ∩QL/2(xh, j))]

]
=

vn

∑
j=1

i+1

∑
h=i

Δxh, j ,xi,1 =:
vn

∑
j=1

Mi, j, i = 1, . . . , on − 1, (6.10)

Don =
vn

∑
j=1

Δxon, j ,xon,1
, (6.11)

where Mi, j=∑i+1
h=i Δxh, j ,xi,1 and, in general, for each x,y ∈ Z2

L, we define
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My,x =
1

∑
d=0

Δy+dLe1,x.

From the previous discussion, {Mi, j}i>1, j have all the same distribution.
Moreover, if H(P ∩ .) has finite second or fourth moment measure, then
Jensen’s inequality and Inequalities (6.6) and (6.7) imply that, respec-
tively,

E[M2
i, j] = E[(Δxi, j ,xi,1 +Δxi+1, j,xi,1)

2]< 8E0,2 < ∞, (6.12)

E[M4
i, j] = E[(Δxi, j ,xi,1 +Δxi+1, j,xi,1)

4]< 64E0,4 < ∞, (6.13)

for any i = 1, . . ., on and j = 1, . . ., vn.
Similarly to the proof of Theorem 3.1 in [61], in Section 6.4 we will

show that, to obtain the asymptotic normality of H(Pn), it is sufficient
to prove that the hypotheses of the CLT for martingale differences are
satisfied for the martingale array {o−γ

n Di : i= 1, . . . ,on}n≥1, i.e.

sup
n≥1

E

[
max

1≤i≤on
(o−γ

n Di)
2
]
< ∞, (6.14)

o−γ
n max

1≤i≤on
|Di| P−→

n→∞
0 (6.15)

o−2γ
n

on

∑
i=1

D2
i

L1−→
n→∞

τ2, (6.16)

hold for some τ2 ≥ 0. In Sections 6.2 and 6.3, we will prove relations
(6.14), (6.15) and (6.16) and, in Section 6.4, we will derive the asymptotic
normality of H(Pn). Note that the requirement of independence at dis-
tance l = L is needed only to prove (6.16), but not for the proof of (6.14)
and (6.15), where milder conditions can be assumed.
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6.2 Proof of the first two conditions of the CLT for
martingale differences for a stationary point process

Before proving relations (6.14) and (6.15), we define a set of conditions
that the point process must satisfy for our purpose. These conditions can
be seen as mixing conditions, which may substitute the independence at
distance l = L and are implied by it.

Conditions 6.5. The point process P is stationary, H(P ∩ .) has finite
fourth moment measure and there exist two non-negative functions f1 and
f2 and two nonnegative constants δ1 and δ2 such that

E
[
(E[H(P ∩A) |Fx]−E[H(P ∩A)])2

]
≤ f1(ν2(A)) with

f1(ν2(A))

ν2(A)δ1
−→

ν2(A)→∞
constant, (6.17)

E
[
(E[H(P ∩A) |Fx]−E[H(P ∩A)])4

]
≤ f2(ν2(A)) with

f2(ν2(A))

ν2(A)δ2
−→

ν2(A)→∞
constant, (6.18)

for every x ∈ Z2
L and every convex set A ∈ B2 such that d(A,Rx) > L,

Rx={QL/2(y) |y ∈ Z2
L,y1 ≤ x1}. Moreover, there exist two non-negative

functions f3 and f4 and two nonnegative constants δ3 and δ4 such that

E
[
(E[H(P ∩B) |Fx]−E[H(P∩B)])2

]
≤ f3(h(B)) with

f3(h(B))

h(B)δ3
−→

h(B)→∞
constant, (6.19)

E
[
(E[H(P ∩B) |Fx]−E[H(P∩B)])4

]
≤ f4(h(B)) with

f4(h(B))

h(B)δ4
−→

h(B)→∞
constant, (6.20)



200 6 A central limit theorem for functionals of point processes

for every x ∈ Z2
L and every convex set B ∈ B2 such that B∩Rx = /0 and

e(B,Rx)≤ L, where

h(B)=max
�∈L

ν1(�∩B), with L = {lines in R2 parallel to the vertical axis},

and for each A, B ⊆ R2,

e(A,B) = sup
x∈A,y∈B

‖x− y‖2.

Finally, there exists a nonnegative constant δ5 such that for each B ∈B2,

E
[
(H(P ∩B)−E[H(P ∩B)])4

]
ν2(B)δ5

−→
ν2(B)→∞

constant. (6.21)

If the point process is independent at distance l = L, then Conditions
6.5 are satisfied when δ5 = 2, f1, f2 ≡ 0, f3(h(B))=2E0,2 (9h(B)/L− 11),

f4(h(B)) =

⎧⎨⎩
82944E0,4 if h(B)< 11L

E0,4

(
972
(

h(B)
L

)2 − 6744 h(B)
L − 41924

)
if h(B)≥ 11L,

where E0,2 and E0,4 are defined by (6.8) and (6.9); thus δ1 = δ2 = 0, δ3 = 1
and δ4 = 2. The proof of these results can be found in Subsection 6.2.1.

Remark 6.1. If a point process satisfies Conditions 6.5, then Relations
(6.17) and (6.18) hold also for (E[H(P ∩A) |Fx]−E[H(P∩A) |Fx−Le1 ])
with a function proportional to the corresponding f j function. In fact, if
x ∈ Z2

L and A ∈B2 is a convex set such that d(A,Rx)> L, then

E [(E[H(P ∩A) |Fx]−E[H(P∩A) |Fx−Le1 ])
p]

≤ 2p−1E [(E[H(P ∩A) |Fx]−E[H(P ∩A)])p]

+ 2p−1E [(E[H(P ∩A) |Fx−Le1 ]−E[H(P∩A)])p]

= 2p−1E [(E[H(P ∩A) |Fx]−E[H(P ∩A)])p]

+ 2p−1E [(E[H(P ∩TLe1A) |Fx]−E[H(P∩A)])p]
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≤ 2p f j(ν2(A)), (6.22)

where j = 1, if p = 2, and j = 2, if p = 4. Analogously, for every x ∈ Z2
L

and every convex set B ∈B2 such that B∩Rx = /0 and e(B,Rx)≤ L,

E [(E[H(P ∩B) |Fx]−E[H(P∩T−Le1B) |Fx−Le1 ])
p]≤ 2p f j(h(B)),

(6.23)
where j= 3, if p= 2, and j= 4, if p= 4. Moreover, from Equation (6.21),
for all B ∈B2,

Var(H(P ∩B))

ν2(B)δ5/2
−→

ν2(B)→∞
constant. (6.24)

Following the proof of Theorem 3.1 in [61], sufficient conditions to
prove hypotheses (6.14) and (6.15) of the CLT for martingale differences
are

o−2γ
n

on

∑
i=1

E[D2
i ] < C < ∞, for all n ≥ 1 (6.25)

o−4γ
n

on

∑
i=1

E[D4
i ] → 0, n → ∞. (6.26)

Therefore, in the following, we will show that these two conditions hold
for point processes that satisfy Conditions 6.5. In Section 6.4, we will
prove that (6.25) and (6.26) are sufficient conditions for (6.14) and (6.15).

Proposition 6.2. Let P be a stationary point process such that Condi-
tions 6.5 hold. Let {Bn}n≥1 be a sequence of rectangles which satisfies
Conditions 6.4. Then,

o−2γ
n

on

∑
i=1

E[D2
i ] < C < ∞, for all n ≥ 1 (6.27)

o−4γ
n

on

∑
i=1

E[D4
i ] → 0, n → ∞, (6.28)
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hold for γ such that γ ≥max((δ3β +1)/2, (1+δ1(1+β ))/2,(δ5β +2)/4)
and γ > max((δ4β + 1)/4, (1+ δ2(1+β ))/4).

Proof. Let us observe that, for i ≥ 2,

E

[(
vn

∑
j=1

i+1

∑
h=i

Δxh, j ,xi,1

)p]

≤ 2p−1E

[(
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)
−E

[
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)])p]

+ 2p−1E

[(
E

[
H

(
P ∩

vn⋃
j=1

QL/2(x3, j)

)
|Fx2,1

]

− E

[
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)
|Fx1,1

])p]
, (6.29)

E

[(
vn

∑
j=1

Δxi, j ,xi,1

)p]

≤ 2p−1E

[(
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)
−E

[
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)])p]

+ 2p−1E

[(
E

[
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)
|Fx1,1

]

− E

[
H

(
P ∩

vn⋃
j=1

QL/2(x2, j)

)])p]
, (6.30)

by using Jensen’s inequality and the stationarity of the process.
To show Inequality (6.27), first we use the definition of Di in Equation

(6.5) and then we apply Jensen’s inequality,

o−2γ
n

on

∑
i=1

E[D2
i ]
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≤ 3o−2γ
n E

⎡⎣( vn

∑
j=1

Δx1, j ,x1,1

)2

+

(
vn

∑
j=1

Δx2, j ,x1,1

)2

+

(
vn

∑
j=1

on

∑
h=3

Δxh, j ,x1,1

)2
⎤⎦

+ 2o−2γ
n

on−2

∑
i=2

E

⎡⎣( vn

∑
j=1

i+1

∑
h=i

Δxh, j ,xi,1

)2

+

(
vn

∑
j=1

on

∑
h=i+2

Δxh, j ,xi,1

)2
⎤⎦

+ o−2γ
n E

⎡⎣( vn

∑
j=1

on

∑
h=on−1

Δxh, j ,xon−1,1

)2
⎤⎦+ o−2γ

n E

⎡⎣( vn

∑
j=1

Δxon, j ,xon,1

)2
⎤⎦ .

Now, to the right-hand side of the previous inequality, we apply Inequali-
ties (6.29) and (6.30), Properties (6.17) and (6.19) of Conditions 6.5, and
Properties (6.22) and (6.23),

o−2γ
n

on

∑
i=1

E[D2
i ]

≤ o−2γ
n (3+ 4(on− 3)+ 2+ 2)Var

(
H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

))

+ o−2γ
n (3+ 16(on− 3)+ 8+ 2) f3

(
h

(
vn⋃
j=1

QL/2(x2, j)

))

+ 3o−2γ
n f1

(
ν2

(
vn⋃
j=1

on⋃
h=3

QL/2(xh, j)

))

+ 8o−2γ
n (on − 3) max

i=2,...,on−2
f1

(
ν2

(
vn⋃
j=1

on⋃
h=i+2

QL/2(xh, j)

))
= o−2γ

n

[
3 f1
(
L2vn(on − 2)

)
+ 8(on− 3) f1

(
L2vn(on − 3)

)]
+ o−2γ

n

[
(16on− 35) f3 (vn)+ (4on− 5)Var

(
H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

))]
.
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Finally, using Property (6.4) of {on}n≥1 and {vn}n≥1, the properties of f1
and f3 stated, respectively, in (6.17) and in (6.19), and Limit (6.24), we ob-
tain Inequality (6.27), for γ ≥max((δ3β +1)/2, (1+δ1(1+β ))/2, (δ5β +
2)/4).

Analogously, we prove now Limit (6.28). The definition of Di in Equa-
tion (6.5) and Jensen’s inequality imply that

o−4γ
n

on

∑
i=1

E[D4
i ]

≤ 33o−4γ
n E

⎡⎣( vn

∑
j=1

Δx1, j ,x1,1

)4

+

(
vn

∑
j=1

Δx2, j ,x1,1

)4

+

(
vn

∑
j=1

on

∑
h=3

Δxh, j ,x1,1

)4
⎤⎦

+ 23o−4γ
n

on−2

∑
i=2

E

⎡⎣( vn

∑
j=1

i+1

∑
h=i

Δxh, j ,xi,1

)4

+

(
vn

∑
j=1

on

∑
h=i+2

Δxh, j ,xi,1

)4
⎤⎦

+ o−4γ
n E

⎡⎣( vn

∑
j=1

on

∑
h=on−1

Δxh, j ,xon−1,1

)4
⎤⎦+ o−4γ

n E

⎡⎣( vn

∑
j=1

Δxon, j ,xon,1

)4
⎤⎦ .

As before, to the right-hand side of the previous inequality, we apply In-
equalities (6.29) and (6.30), Properties (6.18) and (6.20) of Conditions 6.5,
and Properties (6.22) and (6.23),

o−4γ
n

on

∑
i=1

E[D4
i ]

≤ o−4γ
n E

⎡⎣(H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

)
−E

[
H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

)])4
⎤⎦

· (33+ 26(on − 3)+ 23+ 23)+ 33o−4γ
n f2

(
ν2

(
vn⋃
j=1

on⋃
h=3

QL/2(x j,h)

))

+ o−4γ
n (33+ 210(on − 3)+ 27+ 23) f4

(
h

(
vn⋃
j=1

QL/2(x2, j)

))
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+ 27o−4γ
n (on − 3) max

i=2,...,on−2
f2

(
ν2

(
vn⋃
j=1

on⋃
h=i+2

QL/2(x j,h)

))
≤ o−4γ

n

[
(1024on− 2909) f4 (vn)+ 27 f2

(
L2vn(on − 2)

)]
+ 128(on− 3)o−4γ

n f2
(
L2vn(on − 3)

)
+ o−4γ

n (64on − 149) ·

· E

⎡⎣(H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

)
−E

[
H

(
P ∩

vn⋃
j=1

QL/2(x1, j)

)])4
⎤⎦ .

Using Property (6.4) of {on}n≥1 and {vn}n≥1, the properties of f2 and
f4 stated, respectively, in (6.18) and in (6.20), and Limit (6.21), we obtain
Inequality (6.28), for γ > max((δ4β + 1)/4, (1+ δ2(1+ β ))/4,(δ5β +
1)/4).

As a consequence, Relations (6.27) e (6.28) hold if γ ≥ max((δ3β +
1)/2, (1+ δ1(1+ β ))/2,(δ5β + 2)/4) and γ > max((δ4β + 1)/4, (1+
δ2(1+β ))/4). ��

6.2.1 Proof that Conditions 6.5 hold for a stationary point
process independent at distance l = L

Previously, we claimed that a suitable choice of the quantities fi, δi, i= 1,
. . ., 4, exists such that Conditions 6.5 hold for a stationary point process
independent at distance l = L. Now, we will prove it.

Proposition 6.3. Let P be a stationary point process independent at
distance l = L < ∞ and let H be a functional which satisfies Condi-
tions 6.3. If H(P ∩ .) has finite fourth moment measure, then Condi-
tions 6.5 are satisfied for: δ1 = δ2 = 0, δ3 = 1, δ4 = δ5 = 2, f1, f2 ≡ 0,
f3(h(B))=2E0,2 (9h(B)/L− 11) and

f4(h(B)) =

⎧⎨⎩E0,482944 if h(B)< 11L

E0,4

(
972
(

h(B)
L

)2 − 6744 h(B)
L − 41924

)
if h(B)≥ 11L.
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Proof. If A ∈ B2 is such that d(A,Rx) > L, x ∈ Z2
L, then, by using the

independence of the point process at distance L, we obtain that, for any
n ∈ N,

E [(E[H(P ∩A) |Fx]−E[H(P∩A)])n] = (E[H(P ∩A)]−E[H(P ∩A)])n = 0

and thus f1, f2 ≡0 and δ1, δ2=0.
Let B ∈ B2 be such that B∩Rx = /0 and e(B,Rx) ≤ L, x ∈ Z2

L. Then,
we can consider the smallest rectangle R ⊇ B with horizontal side L and
vertical side nL, n ∈N. Due to the properties of B, n≤  h(B)!/L+1 (here
 a! denotes the sup{b ∈N |b ≤ a}). Let us partition R into squares of side
L and denote by Qj the jth square from the bottom. If we define

g(A) = E[H(P ∩A) |Fx]−E[H(P ∩A)], ∀A ∈B2,

g j(B) = g(B∩Qj) ,

we obtain

E
[
(g(B))2

]
= E

⎡⎣( n

∑
j=1

g(B∩Qj)

)2
⎤⎦

=
n

∑
j=1

E
[
(g j(B))

2
]
+ 2

n−1

∑
j=1

max(n, j+4)

∑
j′= j+1

E
[
g j(B)g j′(B)

]
=

n

∑
j=1

E
[
(g j(B))

2
]
+ 2

n−1

∑
j=n−3

n

∑
j′= j+1

E
[
g j(B)g j′(B)

]
+ 2

n−4

∑
j=1

j+4

∑
j′= j+1

E
[
g j(B)g j′(B)

]
, (6.31)

where in the second step we used the fact that g j(B) and g j′(B) are inde-
pendent if j′ > j+ 4 (see Lemma 6.1) and E [g j(B)] = 0, for every j.

Let us derive now some upper bounds for the quantities which appear in
Equation (6.31). Regarding the first term, by using the Jensen’s inequality,
the stationarity of the point process and the additivity and positivity of
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H(P ∩ .), we obtain that

E
[
(g j(B))

2
]
≤ E

[
E [H (P ∩B∩Qj) |Fx]

2+E [H (P ∩B∩Qj)]
2
]

≤ E
[
E
[
H (P ∩B∩Qj)

2 |Fx

]
+E
[
H (P ∩B∩Qj)

2
]]

= 2E
[
H (P ∩B∩Qj)

2
]
≤ 2E0,2. (6.32)

For the expected value of the product, by using Holder’s inequality and
Inequality (6.32), we obtain

E
[
g j(B)g j′(B)

] ≤ E
[∣∣g j(B)g j′(B)

∣∣]
≤ E

[
(g j(B))

2
] 1

2
E
[(

g j′(B)
)2] 1

2

≤ 2E0,2. (6.33)

Finally, by using the upper bounds in (6.32) and (6.33) and the condition
n ≤  h(B)!/L+ 1, Equation (6.31) becomes

E
[
(g(B))2

]
≤ 2E0,2 (9n− 20)

≤ 2E0,2

(
9h(B)

L
− 11

)
.

Hence, Relation (6.19) is satisfied for f3(h(B)) = 2E0,2 (9h(B)/L− 11)
and δ3 = 1.

In a similar way, we can derive δ4 and the form of function f4 in Re-
lation (6.20). By using the independence of g j(B) and g j′(B) if j′ > j+ 4
(see Lemma 6.1) and that E[g j(B)] = 0 for all j,

E
[
(g(B))4

]
= E

⎡⎣( n

∑
j=1

g(B∩Qj)

)4
⎤⎦ (6.34)
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=
n

∑
j=1

E
[
(g j(B))

4
]
+ 6

n−1

∑
j=1

n

∑
j′= j+1

E
[
g j(B)

2g j′(B)
2]

+ 4
n−1

∑
j=1

min( j+4,n)

∑
j′= j+1

E
[
g j(B)g j′(B)

3]+ 4
n−1

∑
j=1

min( j+4,n)

∑
j′= j+1

E
[
g j(B)

3g j′(B)
]

+ 12
n−2

∑
j=1

min( j+4,n−1)

∑
j′= j+1

n

∑
h= j′+1

E
[
g j(B)g j′(B)gh(B)

2]
+ 12

n−2

∑
j=1

n−1

∑
j′= j+1

min( j′+4,n)

∑
h= j′+1

E
[
g j(B)

2g j′(B)gh(B)
]

+ 12
n−2

∑
j=1

min( j+4,n−1)

∑
j′= j+1

min( j′+4,n)

∑
h= j′+1

E
[
g j(B)g j′(B)

2gh(B)
]

+ 24
n−3

∑
j=1

min( j+4,n−2)

∑
j′= j+1

n−1

∑
h= j′+1

min(h+4,n)

∑
h′=h+1

E
[
g j(B)g j′(B)gh(B)gh′(B)

]
. (6.35)

We can derive an upper bound of the first term in Equation (6.35), by
using the Jensen’s inequality, the stationarity of the point process and the
additivity and positivity of H(P ∩ .),

E
[
(g j(B))

4
]
≤ E

[(
E [H (P ∩B∩Qj) |Fx]

2+E [H (P ∩B∩Qj)]
2
)2
]

≤ 2E
[
E [H (P ∩B∩Qj) |Fx]

4+E [H (P ∩B∩Qj)]
4
]

≤ 2E
[
E
[
H (P ∩B∩Qj)

4 |Fx

]
+E
[
H (P ∩B∩Qj)

4
]]

= 4E
[
H (P ∩B∩Qj)

4
]
≤ 4E0,4. (6.36)

Moreover, by applying Holder’s inequality, its generalization and Inequal-
ity (6.36), the following inequalities hold

E
[
g2

j(B)g
2
j′(B)

]
≤ E[g4

j(B)]
1
2 E[g4

j′(B)]
1
2 ≤ 4E0,4
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E
[
g j(B)g

3
j′(B)

]
≤ E[g4

j(B)]
1
4 E[g4

j′(B)]
3
4 ≤ 4E0,4

E
[
g j(B)g j′(B)g

2
h(B)

] ≤ E[g4
j(B)]

1
4 E[g4

j′(B)]
1
4 E[g4

h(B)]
1
2 ≤ 4E0,4

E
[
g j(B)g j′(B)gh(B)gh′(B)

] ≤ E[g4
j(B)]

1
4 E[g4

j′(B)]
1
4 E[g4

h(B)]
1
4 E[g4

h′(B)]
1
4

≤ 4E0,4,

for any j, j′, h and h′. Putting these results in Equation (6.35), for n ≥ 12,
we obtain

E
[
(g(B))4

]
≤ 4E0,4(243n

2− 2172n− 8552),

and thus for h(B)> 11L (remembering that n ≤  h(B)!/L+ 1),

E
[
(g(B))4

]
≤ E0,4

(
972

(
h(B)
L

)2

− 6744
h(B)
L

− 41924

)
.

For h(B)≤ 11L (i.e. n < 12), we can simply use Jensen’s inequality to the
right-hand side of Equation (6.34) and Inequality (6.36),

E
[
(g(B))4

]
≤ n3

n

∑
j=1

E
[
(g(B∩Qj))

4
]

≤ n44E0,4

< 82944E0,4.

As a consequence, Relation (6.20) is satisfied for

f4(h(B)) =

⎧⎨⎩
82944E0,4 if h(B)≤ 11L

E0,4

(
972
(

h(B)
L

)2 − 6744 h(B)
L − 41924

)
if h(B)> 11L,

and δ4 = 2.
Analogously, using

g(A) = H(P ∩A)−E[H(P∩A)], ∀A ∈B2,
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and the independence at distance l = L, we can prove Limit (6.21) for
δ5 = 2. ��

6.3 Proof of the third condition of the CLT for
martingale differences for a stationary point process
independent at distance l

In this section, we show the third hypothesis of the CLT for martingale
differences (see Limit (6.16)) assuming the independence at distance l.
Moreover, we consider two kinds of increasing sequences of rectangles
{Bn}n≥1: in the former all rectangles will have fixed vertical side (Propo-
sition 6.5), in the the latter they will satisfy Conditions 6.4 with L = l
(Proposition 6.6).

Proposition 6.5 can be applied to point processes belonging either to
R× [a,b] or R+ × [a,b] (for some a, b ∈ R). For example, a line process
can be seen as a point process inR×(0,2π ], if we parameterize each line �
with the signed distance between � and the origin 0 and the angle between
the abscissa axis and the line orthogonal to � passing through 0 [78].

Proposition 6.4. Let P be a stationary point process such that H(P ∩ .)
has finite second moment measure. Let us assume that there exist 0< l <∞
such that P ∩ A and P ∩ B are independent for each A, B ∈ B2 with
d(A,B) > l. Let {Bn}n≥1 be an increasing sequence of rectangles such
that, for each n, Bn has vertical side L ·V (V ∈ N) and horizontal side
L ·on, with L = l (on ∈ N and {on}n≥1 satisfies Limit (6.3)). Then

1
on − 2

on

∑
i=1

D2
i

L1−→
n→∞

E

⎡⎣( V

∑
j=1

M(L, jL),Lu

)2
⎤⎦ ,

where u= (1,1).

Proof. Since the point process is independent at distance l = L, Di =

∑V
j=1 Mi, j if i< on (see Equation (6.10)) and Don = ∑V

j=1 Δxon, j ,xon,1
.
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Let us notice that, by using Jensen’s inequality and Equation (6.7),

E

[∣∣∣∣ 1
on − 2

D2
1

∣∣∣∣] ≤ 2V
on − 2

V

∑
j=1

2

∑
h=1

E
[
Δ2

xh, j ,x1,1

]
≤ 8V 2E0,2

on − 2
−→
n→∞

0

E

[∣∣∣∣ 1
on − 2

D2
on

∣∣∣∣] ≤ V
on − 2

V

∑
j=1

E
[
Δ2

xon, j ,xon,1

]
≤ 2V 2E0,2

on − 2
−→
n→∞

0.

Therefore, to prove the thesis it is sufficient to show that

1
on − 2

on−1

∑
i=2

D2
i

L1−→
n→∞

E

⎡⎣( V

∑
j=1

M(L, jL),Lu

)2
⎤⎦ .

Let us define

FiLe1 =
V

∑
j=1

M(iL, jL),iLe1 ,

for all i ∈ N. Due to the properties of the point process, {FiLe1}i∈N is a
stationary and ergodic sequence. Since (.)2 is a continuous function, we
can use the Birkhoff Ergodic Theorem (Theorem 2.3 in [62]) and thus, for
any ε > 0, there exists M > 0 such that for all m > M,

E

[∣∣∣∣∣ 1m m

∑
i=1

F2
iLe1 −E[F2

Le1 ]

∣∣∣∣∣
]
< ε.

As a consequence, due to the stationarity of the point process, for any
ε > 0, we can take N > 0 such that, for all n> N, on−2>M, and it holds
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E

[∣∣∣∣∣ 1
on − 2

on−1

∑
i=2

D2
i −E[F2

Le1 ]

∣∣∣∣∣
]
< ε.

Since E

[(
∑V

j=1 M(L, jL),Lu

)2
]
= E[F2

Le1 ], we have shown the thesis. ��

We can observe that the proof applies also to rectangles {Bn}n≥1 with
a vertical side of any fixed length. Therefore, the following result holds.

Proposition 6.5. Let P be a point process such that H(P ∩ .) has finite
second moment measure. Let us assume that there exist 0< l <∞ such that
P ∩A and P ∩B are independent for each A, B ∈ B2 with d(A,B) > l.
Let {Bn}n≥1 be an increasing sequence of rectangles such that, for each
n, Bn has vertical side V (V ∈ R+) and horizontal side L · on, with L = l
(on ∈ N and {on}n≥1 satisfies Limit (6.3)). Then,

1
on − 2

on

∑
i=1

D2
i

L1−→
n→∞

E
[
M2] ,

where

M = H(P ∩RL/2,V/2(0))−E[H(P∩RL/2,V/2(0)) |F−Le1 ]

+ E[H(P ∩RL/2,V/2(Le1)) |F0]−E[H(P ∩RL/2,V/2(0))]

and Rl1/2,l2/2(x) is a rectangle with horizontal side l1,vertical side l2 and
centered at x.

In case of a sequence {Bn}n≥1 without fixed vertical side, first we need
to prove the following two lemmas.

Lemma 6.2. Let P be a stationary point process such that H(P ∩ .) has
finite second moment measure. Moreover, let {vn}n∈N and {on}n∈N be two
sequences of integers, which satisfy the properties stated in Conditions
6.4. If there exists dmax ∈N such that dmax < ∞ and

E[MLu,LuM(L, jL),Lu] = 0, ∀ j > dmax, (6.37)
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and

sup
d∈N
d≥2

E

[∣∣∣∣∣ 1m m

∑
i=1

d

∑
j=2

M(iL,L),(iL,L)M(iL, jL),(iL,L)−
d

∑
j=2

E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣
]
−→
m→∞

0,

(6.38)
then

1
(on −2)(vn −1)

on−2

∑
i=1

vn−1

∑
j=1

vn

∑
j′= j+1

M(iL, jL),(iL,L)M(iL, j′L),(iL,L)−→n→∞

dmax

∑
j=2

E[MLu,LuM(L, jL),Lu],

(6.39)

in L1 norm.

Proof. In order to prove Limit (6.39), it is sufficient to show that the fol-
lowing two limits hold,

I1n := E

[∣∣∣∣∣ 1
(on − 2)(vn− 1)

on−2

∑
i=1

vn−1

∑
j=1

vn

∑
j′= j+1

M(iL, jL),(iL,L)M(iL, j′L),(iL,L)

− 1
vn − 1

vn−1

∑
j=1

E

[
vn− j+1

∑
j′=2

MLu,LuM(L, j′L),Lu

]∣∣∣∣∣
]
−→
n→∞

0,

I2n :=

∣∣∣∣∣E
[

1
vn − 1

vn−1

∑
j=1

vn− j+1

∑
j′=2

MLu,LuM(L, j′L),Lu

]
−

dmax

∑
j=2

E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣−→n→∞
0.

First, we prove that limn→∞ I1n = 0. Due to Hypothesis (6.38), for any
ε > 0, there exists M > 0 such that for each m > M and d ≥ 2,

E

[∣∣∣∣∣ 1m m

∑
i=1

d

∑
j=2

M(iL,L),(iL,L)M(iL, jL),(iL,L)−
d

∑
j=2

E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣
]
< ε.

Now we can choose N > 0 such that, for each n > N, on−2>M and thus

I1n = E

[∣∣∣∣∣ 1
(vn − 1)

vn−1

∑
j=1

(
1

(on − 2)

on−2

∑
i=1

vn

∑
j′= j+1

M(iL, jL),(iL,L)M(iL, j′L),(iL,L)
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− E

[
vn− j+1

∑
j′=2

MLu,LuM(L, j′L),Lu

])∣∣∣∣∣
]

≤ 1
(vn − 1)

vn−1

∑
j=1

E

[∣∣∣∣∣ 1
(on − 2)

on−2

∑
i=1

vn

∑
j′= j+1

M(iL, jL),(iL,L)M(iL, j′L),(iL,L)

− E

[
vn− j+1

∑
j′=2

MLu,LuM(L, j′L),Lu

]∣∣∣∣∣
]

≤ 1
(vn − 1)

vn−1

∑
j=1

ε = ε.

As a consequence limn→∞ I1n = 0.
To prove limn→∞ I2n = 0, first we use the linearity of the expected value

and Property (6.37)

I2n =

∣∣∣∣∣ 1
(vn − 1)

vn

∑
j=2

vn− j+1

∑
j′=1

E
[
MLu,LuM(L, jL),Lu

]− dmax

∑
j=2

E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣
=

1
(vn − 1)

∣∣∣∣∣dmax

∑
j=2

(2− j)E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣
≤ 1

(vn − 1)

dmax

∑
j=2

( j− 2)E
[∣∣MLu,LuM(L, jL),Lu

∣∣] .
Finally, to the right-hand side of the previous inequality, we apply Holder’s
inequality and that H(P∩ .) has finite second moment measure, obtaining
the thesis,

I2n ≤ 1
(vn − 1)

dmax

∑
j=2

( j− 2)E[M2
Lu,Lu]

1
2 E[M2

(L, jL),Lu]
1
2

=
(dmax − 1)(dmax− 2)

2(vn − 1)
E[M2

Lu,Lu]→ 0, n → ∞.

��
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Lemma 6.3. Let P be a stationary point process such that H(P ∩ .) has
finite second moment measure. Moreover, let {vn}n∈N and {on}n∈N be two
sequences of integers, which satisfy the properties stated in Conditions
6.4. If

∞

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu]< ∞, (6.40)

and

sup
d∈N

E

[∣∣∣∣∣ 1m m

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]
−→
m→∞

0,

(6.41)
then

1
(on − 2)(vn− 1)

vn−1

∑
j=1

vn

∑
j′= j+1

Δ(L, jL),LuΔ(L, j′L),Lu
L1−→

n→∞
0. (6.42)

Moreover, set S j,d = (Δ0
(L, jL) +Δ0

(2L, jL),Lu)(Δ
0
(L,( j+d)L) +Δ0

(2L,( j+d)L),Lu), if

∞

∑
d=1

E[S1,d]< ∞, (6.43)

and

sup
d∈N

E

[∣∣∣∣∣ 1m m

∑
j=1

S j,d −E[S1,d]

∣∣∣∣∣
]
−→
m→∞

0, (6.44)

then,

1
(on − 2)(vn− 1)

vn−1

∑
j=1

vn

∑
j′= j+1

(Δ0
(L, jL)+Δ0

(2L, jL),Lu)(Δ
0
(L, j′L)+Δ0

(2L, j′L),Lu)−→n→∞
0,

(6.45)
in L1 norm.

Proof. First, we prove Limit (6.42). Limit (6.41) implies that, for any ε >
0, there exists M > 0 such that for each m > M,
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E

[∣∣∣∣∣ 1m m

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]
< ε,

for any d ∈ N. Then, fixed ε > 0, for each n such that vn > M, we de-
fine mn = vn − 1−M and we can rewrite the sum in Limit (6.42) in the
following way,

2
(on − 2)(vn − 1)

vn−1

∑
d=1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu

=
2

(on − 2)(vn− 1)

mn

∑
d=1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu (=: J1n)

+
2

(on − 2)(vn− 1)

vn−1

∑
d=mn+1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu (=: J2n).

To prove that limn→∞ J1n = 0 in L1 norm, first we note that

E[|J1n|]

≤ E

[∣∣∣∣∣ 2
on −2

mn

∑
d=1

(
1

vn −1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu−E[ΔLu,LuΔ(L,(1+d)L),Lu]

)∣∣∣∣∣
]

+

∣∣∣∣∣ 2
on −2

mn

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣ .
From the definition of mn, it turns out that

E

[∣∣∣∣∣ 1
on −2

mn

∑
d=1

(
1

vn −1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

)∣∣∣∣∣
]

≤ 1
on −2

mn

∑
d=1

E

[∣∣∣∣∣ 1
vn −1

vn−d

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]

≤ 1
on −2

mnε

≤ vn −1
on −2

ε
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≤ 2ε .

Moreover, Inequality (6.40) implies that∣∣∣∣∣ 1
on − 2

mn

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣−→n→∞
0

and, consequently, limn→∞ J1n = 0 in norm L1. Regarding J2n,

E[|J2n|] ≤ 2
(on − 2)(vn − 1)

vn−1

∑
d=mn+1

vn−d

∑
j=1

E[|Δ(L, jL),LuΔ(L,( j+d)L),Lu|]

≤ 2
(on − 2)(vn − 1)

vn−1

∑
d=mn+1

(vn − d)E[|ΔLu,LuΔ(L,(1+d)L),Lu|]

=
2

(on − 2)(vn − 1)

M

∑
d1=1

d1E[|ΔLu,LuΔ(L,(1+vn−d1)L),Lu|]

≤ 2
(on − 2)(vn − 1)

M

∑
d1=1

d1E[Δ2
Lu,Lu]

1/2E[Δ2
(L,(1+vn−d1)L),Lu]

1/2

=
2E[Δ2

Lu,Lu]

(on − 2)(vn − 1)
M(M+ 1)

2
−→
m→∞

0,

where we used the definition of M, Holder’s inequality and the station-
arity of the process.

The proof of Limit (6.45) needs the same steps used to showLimit (6.42).
��

Now we prove that all the assumptions of Lemmas 6.2 and 6.3, apart
from Limit (6.38), are satisfied by any stationary point process indepen-
dent at distance l.

Lemma 6.4. Let P be a stationary point process such that H(P ∩ .) has
finite second moment measure. Let us assume that there exist 0 < l < ∞,
such that P ∩ A and P ∩ B are independent for each A, B ∈ B2 with
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d(A,B) > l. Then, assuming L = l, the assumptions of Lemma 6.3 hold
and

E
[
MLu,LuM(L, jL),Lu

]
= 0, ∀ j > 4.

Proof. From the definition of My,x and Lemma 6.1, it turns out that
{M(L, jL),Lu} j∈N have all the same distribution with E[MLu,Lu] = 0 and, if
d ≥ 4, M(L, jL),Lu and M(L,( j+d)L),Lu are independent for any j. Thus,

E[MLu,LuM(L, jL),Lu] = E[MLu,Lu]E[M(L, jL),Lu] = 0, ∀ j > 4.

Similarly,

∞

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu]

=
4

∑
j=2

E[ΔLu,LuΔ(L, jL),Lu]+
∞

∑
j=5

E[ΔLu,Lu]E[Δ(L, jL),Lu]

=
3

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu]

and, using Holder’s inequality,

3

∑
d=1

E[ΔLu,LuΔ(L,(1+d)L),Lu] ≤
3

∑
d=1

E[Δ2
Lu,Lu]

1
2 E[Δ2

(L,(1+d)L),Lu]
1
2

= 3E[Δ2
Lu,Lu]< ∞,

because H(P ∩ .) has finite second moment measure. Using the same
steps, we can show that Inequality (6.43) holds.

To show Limit (6.41), we observe that, due to the independence of the
process at distance greater than L, the sequence {Δ(L, jL),LuΔ(L,( j+d)L),Lu} j∈N
is ergodic for each d ∈ N. Then, for the Birkhoff ergodic theorem

E

[∣∣∣∣∣ 1m m

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]
−→
m→∞

0,
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for any d ∈N. Moreover, since Δ(L, jL),Lu and Δ(L,( j+d)L),Lu are independent
for any j ∈ N when d ≥ 4, the product Δ(L, jL),LuΔ(L,( j+d)L),Lu has always
the same distribution for any j ∈ N and d ≥ 4. Thus,

sup
d∈N

E

[∣∣∣∣∣ 1m m

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]

= sup
d≤4

E

[∣∣∣∣∣ 1m m

∑
j=1

Δ(L, jL),LuΔ(L,( j+d)L),Lu −E[ΔLu,LuΔ(L,(1+d)L),Lu]

∣∣∣∣∣
]
−→
m→∞

0.

Limit (6.44) can be proven analogously. ��
Remark 6.2. For any fixed d ≥ 2, the hypotheses of stationarity and inde-
pendence at distance l = L of the point process ensures that

E

[∣∣∣∣∣ 1m m

∑
i=1

d

∑
j=2

M(iL,L),(iL,L)M(iL, jL),(iL,L) −
d

∑
j=2

E[MLu,LuM(L, jL),Lu]

∣∣∣∣∣
]
−→
m→∞

0,

but they are not sufficient to ensure the uniform convergence with respect
to d.

Now we have all the tools to prove Limit (6.16) for a sequence of in-
creasing rectangles without fixed vertical side.

Proposition 6.6. Let P be a stationary point process such that H(P ∩ .)
has finite second moment measure. Let us suppose that there exist 0 <
l < ∞ such that P ∩A and P ∩B are independent for each A, B ∈ B2

with d(A,B)> l and, set L = l, Limit (6.38) in Lemma 6.2 is satisfied. Let
{Bn}n≥1 be a sequence of rectangles which satisfies Conditions 6.4. Then,

1
(on − 2)(vn− 1)

on

∑
i=1

D2
i −→n→∞

E[M2
Lu,Lu]+ 2E

[
MLu,Lu

4

∑
j=2

M(L, jL),Lu

]
,

in L1 norm.
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Proof. Since the point process is independent at distance L, Di =∑vn
j=1Mi, j

if i< on (Equation (6.10)) and Don = ∑vn
j=1 Δxon, j ,xon,1

. Therefore,

1
(on − 2)(vn − 1)

on

∑
i=1

D2
i =

1
(on − 2)(vn− 1)

on−1

∑
i=2

vn

∑
j=1

M2
i, j (=: I1n)

+
2

(on − 2)(vn− 1)

on−1

∑
i=2

vn−1

∑
j=1

vn

∑
j′= j+1

Mi, jMi, j′ (=: I2n)

+
1

(on − 2)(vn− 1)

(
vn

∑
j=1

2

∑
h=1

Δxh, j ,x1,1

)2

(=: I3n)

+
1

(on − 2)(vn− 1)

(
vn

∑
j=1

Δxon, j ,xon,1

)2

(=: I4n)

and we will study the convergence of I1n, I2n, I3n and I4n.
First, we show that limn→∞ I1n =E[M2

Lu,Lu] in norm L1. Since {Mi, j}i>1, j

are stationary and the point process has finite second moment measure,
E[M2

i, j] = E[M2
Lu,Lu]<∞, for each i= 2, . . ., on−1 and j= 1, . . ., vn. More-

over, due to the independence at distance L, for any fixed j, {Mi, j}i>1 is
an ergodic sequence. We define,

FiLe1 = MiLe1,iLe1 ,

for each i ∈ N. Since {FiLe1}n≥1 is a stationary and ergodic sequence (due
to the properties {Mi, j}i>1) and (.)2 is a continuous function, we can use
the Birkhoff ergodic theorem (Theorem 2.3 in [62]). Then,

1
m

m

∑
i=1

F2
iLe1 −→

m→∞
E[F2

Le1 ],

in norm L1, where E[M2
Lu,Lu] = E[F2

Le1 ]. Using this result and the stationar-
ity of the point process, we obtain

E
[∣∣I1n −E[M2

Lu,Lu]
∣∣]
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≤ 1
(vn − 1)

vn

∑
j=1

E

[∣∣∣∣∣ 1
(on − 2)

on−1

∑
i=2

M2
i, j −E[M2

Lu,Lu]

∣∣∣∣∣
]
+

E[M2
Lu,Lu]

(vn − 1)

=
vn

(vn − 1)
E

[∣∣∣∣∣ 1
(on − 2)

on−1

∑
i=2

M2
i,1 −E[M2

Lu,Lu]

∣∣∣∣∣
]
+

E[M2
Lu,Lu]

(vn − 1)

→ 0, n → ∞.

In order to show that limn→∞ I2n = 2E[MLu,Lu ∑4
j=2 M(L, jL),Lu] in norm

L1, it is sufficient to prove that the hypotheses of Lemma 6.2 hold. Limit
(6.38) is guaranteed by our assumptions, while Lemma 6.4 ensures that

E
[
MLu,LuM(L, jL),Lu

]
= 0, ∀ j > 4.

Therefore, the limit holds.
Regarding I3n and I4n, we can rewrite them in the following way:

I3n =
1

(on − 2)(vn− 1)

vn

∑
j=1

(
2

∑
h=1

Δxh, j ,x1,1

)2

(=: J1n)

+
2

(on − 2)(vn− 1)

vn−1

∑
j=1

vn

∑
j′= j+1

(
2

∑
h=1

Δxh, j ,x1,1

)(
2

∑
h=1

Δxh, j′ ,x1,1

)
(=: J2n)

I4n =
1

(on − 2)(vn− 1)

vn

∑
j=1

Δ2
xon, j ,xon,1

(=: K1n)

+
2

(on − 2)(vn− 1)

vn−1

∑
j=1

vn

∑
j′= j+1

Δxon, j ,xon,1
Δxon, j′ ,xon,1

(=: K2n)

As before, using the Birkhoff ergodic theorem,

1
vn

vn

∑
j=1

(
2

∑
h=1

Δxh, j ,x1,1

)2
L1−→

n→∞
E

[(
Δ0

Lu+Δ0
(2L,L),Lu

)2
]

1
vn

vn

∑
j=1

Δ2
xon, j ,xon,1

L1−→
n→∞

E
[
Δ2

Lu,Lu
]
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and thus

J1n =
1

on − 1
vn

vn − 1
1
vn

vn

∑
j=1

(
2

∑
h=1

Δxh, j ,x1,1

)2
L1−→

n→∞
0

K1n =
1

on − 1
vn

vn − 1
1
vn

vn

∑
j=1

Δ2
xon, j ,xon,1

L1−→
n→∞

0.

Finally, thanks to Lemma 6.4, we can apply Lemma 6.3 and then
limn→∞ J2n = 0 and limn→∞ K2n = 0 in norm L1. ��

6.4 CLT for a positive functional of a stationary point
process independent at distance l

We are now ready to formulate and prove our main result, by applying
Propositions 6.2 and 6.6.

Theorem 6.1. Let P be a stationary point process such that H (P ∩ .)
has finite fourth moment measure. Let us suppose that there exist 0< l <∞
such that P ∩ A and P ∩ B are independent for each A, B ∈ B2 with
d(A,B) > l and, set L = l, Limit (6.38) in Lemma 6.2 is satisfied. Let
{Bn}n≥1 be a sequence of rectangles which satisfies Conditions 6.4. Then,

n−αγ(H(Pn)−E[H(Pn)])
D−→

n→∞
N (0,σ2),

where Pn = P ∩Bn, σ2 = (cβ+1
1 c2)

(
E[M2

Lu,Lu]+2E
[
MLu,Lu ∑4

j=2M(L, jL),Lu

])
and γ = 1/2(β + 1).

Proof. From the definition of the sequence of rectangles {Bn}n≥1, for each
n, we can define a lattice of points {xi, j}i, j ∈R2 such that

Bn =
on⋃
i=1

vn⋃
j=1

QL/2(xi, j).
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Since our point process is supposed to be stationary, we can think to trans-
late the sets {Bn}n≥1 so that xi, j ∈ Z2

L for all i = 1, . . ., on and j = 1, . . .,
vn. Moreover, for each x ∈ Z2

L = {yL : y ∈ Z2}, we define the σ -algebra
Fx=σ({P ∩QL/2(y) |y ∈ Z2

L,y1 ≤ x1}).
Similarly to the proof of Theorem 3.1 in [61], for any fixed n, we define

a filtration {G0, . . .,Gon}, whereG0 is the trivial σ -algebra andGi = Fxi,1 ,
for i = 1, . . ., on. As a consequence,

H(Pn)−E[H(Pn)] =
on

∑
i=1

[E[H(Pn) |Gi]−E[H(Pn) |Gi−1]] =:
on

∑
i=1

Di.

From its definition, fixed n, {Di}on
i=1 is a martingale difference and thus if

we multiply it by a constant we still have a martingale difference. Then,
let us consider {Di/

√
(on − 2)(vn− 1)}on

i=1. For the central limit theorem
for martingale differences (Theorem 2.3 in [49]), if

sup
n≥1

E

⎡⎣ max
1≤i≤on

(
Di√

(on − 2)(vn− 1)

)2
⎤⎦< ∞ (6.46)

1√
(on − 2)(vn − 1)

max
1≤i≤on

|Di| P−→
n→∞

0, (6.47)

and there exists a constant τ2 ≥ 0 such that

1
(on − 2)(vn− 1)

on

∑
i=1

D2
i

L1−→
n→∞

τ2, (6.48)

then,

H(Pn)−E[H(Pn)]√
(on − 2)(vn− 1)

=
1√

(on − 2)(vn − 1)

on

∑
i=1

Di
D−→

n→∞
N (0,τ2). (6.49)

By using Jensen’s inequality, a sufficient condition for (6.46) is
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E

⎡⎣ max
1≤i≤on

(
Di√

(on − 2)(vn− 1)

)2
⎤⎦≤ 1

(on − 2)(vn− 1)

on

∑
i=1

E[D2
i ]<C1 <∞,

for all n ≥ 1. We can show the sufficient condition, by applying Propo-
sition 6.2. Since δ1= δ2=0, δ3=1, δ4=2 and δ5=2 for a point process in-
dependent at distance L (see Proposition 6.3), the two constraints on the
parameters required by the Proposition 6.2 hold:

(β + 1)/2= γ ≥ max{(δ3β + 1)/2,(1+ δ1(1+β ))/2,(δ5β + 2)/4}
= (β + 1)/2

(β + 1)/2= γ > max{(δ4β + 1)/4,(1+ δ2(1+β ))/4}= β/2+ 1/4.

As a consequence, there exists a constantC such that

o−2γ
n

on

∑
i=1

E[D2
i ]<C < ∞, ∀n ≥ 1,

and then, by using also the monotonicity of the sequence {vn/o
β
n } and

Property (6.4), the Inequality (6.46) is verified

1
(on − 2)(vn− 1)

on

∑
i=1

E[D2
i ] =

o1+β
n

(on − 2)(vn− 1)
o−2γ
n

on

∑
i=1

E[D2
i ]

=

(
on − 2
on − 2

+
2

on − 2

)
oβ
n

vn

vn

vn − 1
o−2γ
n

on

∑
i=1

E[D2
i ]

≤ 3Cmax

(
oβ
1

v1
,

1
c2

)
< ∞.

Using Boole’s and Markov’s inequalities, we can see that a sufficient
condition for (6.47) is that for any ε > 0

P

(
max

1≤i≤on
|Di| ≥

√
(on −2)(vn −1)ε

)
≤ 1

ε4(on −2)2(vn −1)2

on

∑
i=1

E[D4
i ]−→n→∞

0.
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We have already seen that, for γ = (1/2)(β + 1), Proposition 6.2 holds
and thus,

o−4γ
n

on

∑
i=1

E[D4
i ]−→n→∞

0.

By using the previous limit and Properties (6.3) and (6.4) of {vn}n≥1 and
{on}n≥1, we can verify the sufficient condition for Limit (6.47),

1
ε4(on − 2)2(vn − 1)2

on

∑
i=1

E[D4
i ] =

1
ε4

o2
n

(on − 2)2
o2β
n

(vn − 1)2
o−4γ
n

on

∑
i=1

E[D4
i ]

→ 1
ε4 ·1 · 1

c2
2

·0 = 0, n → ∞.

Finally, Limit (6.48) follows from Proposition 6.6 with τ2 = E[M2
Lu,Lu] +

2E[MLu,Lu ∑4
j=2 M(L, jL),Lu] and thus Limit (6.49) holds.

It remains to show that the thesis derives from Limit (6.49). Thanks to
Properties (6.3) and (6.4),√

(on − 2)(vn− 1)
nαγ =

oγ
n

nαγ

√
on − 2

o1/2
n

√
vn − 1

oβ/2
n

→ cγ
1 ·1 · c1/2

2 =

√
cβ+1
1 c2, n → ∞,

and thus we obtain the thesis for σ2 = τ2(cβ+1
1 c2). ��

With a proof similar to the one of the previous theorem, but using
Proposition 6.5, we can show the following result for a sequence of in-
creasing rectangles with vertical side of fixed length.

Theorem 6.2. Let P be a stationary point process such that H (P ∩ .)
has finite fourth moment measure. Let us suppose that there exist 0< l <∞
such that P ∩ A and P ∩ B are independent for each A, B ∈ B2 with
d(A,B) > l. Let {Bn}n≥1 be a sequence of rectangles such that, for each
n, Bn has vertical side V (V ∈ R+) and horizontal side L · on, with L = l
(on ∈ N and {on}n≥1 satisfies Limit (6.3)). Then,
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n− α
2 (H(Pn)−E[H(Pn)])

D−→
n→∞

N (0,σ2),

where Pn = P ∩Bn, σ2 = c1[E[(H(P ∩RL/2,V/2(0))−E[H(P ∩RL/2,V/2(0))]
+E[H(P∩RL/2,V/2(Le1)) |F0]−E[H(P∩RL/2,V/2(0)) |F−Le1 ]], Rl1/2,l2/2(x) is a
rectangle with horizontal side l1, vertical side l2 and centered at x.

Proof. For simplicity, we prove the theorem in case V/L ∈ N. The proof
can be easily generalized to the case V/L ∈/N.

Analogously to the proof of Theorem 6.1, for each n ≥ 1, we define a
lattice of points {xi, j}i, j ∈R2 such that

Bn =
on⋃
i=1

vn⋃
j=1

QL/2(xi, j).

Moreover, due to the stationarity of the point process, we can assume that,
without loss of generality, xi, j ∈ Z2

L, for all i = 1, . . ., on and j = 1, . . .,
V/L. For each x ∈ Z2

L, we define the σ -algebra Fx=σ({P ∩QL/2(y) |y ∈
Z2

L,y1 ≤ x1}).
Similarly to the proof of Theorem 6.1, fixed n, we define a filtration

{G0, . . ., Gon}, where G0 is the trivial σ -algebra and Gi = Fxi,1 , for i = 1,
. . ., on. Therefore,

H(Pn)−E[H(Pn)] =
on

∑
i=1

E[H(Pn) |Gi]−E[H(Pn) |Gi−1] =:
on

∑
i=1

Di.

and, fixed n, {Di}on
i=1 is a martingale difference. Since if we multiply a

martingale difference by a constant we still have a martingale difference,
we consider {Di/

√
(on − 2)}on

i=1. For the central limit theorem for martin-
gale differences (Theorem 2.3 in [49]), we have that,

H(Pn)−E[H(Pn)]√
(on − 2)

=
1√

(on − 2)

on

∑
i=1

Di
D−→

n→∞
N (0,τ2), (6.50)

if
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sup
n≥1

E

⎡⎣ max
1≤i≤on

(
Di√

(on − 2)

)2
⎤⎦< ∞ (6.51)

1√
(on − 2)

max
1≤i≤on

|Di| P−→
n→∞

0, (6.52)

and there exists a constant τ2 ≥ 0 such that

1
(on − 2)

on

∑
i=1

D2
i

L1−→
n→∞

τ2. (6.53)

Analogously to the proof of Theorem6.1, two sufficient conditions of (6.51)
and (6.52) can be derived by applying Jensen’s inequality to (6.51) and
Boole’s and Markov’s inequalities to (6.52),

1
(on − 2)

on

∑
i=1

E[D2
i ]<C1 < ∞, for all n ≥ 1

1
ε4(on − 2)2

on

∑
i=1

E[D4
i ]−→n→∞

0.

We can prove both conditions by using Jensen’s inequality and Inequali-
ties (6.12) and (6.13),

1
(on − 2)

on

∑
i=1

E[D2
i ] =

1
(on − 2)

on

∑
i=1

E

⎡⎣(V/L

∑
j=1

Mi, j

)2
⎤⎦

≤ V
L(on − 2)

on

∑
i=1

V/L

∑
j=1

E
[
M2

i, j

]
≤ on

on − 2

(
V
L

)2

8E0,2

≤ 3

(
V
L

)2

8E0,2 < ∞, for all n ≥ 1
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1
ε4(on − 2)2

on

∑
i=1

E[D4
i ] ≤

1
ε4(on − 2)2

(
V
L

)3V/L

∑
j=1

E
[
M4

i, j

]
≤ on

ε4(on − 2)2

(
V
L

)4

64E0,4−→
n→∞

0.

Finally, Limit (6.50) holds, since Proposition 6.5 guarantees Limit (6.53)
with

τ2 = E[(H(P ∩RL/2,V/2(0))−E[H(P ∩RL/2,V/2(0)) |F−Le1 ]

+ E[H(P ∩RL/2,V/2(Le1)) |F0]−E[H(P ∩RL/2,V/2(0))].

To obtain the thesis, we use Limit (6.50) and Property (6.3),

n− α
2 (H(Pn)−E[H(Pn)])=

√
(on − 2)

n− α
2

1√
(on − 2)

on

∑
i=1

Di
D−→

n→∞
N (0,c1τ2).

��

6.5 Asymptotic normality of the estimators of the
intensity

We now apply Theorem 6.1 to retrieve the asymptotic normality of the
estimators described in Section 5.3, under some regularity conditions on
the fibre processes involved.

Corollary 6.1. Let Φ1 and Φ2 be two stationary and independent fibre
processes with intensities LA,1 and LA,2, respectively. Moreover, let Φ2

be also isotropic. Let us suppose that Φ1 ∩ Φ2 has finite fourth moment
measure, there exists 0 < l < ∞ such that the point process Φ1 ∩ Φ2 is
independent at distance l and Limit (6.38) in Lemma 6.2 is satisfied with
L = l. Then, for any sequence {Bn}n≥1 of rectangular sets in R2, which
satisfies Conditions 6.4,
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√
n(L̂A,1(Bn)−LA,1)

D−→
n→∞

N

(
0,

π2τ2

4L2
A,2l

4cβ+1
1 c2

)
, (6.54)

where τ2 = E[M2
Lu,Lu]+ 2E

[
MLu,Lu ∑4

j=2ML(1, j),Lu

]
.

Proof. Estimator L̂A,1(Bn) is given by

π
2LA,2

H(Pn)

ν2(Bn)
,

where H(Pn)= card(Φ1 ∩Φ2 ∩Bn)=NΦ1∩Φ2(Bn), with Pn = Φ1 ∩Φ2 ∩
Bn, and thus H trivially satisfies Conditions 6.3.

Setting the parameter α of Equation (6.3) equal to 1/(β +1), we obtain
that αγ = α(β + 1)/2= 1/2. Then,

√
n

ν2(Bn)
=

√
n

l2onvn

=
nαγ

l2onvn

=
1

l2nαγ
n2αγ

onvn

=
1

l2nαγ
nα

on

nαβ

vn

=
1

l2nαγ
nα

on

oβ
n

vn

(
nα

on

)β

and we can write the left-hand side of (6.54) in the following way,

√
n(L̂A,1(Bn)−LA,1) =

√
n

ν2(Bn)

π
2LA,2

(H(Pn)−E[H(Pn)])

=
nα

on

oβ
n

vn

(
nα

on

)β π
l22LA,2

1
nαγ (H(Pn)−E[H(Pn)]) .



230 6 A central limit theorem for functionals of point processes

By using Theorem 6.1 and Limits (6.3) and (6.4), we obtain the thesis. ��
Corollary 6.2. Let Φ1 and Φ2 be two stationary and independent fibre
processes with intensities LA,1 and LA,2, respectively. Let us define, for
any A ∈B2,

H(Φ1 ∩Φ2 ∩A) =

{
∑y∈Φ1∩Φ2

IA′ (y)|sin(w(TyΦ2)−w(TyΦ1))| if A∩Φ1 ∩Φ2 �= /0

0 otherwise,
(6.55)

and let Φ1 ∩ Φ2 be such that H(Φ1 ∩ Φ2 ∩ .) has finite fourth moment
measure. Moreover, let us suppose that there exists 0 < l < ∞ such that
the point process Φ1 ∩Φ2 is independent at distance l and Limit (6.38)
in Lemma 6.2 is satisfied with L = l. Then, for any sequence {Bn}n≥1 of
rectangular sets in R2, which satisfies Conditions 6.4,

√
n(̂̂LA,1(Bn)−LA,1)

D−→
n→∞

N

(
0,

τ2

L2
A,2l

4cβ+1
1 c2

)
, (6.56)

where τ2 = E[M2
Lu,Lu]+ 2E

[
MLu,Lu ∑4

j=2 ML(1, j),Lu

]
.

Proof. Estimator ̂̂LA,1(Bn) can be rewritten as H(Pn)/(LA,2ν2(Bn)), where
H(Φ1 ∩Φ2 ∩ .) is defined in Equation (6.55) and Pn=Φ1 ∩Φ2 ∩Bn. It can
be easily proven that H satisfies Conditions 6.3.

Now, following the same steps of the proof of Corollary 6.1, we obtain
that the left-hand side of (6.56) can be rewritten as

√
n(̂̂LA,1(Bn)−LA,1) =

√
n

ν2(Bn)LA,2
(H(Pn)−E[H(Pn)])

=
nα

on

oβ
n

vn

(
nα

on

)β 1
l2LA,2

1
nαγ (H(Pn)−E[H(Pn)]) .

By using Theorem 6.1 and Limits (6.3) and (6.4), we obtain the thesis. ��
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With suitable conditions on the system of circles used, we can also de-
fine a sequence of estimators {L̂circles

A,n }n∈N which is asymptotically normal

(see Equation 5.6 for the definition of L̂circles
A ).

Conditions 6.6.
Let {Bn}n≥1 be a sequence of rectangular sets which satisfies Condi-

tions 6.4. Then, we define {Cn}n≥1 as an increasing sequence of systems
of circles which satisfies the following properties,

1. each circle has ray R, with R ≤ L/2,
2. each circle must be all contained in one square QL/2(xi, j) of the grid

that cover Bn, for each n ≥ 1,
3. the number of circles contained in QL/2(xi, j) is NL, for each QL/2(xi, j)

of the grid of squares that cover Bn and for each n ≥ 1.

In practice, we define a system C of NL circles with ray R which are all
contained in the square QL/2(0). Then, we shift C by xi, j (obtaining thus
Ci, j) in each square QL/2(xi, j) of the grid that covers Bn, for each n ≥ 1.
Thus, for any n ≥ 1, Cn is the union of the systems {Ci, j}i, j.

Corollary 6.3. Let Φ1 be a stationary fibre processes with intensity LA,1.
Let {Bn}n≥1 be a sequence of rectangular sets which satisfies Condi-
tions 6.4 and let {Cn}n≥1 be an increasing sequence of systems of cir-
cles which satisfies Conditions 6.6. Moreover, let us suppose that Φ1 ∩C∞
has finite fourth moment measure. If there exists 0 < l < ∞ such that the
point process Φ1 ∩C∞ is independent at distance l and, assuming L = l,
Limit (6.38) in Lemma 6.2 is satisfied, then

√
n(L̂circles

A,n −LA,1)
D−→

n→∞
N

(
0,

τ2

16R2N2
l c

β+1
1 c2

)
, (6.57)

where L̂circles
A,n is the estimator L̂circles

A (Equation 5.6) corresponding to the

system of circles Cn and τ2 = E[M2
Lu,Lu]+ 2E

[
MLu,Lu ∑4

j=2ML(1, j),Lu

]
.
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Proof. First, let us observe that for each n ≥ 1 the number of circles in
the system Cn is Nlonvn (due to Conditions 6.6) and that C∞ ∩Bn = Cn.
Therefore, the estimator L̂circles

A,n can be seen as

1
4RNl

H(Pn)

onvn
,

where H(Pn)= card(Φ1 ∩C∞ ∩Bn), with Pn = Φ1∩C∞ ∩Bn, and thus H
trivially satisfies Conditions 6.3.

Now, following the same steps of the proof of Corollary 6.1, we obtain
that the left-hand side of (6.57) can be rewritten as

√
n(L̂circles

A,n −LA,1) =

√
n

4RNlonvn
(H(Pn)−E[H(Pn)])

=
nα

on

oβ
n

vn

(
nα

on

)β 1
4RNl

1
nαγ (H(Pn)−E[H(Pn)]) .

and, by using Theorem 6.1 and Limits (6.3) and (6.4), we obtain the thesis.
��



Chapter 7
Applications

In this chapter, we apply estimators L̂A,1 (Equation (5.8)) and L̂circles
A

(Equation (5.6)) to both simulated and real data. Estimator ̂̂LA,1 (Equa-
tion (5.10)) is not considered because it can be affected by computational
problems, when the directions of the fibres at the intersection points are
close and thus the denominator is close to zero.

In Section 7.1, we use simulated data to verify empirically the asymp-
totic properties (i.e. the speed of convergence) of the two estimators and
we derive two methods to compute their variance when only one window
of observation is available. The aim of this study is to verify the behavior
of our estimators in presence of finite windows of observations, and thus
finite samples. Moreover, since in real applications the window of observa-
tion is usually a digital image, we verify the asymptotic properties of the
estimators also on simulated images of fibre processes and we compare
them with their “theoretical” counterpart.

In Section 7.2, we apply the two estimators to images of processes of
angiogenesis on mouse cornea. The mice were treated with different anti-
bodies, which should inhibit the angiogenesis process. Therefore, we want
to determine the best performing antibody in a quantitative way, by esti-
mating the intensity of the corresponding fibre processes of angiogenesis
and by comparing them.

233
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Fig. 7.1 Examples of realizations of the four types of process Φ1 used in the simu-
lations: on the top-left-hand side, the Poisson horizontal segment process; on the top-
right-hand side, the Poisson segment process; on the bottom-left-hand side, the Poisson
circle process; on the bottom-right-hand side, the Boolean process of arcs of parabola.

7.1 Simulations

In this section, we study the behavior of estimators L̂A,1 and L̂circles
A on sim-

ulations, in order to verify empirically their asymptotic properties. In the
simulations, we used Boolean fibre processes (see Section 5.4) to define
both the fibre process under study Φ1 and the test one Φ2, and we use λ1

and λ2 to denote the intensity of the Poisson point process used to generate
Φ1 and Φ2, respectively. In order to show that the asymptotic properties
are independent from the shape of the fibre process Φ1, we considered four
types of process Φ1 (see Figure 7.1):

• the Poisson horizontal segment process with length of the segments l1,
• the Poisson segment process with length of the segments l1 and uniform

distribution of their orientation,
• the Poisson circle process with ray R1,
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• a Boolean process where the fibres are composed by two arcs of
parabola.

Namely, in the last case, if the center of the fibre is x0, then the fibre can
be represented in the following way:

x2 =

⎧⎨⎩ x0
2+
√

x1 − x0
1 if x1 ∈ [x0

1,x
0
1 + lx/2]

x0
2 −
√

x0
1 − x1 if x1 ∈ [x0

1 − lx/2,x0
1),

where lx is the width of the range of the x-values of the arcs of parabola.
The unbiasedness, the strong consistency and the asymptotic normal-

ity of L̂A,1 require that the test process Φ2 is stationary and isotropic (see
Section 5.3, Proposition 5.2 and Corollary 6.1, respectively). Therefore,
we considered two types of test processes Φ2: the Poisson segment pro-
cess with length of the segments l2 and uniform distribution of their ori-
entation and the Poisson circle process with ray R2. In the following, we
will call L̂A,1,seg the estimator L̂A,1 where Φ2 is a Poisson segment pro-
cess and L̂A,1,circ the estimator L̂A,1 where Φ2 is a Poisson circle process.
Our tests over different choices for the geometry of Φ1 and Φ2 have the
aim to reveal whether the speed of convergence of the estimators (both
for what concerns consistency and asymptotic normality) is influenced by
the geometric characteristics of the fibre processes under study, or instead
depends only on their intensities. In fact, estimator L̂A,1 denotes a class
of estimators which depend on the particular chosen test process Φ2. The
choice of Φ2 can be crucial in case of a small window of observation, in
order to reduce the variance of the estimator and thus obtain an accurate
estimate of LA,1. The study of the dependence of the asymptotic properties
of L̂A,1 on the parameters that characterize Φ2 can give us an indication on
how to choose Φ2.

In the simulations, we fixed the parameters of the process Φ1 and we
varied the parameters of the process Φ2, in order to observe the asymptotic
behavior in the various cases. We set λ1 = 0.004, l1 = 20, R1 = 10 and
lx = 20 and thus the true intensities of the corresponding processes are
λ1lϕ = 0.08, 0.2513, 21.52, respectively, where lϕ represents the length of
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a fibre of the process. Regarding the process Φ2, we allowed λ2 to vary in
[0.002,0.008], l2 = 20 or 60 and R2 = 10 or 30. For the estimator L̂circles

A ,
we considered a grid of non-intersecting circles with the same ray R, R ∈
[5,30]. Moreover, in all the simulations we considered squared windows
of observationW with side: 100, 200, 300, 400 and 500. In the following,
we will call dimension (or dim) of the window the length of its side.

In Subsection 7.1.1, we verify the asymptotic properties of the estima-
tors on simulated data. Moreover, since in the applications often we have
only one or few images of the process Φ1, in Subsection 7.1.2 we study
how to estimate the variance of the estimators L̂A,1 and L̂circles

A in this sit-
uation. Finally, in Subsection 7.1.3 we simulate “digital images” of fibre
processes (that is we use the 2D-box approximation given by the pixels to
represent the fibres) and we observe the asymptotic behavior of the esti-
mators in a situation closer to the real applications.

7.1.1 Behavior of the variance and asymptotic normality of
the estimator

In order to verify empirically the speed of convergence in the consistency
of L̂A,1 and L̂circles

A and thus to observe the asymptotic behavior of their
variance (also with respect to the parameters of the process Φ2), we gen-
erated 100 observations of the process Φ1, for each type of process Φ1

and dimension of W , and we computed: L̂A,1,seg (with both l2 = 20 and
l2 = 60) and L̂A,1,circ (with both R2 = 10 and R2 = 30) for 10 values of λ2

in [0.002,0.008], and L̂circles
A with 11 values of R in [5,30]. For fixed Φ1,

dim and either (λ2,l2) or (λ2,R2) or R (depending on the estimator used),
the variance was computed by using the sample variance of the values of
the estimator computed over the 100 observations.

Regarding estimator L̂A,1, in Figures 7.2, 7.3, 7.4 and 7.5, we can see
that, fixed any combination of shape of process Φ2, type of process Φ1 and
dimension of W , the variance decreased when λ2 increased. Moreover, in
general, fixed λ2, the variance of L̂A,1,seg with l2 = 60 was lower than the
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L̂A,1,seg ,l2 = 20

L̂A,1,seg ,l2 = 60

L̂A,1,circ ,R2 = 10

L̂A,1,circ ,R2 = 30

Fig. 7.2 Variance of the estimator L̂A,1 computed on 100 observations of the Poisson
horizontal segment process Φ1 (λ1 = 0.004 and l1 = 20). As test fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle
process, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].

corresponding one with l2 = 20, and the variance of L̂A,1,circ with R2 = 30
was lower than the corresponding one with R2 = 10. In fact, the variance
in Limit (6.54) is inversely proportional to L2

A,2, but also proportional to τ2

which depends on Φ2. Finally, fixed any combination of type of process
Φ2 and Φ1, the variance decreased as the dimension increased (as should
happen due to Limit (6.54)).

Regarding estimator L̂circles
A , first we observe that, in order to have a

system of non-intersecting circles and have a high number of circles in
the system, we used a grid of N = M ×M circles with M = dim/(2R).
Therefore, the denominator in L̂circles

A is 4RN = dim2/2R, i.e. enlarging
the ray of the circles we do not decrease the variance. In fact, with a large
R, we obtain a smaller sample of the point process of intersection and thus
we augment the variance of #(Φ1 ∩ψ) (and then of L̂circles

A ). We verified
this behavior on the simulations. Figure 7.6 confirms our assumptions:
fixed any combination of Φ1 and dimension of W , the variance increased
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as R increased. Moreover, fixed any combination of Φ1 and R, the variance
decreased as the dimension of the window increased, as was expected.

In conclusion, for any type of process Φ1, at small dimension of the
window of observation (such as 100 or 200), a considerable reduction of
the variance of estimators L̂A,1,seg and L̂A,1,circ can be achieved by aug-
menting both λ2 and either l2 (for L̂A,1,seg) or R2 (for L̂A,1,circ). Instead, in
order to reduce the variance of L̂circles

A , we need to decrease R. For higher
values of the dimension of the window, we cannot notice any significant
difference among the variances of the estimators with respect to the pa-
rameters used.

Finally, by comparing the variances of estimators L̂circles
A and L̂A,1,circ

for a fixed dimension of the image and a fixed value of the radius, we
can notice that not always the variance of L̂circles

A (computed on a deter-
ministic grid of circles) is lower than the variance of L̂A,1,circ (computed
on a random grid of circles), as we could expected. For example, often
in simulations Var(L̂circles

A ) and Var(L̂A,1,circ) are close for R=R2=30 and
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Fig. 7.3 Variance of the estimator L̂A,1 computed on 100 observations of the Poisson
segment process Φ1 (λ1 = 0.004 and l1 = 20). As test fibre process Φ2, we used the
Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle pro-
cess, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].
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Fig. 7.4 Variance of the estimator L̂A,1 computed on 100 observations of the Poisson
circle process Φ1 (λ1 = 0.004 and R1 = 10). As test fibre process Φ2, we used the
Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle pro-
cess, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].

λ2 = 0.01, therefore it is sufficient to increase λ2 to obtain Var(L̂A,1,circ)<

Var(L̂circles
A ) (since Var(L̂circles

A ) decreases when λ2 increases). Thus, L̂circles
A

(and L̂A,1,seg) can have a lower variance than L̂circles
A by tuning suitably the

parameters of Φ2.
Using the same data, we also verified empirically the asymptotic nor-

mality of the estimators by a χ2-test of goodness of fit with null hypoth-
esis that the estimator is normally distributed (with mean and variance
estimated from the sample). We found that, for the estimator L̂A,1, we did
not reject the null hypothesis in 90% of the cases at level 0.05 and in
97.75% of the cases at level 0.01. Moreover, the cases in which we re-
jected the hypothesis did not show any particular dependence on the value
of the parameters (such as λ2 and the dimension of the window), but were
due to the particular sample process. Considering the estimator L̂circles

A , we
did not rejected the null hypothesis in 90.45% of the cases at level 0.05
and 97.27% of the cases at level 0.01. Therefore, for both estimators, we
can approximate their distribution with a normal distribution, already at
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dimension 100 of the window of observation. In Figure 7.7, we can see
an example of asymptotic convergence of the distribution of the estimator
L̂A,1.

7.1.2 Estimation of the variance on a single window of
observation

As we mentioned previously, in many applications we have only one or
few images of the process Φ1 from which we can estimate its intensity. If
we suppose that the point process of intersections is independent at dis-
tance l and we have a sufficiently large window of observationW , we can
subdivide the window into independent subwindows that we can use as
a sample of windows of observation for the estimation of τ2 (see Equa-
tions (6.54) and (6.57)). Therefore, the size of W must guarantee a suffi-
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Fig. 7.5 Variance of the estimator L̂A,1 computed on 100 observations of the Poisson
process of arcs of parabola Φ1 (λ1 = 0.004 and lx = 20). As test fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle
process, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].
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Fig. 7.6 Variance of the estimator L̂circles
A computed on 100 observations of the fibre

process Φ1. As system of circles, we used systems of non-intersecting circles consider-
ing 11 values of the ray of the circles R in the interval [5,30]. As fibre process Φ1, we
used: the Poisson segment process with horizontal or uniform directions (λ1 = 0.004
and l1 = 20), the Poisson circle process (λ1 = 0.004 and R1 = 10) and the Poisson
process of arcs of parabola (λ1 = 0.004 and lx = 20).
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ciently large number of subwindows. This assumption allows to estimate
the variance of both L̂A,1 and L̂circles

A .

As an example, we simulated a Poisson horizontal segment process
(Φ1) in a window of observation of dimension 1000. To estimate the in-
tensity, we applied L̂A,1,seg with l2 = 20 and λ2 = 0.003. Since the point
process of the intersections is independent at distance l = 20, we divided
the image in subimages (squares) of dimension 20 and, for the estima-
tion of τ2 (Equation (6.54)), we considered only the subimages with cen-
ters at distance greater or equal to 4l = 80 (i.e. a sample of 144 subim-
ages). In this way, the quantities Mi, j ∑3

d=1 Mi, j+d and Mi′, j′ ∑3
d=1 Mi′, j′+d

were independent for any i, j, i′ and j′. Using the formula of the vari-
ance in Corollary 6.1, we obtained the following 95% confidence interval:
[0.0742,0.0854], which is close to the one computed on 100 observations
of Φ1 in 100 windowsW of side 1000 ([0.0746,0.0850]).

In caseW is not sufficiently large for the previous type of estimation, we
are still able to have a rough estimate of the variance. In fact, for a fixedW ,
we can compute L̂A,1 on n independent realizations of the process Φ2 or we
can compute L̂circles

A using n translated systems of circles (all the systems
must be all contained inside W ). Surely, the n values of the estimators will
be correlated, but if we correct the estimate for the correlation we can still
estimate the variance.

Given a windowW of observation of the process Φ1 and denoting by L̂
an estimator of the the intensity (L̂A,1 or L̂circles

A , in our case), we indicate
with L̂i the ith estimator of type L̂ computed on W , from the ith realization

of Φ2, in case of L̂A,1, and the ith system of circles, in case of L̂circles
A . L̂

denotes the average of these estimators. Obviously, {L̂i}n
i=1 have all the

same distribution and we call μ and σ2, respectively, their mean and vari-
ance. Moreover, since they are calculated on the same window W and the
same realization of the process Φ1, they are not independent and we call
c the covariance of any pair of estimators (c = Cov(L̂i, L̂ j), for any i �= j
and i, j = 1, . . . , n). Due to this dependence, the sample variance of the
estimators is an unbiased estimator for σ2 − c. In fact,
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1
n− 1

E

[
n

∑
i=1

(
L̂i − L̂

)2
]

=
1

n− 1
E

[
n

∑
i=1

L̂2
i − nL̂

2
]

=
1

n− 1

⎡⎣n(σ2+ μ2)− 1
n
E

⎡⎣( n

∑
i=1

L̂i

)2
⎤⎦⎤⎦

=
1

n− 1

[
n(σ2 + μ2)− 1

n

(
nE[L̂2

1]+ n(n− 1)E[L̂1L̂2]
)]

=
1

n− 1

[
n(σ2 + μ2)− 1

n
(n(σ2+ μ2)+ n(n− 1)(c+ μ2))

]
=

1
n− 1

[
n(σ2 + μ2)− 1

n
(nσ2+ n2μ2+ n(n− 1)c)

]
=

1
n− 1

[n(σ2+ μ2)−σ2 − nμ2− (n− 1)c]

=
1

n− 1
[(n− 1)σ2− (n− 1)c]

= σ2 − c = Var(L̂i)−Cov(L̂i, L̂ j).

Therefore, if c ≤ c1σ2 with c1 < 1, then

Var(L̂i)≤ 1
1− c1

1
n− 1

E

[
n

∑
i= j

(
L̂ j − L̂

)2
]
, (7.1)

for all i= 1, . . . , n. Thus, if c1 is small, we can obtain a good approximation
of Var(L̂i) with the sample variance of estimators computed on one single
image. Instead, if c ∼ σ2 (that is c1 is close to 1), we cannot retrieve σ2

from the sample variance.
In order to have an idea of the order of magnitude of c1, we performed

some simulations to estimate c and σ2 for our estimators, via the sample
covariance and the sample variance of estimates over independent realiza-
tions of Φ1. Similarly to the previous subsection, we generated 100 obser-
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Fig. 7.8 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 realizations of the Poisson
horizontal segment process Φ1 (λ1 = 0.004 and l1 = 20). As fibre process Φ2, we used
the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle
process, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].

vations of the process Φ1, for each type of process Φ1 and dimension of
W , and we computed (twice for each realization of Φ1): L̂A,1,seg (with both
l2 = 20 and l2 = 60) and L̂A,1,circ (with both R2 = 10 and R2 = 30) for 10
values of λ2 in [0.002,0.008], and L̂circles

A for 11 values of R in [5,30]. For
any estimator L̂, we call L̂i, j the ith estimator L̂ computed on the jth real-
ization of Φ1. As explained previously, in case of L̂A,1,seg or L̂A,1,circ, the ith

estimator L̂ is calculated from the ith realization of the corresponding test
process Φ2. In case of L̂circles

A , it is calculated by using the ith system of cir-
cles (the systems must contain the same number of circles, with the same
ray and the circles must be all contained in the windowW ). Therefore, for
any L̂, the covariance c and the variance σ2 are estimated as follows,

ĉ =
1
99

100

∑
j=1

(
L̂1, j − L̂1

)(
L̂2, j − L̂2

)
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σ̂2 =
1
99

100

∑
j=1

(
L̂1, j − L̂1

)2
,

where L̂i = ∑100
j=1 L̂i, j/100, i= 1, 2.

In Figures 7.8, 7.9, 7.10 and 7.11, we can see the results for the es-
timator L̂A,1. The ratio ĉ/σ̂2 seemed to be independent of the dimen-
sion of the window. Instead, it increased as λ2 increased with a rate that
slightly depended on the shape of the two processes. Note that, for all
λ2 ∈ [0.002,0.008], usually ĉ ≤ 0.6σ̂2. Therefore, if we are analyzing a fi-
bre process that can be modeled as a Boolean fibre process with geometric
characteristics similar to the ones of the four types of processes Φ1 consid-
ered by us, then using a test process Φ2 with intensity λ2 ∈ [0.002,0.008],
we can roughly estimate the variance by using the previous upper bound
in Equation (7.1) with c1 = 0.6, obtaining for any i,
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ĉ/

σ̂
2

of
L̂

A
,1

0 0.005 0.01
0

0.2

0.4

0.6

0.8
dim=500

λ
2

ra
ti

o
ĉ/
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Fig. 7.9 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 realizations of the Pois-
son segment process Φ1 (λ1 = 0.004 and l1 = 20). As fibre process Φ2, we used the
Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle pro-
cess, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].
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ĉ/

σ̂
2

of
L̂

A
,1

 

 

L̂A,1,seg ,l2=20

L̂A,1,seg ,l2=60

L̂A,1,circ,R2=10

L̂A,1,circ,R2=30

Fig. 7.10 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 realizations of the Pois-
son circle process Φ1 (λ1 = 0.004 and R1 = 10). As fibre process Φ2, we used the
Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle pro-
cess, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].

V̂ar(L̂i)≈ 2.5
1

n− 1

n

∑
j=1

(
L̂ j − L̂

)2
. (7.2)

In Figure 7.13, we can see an example of confidence intervals of LA,1

estimated in this way.
Instead, for the estimator L̂circles

A , we observed that the ratio ĉ/σ̂2 was
always close to 1, for all values of the ray of the circles and all kind of
process Φ1 (Figure 7.12). Therefore, if we are using estimator L̂circles

A , we
suggest not to use the sample variance of the estimates computed on the
same realization of Φ1, for estimating a confidence interval for the inten-
sity.

Remark 7.1. It is evident, from the discussion by which we obtained the
approximation (7.2), the importance of having a suitable model for a given
real fibre process. The model can be simulated and the value of c1 can be
estimated form the simulations, allowing thus a better approximation of
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the variance of the estimators of the intensity, even in presence of one
single image of the real process.

7.1.3 Behavior of the estimator on simulated images of
fibre processes

Since in many applications the window of observation is a digital image,
we did the same study as in Subsections 7.1.1 and 7.1.2 on simulated im-
ages, in order to see if the properties of the estimators are maintained even
with the computational issues due to the pixels, that is when each fibre is
represented by its 2D-box pixel approximation in a digital image.

Let us suppose to have a digital black and white image of Φ1, where,
for example, the fibres are depicted in black and the background in white.
In this case, instead of knowing the exact coordinates of the points belong-
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Fig. 7.11 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 realizations of the Poisson
process of arcs of parabola Φ1 (λ1 = 0.004 and lx = 20). As fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle
process, with both R2 = 10 and R2 = 30, each considering 10 values of λ2 in the interval
[0.002,0.008].
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Φ
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Fig. 7.12 Ratio ĉ/σ̂ 2 of the estimator L̂circles
A computed on 100 realizations of the fibre

process Φ1. As system of circles, we used systems of non-intersecting circles consider-
ing 11 values of the ray of the circles R in the interval [5,30]. As fibre process Φ1, we
used: the Poisson segment process with horizontal or uniform directions (λ1 = 0.004
and l1 = 20), the Poisson circle process (λ1 = 0.004 and R1 = 10) and the Poisson
process of arcs of parabola (λ1 = 0.004 and lx = 20).

ing to the fibres, we only know that such points are located inside the black
pixels. We necessarily need an algorithm that is able to identify the inter-
section points in this situation. Obviously, due to the pixel approximation
of the fibre, we expect that the algorithm will not be able to identify all
the intersections (that is the number of “false negative intersections” is not
zero) and that sometimes it will detect an intersection where it does not
exist. Therefore, we could have an under/over estimation of the intensity,
respectively.We can verify if the estimation that we obtain is reliable and if
the properties we found in the previous subsections hold also in this case,
by studying the asymptotic properties of the estimators (computed with
our algorithm) on simulated digital images and by comparing the results
with the true theoretical values.

The algorithm for the identification of the intersection points is the fol-
lowing. After having simulated the centers of the fibres of Φ2 (and their
orientations, if the fibres are segments), we overlap once at a time a fibre
of Φ2 (here called γ) to the image of a realization of Φ1 (here called ϕ1).
Then, we follow the pixels of γ in a consecutive way, identifying which of
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them belong also to any of the fibres of ϕ1 (see Figure 7.14). The number
of intersections between γ and ϕ1 is given by the number of disjoint sets
of consecutive pixels along γ , that belong also to ϕ1.

Remark 7.2. In the real application in Section 7.2, the number of intersec-
tions will be derived by counting the number of extended maxima to avoid
the binarization of the image (see Section 7.2 for the explanation). Other
approaches that could be used are discussed in that section with respect to
the particular real images of fibre processes of our application. In fact, the
aim of this section is to test on simulated images the same method that we
will use in the real application.
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1-L̂A,1,seg ,λ2=0.002,l2=20

2-L̂A,1,seg ,λ2=0.004,l2=20

3-L̂A,1,seg ,λ2=0.008,l2=20

4-L̂A,1,seg ,λ2=0.002,l2=60

5-L̂A,1,seg ,λ2=0.004,l2=60

6-L̂A,1,seg ,λ2=0.008,l2=60

7-L̂A,1,circ,λ2=0.002,R2=10

8-L̂A,1,circ,λ2=0.004,R2=10

9-L̂A,1,circ,λ2=0.008,R2=10

10-L̂A,1,circ,λ2=0.002,R2=30

11-L̂A,1,circ,λ2=0.004,R2=30

12-L̂A,1,circ,λ2=0.008,R2=30

LA,1

Fig. 7.13 Confidence intervals of the intensity of the Poisson circle process Φ1 (λ1 =

0.004 and R1 = 10), computed by using the estimator L̂A,1. As fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson circle
process, with both R2 = 10 and R2 = 30, each considering three values of λ2 (0.002,
0.004, 0.008).
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Fig. 7.14 Example that show how the algorithm works on digital images to detect the
intersection points. The intersection point is detected as a set of contiguous pixels along
a fibre of Φ2, that belongs also to Φ1 (but they may also be not contiguous in a fibre of
Φ1). In the image, Φ1 is represented in black and Φ2 in grey. See also Figure 7.19 for
problems which may emerge in the identification of the number of intersections.

Similarly to Subsection 7.1.1, we generated 100 images of the process
Φ1, for each type of process Φ1 and dimension of W , and we computed:
L̂A,1,seg (with both l2 = 20 and l2 = 60) and L̂A,1,circ (with both R2 = 10 and
R2 = 30), for λ2 ∈ {0.002,0.004,0.008}, and L̂circles

A , for R ∈ {5,10,30}.
We considered only three values of λ2 and R, because in Subsection 7.1.1
we showed that the variance of the corresponding estimators changes in a
continuous way with respect to these parameters. On each image we also
computed L̂measure

A (Equation (5.3)) as the product between the number of
pixels in the fibres and a factor which represents the mean length of the
fibres in a pixel. This factor has been computed via a linear regression, by
comparing the estimated length of circumferences with different radii with
their true length.

In Figures 7.15, 7.16, 7.17 and 7.18, we can see the confidence interval
of the intensity at level 99%, computed for each type of process Φ1 and
each type of estimator used. As before, the variance of L̂A,1 decreased
when both λ2 and dim increased. Moreover, fixing the values of λ2 and
dim, the variance of L̂A,1,seg decreased when l2 increased and the variance
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1-L̂A,1,seg ,λ2=0.002,l2=20

2-L̂A,1,seg ,λ2=0.004,l2=20

3-L̂A,1,seg ,λ2=0.008,l2=20

4-L̂A,1,seg ,λ2=0.002,l2=60

5-L̂A,1,seg ,λ2=0.004,l2=60

6-L̂A,1,seg ,λ2=0.008,l2=60

7-L̂A,1,circ ,λ2=0.002,R2=10

8-L̂A,1,circ ,λ2=0.004,R2=10

9-L̂A,1,circ ,λ2=0.008,R2=10

10-L̂A,1,circ ,λ2=0.002,R2=30

11-L̂A,1,circ ,λ2=0.004,R2=30

12-L̂A,1,circ ,λ2=0.008,R2=30

13-L̂circles
A ,R=5

14-L̂circles
A ,R=10

15-L̂circles
A ,R=30

16-L̂measure
A

LA,1

Fig. 7.15 Confidence intervals of the intensity of the Poisson horizontal segment pro-
cess Φ1 (λ1 = 0.004 and l1 = 20) at level 99%, computed by applying estimator L̂A,1
to digitized images of Φ1. As fibre process Φ2, we used the Poisson segment process,
with both l2 = 20 and l2 = 60, and the Poisson circle process, with both R2 = 10 and
R2 = 30, each considering three values of λ2 (0.002, 0.004, 0.008). The figure reports
also the confidence interval of L̂circles

A (with R= 5, 10, 30) and of L̂measure
A .

of L̂A,1,circ decreased when R2 increased. On the contrary the variance of
L̂circles

A increased when R increased, but it decreased when dim increased.
Unfortunately, the estimators sometimes systematically overestimated

(in particular when Φ1 is the Poisson segment process or the Poisson pro-
cess of arcs of parabola) or underestimated the intensity LA,1 (when Φ1 is
the Poisson circle process). These phenomena are due to the discretization
of the fibres in pixels and to the algorithm, by which the intersections are
identified. In fact, the loss of the intersection points happens, for example,
when two “fibres” are close and, in the pixel resolution, they become a
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1-L̂A,1,seg ,λ2=0.002,l2=20

2-L̂A,1,seg ,λ2=0.004,l2=20

3-L̂A,1,seg ,λ2=0.008,l2=20

4-L̂A,1,seg ,λ2=0.002,l2=60

5-L̂A,1,seg ,λ2=0.004,l2=60

6-L̂A,1,seg ,λ2=0.008,l2=60

7-L̂A,1,circ ,λ2=0.002,R2=10

8-L̂A,1,circ ,λ2=0.004,R2=10

9-L̂A,1,circ ,λ2=0.008,R2=10

10-L̂A,1,circ ,λ2=0.002,R2=30

11-L̂A,1,circ ,λ2=0.004,R2=30

12-L̂A,1,circ ,λ2=0.008,R2=30

13-L̂circles
A ,R=5

14-L̂circles
A ,R=10

15-L̂circles
A ,R=30

16-L̂measure
A

LA,1

Fig. 7.16 Confidence intervals of the intensity of the Poisson segment process Φ1 (λ1 =

0.004 and l1 = 20) at level 99%, computed by applying estimator L̂A,1 to digitized
images of Φ1. As fibre process Φ2, we used the Poisson segment process, with both
l2 = 20 and l2 = 60, and the Poisson circle process, with both R2 = 10 and R2 = 30,
each considering three values of λ2 (0.002, 0.004, 0.008). The figure reports also the
confidence interval of L̂circles

A (with R = 5, 10, 30) and of L̂measure
A .

unique region (see for example Figure 7.19). Viceversa, a higher number
of intersections can be counted for certain slopes of the fibres, that lead to
a discretization of the fibre in pixels such that the pixels of the intersection
are not contiguous on the fibre of Φ2 (see again Figure 7.19). In fact, if
the intersection point is represented by disjoint sets of contiguous pixels,
then the program counts as many intersections as the number of these dis-
joint sets of pixels. On the other hand, when the fibres are not frequently
tangent and their slopes are not “problematic” (like for the Poisson hori-
zontal segment process), all estimators performed well (see Figure 7.15).
By using other approaches of image analysis (like skeletons [76] and curve
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2-L̂A,1,seg ,λ2=0.004,l2=20

3-L̂A,1,seg ,λ2=0.008,l2=20
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8-L̂A,1,circ ,λ2=0.004,R2=10

9-L̂A,1,circ ,λ2=0.008,R2=10

10-L̂A,1,circ ,λ2=0.002,R2=30

11-L̂A,1,circ ,λ2=0.004,R2=30

12-L̂A,1,circ ,λ2=0.008,R2=30
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A ,R=5
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Fig. 7.17 Confidence intervals of the intensity of the Poisson circle process Φ1 (λ1 =

0.004 and R1 = 10) at level 99%, computed by applying estimator L̂A,1 to digitized
images of Φ1. As fibre process Φ2, we used the Poisson segment process, with both
l2 = 20 and l2 = 60, and the Poisson circle process, with both R2 = 10 and R2 = 30,
each considering three values of λ2 (0.002, 0.004, 0.008). The figure reports also the
confidence interval of L̂circles

A (with R = 5, 10, 30) and of L̂measure
A .

fitting [16]), we could reduced the bias of the estimation, but these meth-
ods are not suitable for the analysis of our real images in Section 7.2, as it
will be explained later.

In the applications (like in Section 7.2), usually, the fibres of Φ1 have
a width larger than a single pixel. This fact may help in the counting
of the intersection points, since the intersections with thick fibres only
seldom produces non-contiguous sets of pixels. In any case, since the
over/underestimation depends on the shape of Φ1, all estimators can still
be used to compare the intensities of processes with the same shape (be-
cause the bias is the same).
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3-L̂A,1,seg ,λ2=0.008,l2=20
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8-L̂A,1,circ ,λ2=0.004,R2=10

9-L̂A,1,circ ,λ2=0.008,R2=10

10-L̂A,1,circ ,λ2=0.002,R2=30

11-L̂A,1,circ ,λ2=0.004,R2=30
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Fig. 7.18 Confidence intervals of the intensity of the Poisson process of arcs of
parabola Φ1 (λ1 = 0.004 and lx = 20) at level 99%, computed by applying estimator
L̂A,1 to digitized images of Φ1. As fibre process Φ2, we used the Poisson segment pro-
cess, with both l2 = 20 and l2 = 60, and the Poisson circle process, with both R2 = 10
and R2 = 30, each considering three values of λ2 (0.002, 0.004, 0.008). The figure re-
ports also the confidence interval of L̂circles

A (with R = 5, 10, 30) and of L̂measure
A .

Note that, in all experiments, the estimated variance of L̂measure
A was

always very low, but the estimator showed always a positive bias. Thus,
the use of estimators L̂A,1 and L̂circles

A may be preferable in all applications
where the bias must be small.

Analogously to Subsection 7.1.1, we used the same data also to verify
empirically the asymptotic normality of the estimators computed on digi-
tal images. With this purpose, we applied a χ2-test of goodness of fit with
null hypothesis that the estimator is normally distributed (with mean and
variance estimated from the sample). Concerning the estimator L̂A,1, sim-
ilarly to the theoretical simulations, we did not reject the null hypothesis



7.1 Simulations 255

Fig. 7.19 On the left-hand side, an example of overestimation of the intensity: in the
dotted circle we can see that the pixels of the intersection are not consecutive along the
fibre of Φ2 (that is intersecting Φ1 at that point). A zoomed view of the intersection
point is given in the image in the center. On the right-hand side, an example of under-
estimation of the intensity: in the dotted circle we observed examples where the fibres
of Φ1 are tangent to each other, forming a unique region, so that a lower number of
intersections is counted. In the three images, Φ1 is represented in black and Φ2 in grey.
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Fig. 7.20 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 images of the Poisson
horizontal segment process Φ1 (λ1 = 0.004 and l1 = 20). As fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson
circle process, with both R2 = 10 and R2 = 30, each considering the values of λ2 in
{0.002,0.004,0.008}.

in 91% of the cases at level 0.05 and in 99% of the cases at level 0.01.
Moreover, considering the estimator L̂circles

A , we did not rejected the null
hypothesis in 93% of the case at level 0.05 and 100% of the cases at level
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0.01. Therefore, the assumption of asymptotic normality of the estimators
holds also in case of “digital images” and even for small dimension of the
window of observation.
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Fig. 7.21 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 images of the Poisson
segment process Φ1 (λ1 = 0.004 and l1 = 20). As fibre process Φ2, we used the Poisson
segment process, with both l2 = 20 and l2 = 60, and the Poisson circle process, with
both R2 = 10 and R2 = 30, each considering the values of λ2 in {0.002,0.004,0.008}.

We wanted also to verify that, even in the case of simulated images,
c/σ2 (the ratio between the covariance of two estimators L̂A,1, computed
on the same window of observation, and the variance of L̂A,1) was lower
than 0.6 when λ2 ∈ [0.002,0.008]. Thus, we generated 100 realizations
of the process Φ1, for each type of process Φ1 and dimension of W ,
and we computed (twice for each realization of Φ1): L̂A,1,seg (with both
l2 = 20 and l2 = 60) and L̂A,1,circ (with both R2 = 10 and R2 = 30) for
λ2 ∈ {0.002,0.004,0.008}. Figures 7.20, 7.21, 7.22 and 7.23 show that
almost always ĉ/σ̂2 was lower than 0.6 (or very close to it) thus, in the
real applications in Section 7.2, we will use Equation (7.2) to estimate
the variance of the estimator, assuming that the model which can repre-
sent our real fibre process has geometric characteristics not much different
from the ones that we tested. Obviously, in presence of a model for fibre



7.2 Applications to angiogenesis 257

0 0.005 0.01

0

0.2

0.4

0.6

0.8
dim=100

λ
2

ra
ti

o
ĉ/

σ̂
2

of
L̂

A
,1

0 0.005 0.01

0

0.2

0.4

0.6

0.8
dim=200

λ
2

ra
ti

o
ĉ/

σ̂
2

of
L̂

A
,1

0 0.005 0.01

0

0.2

0.4

0.6

0.8
dim=300

λ
2

ra
ti

o
ĉ/
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Fig. 7.22 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 images of the Poisson
circle process Φ1 (λ1 = 0.004 and R1 = 10). As fibre process Φ2, we used the Poisson
segment process, with both l2 = 20 and l2 = 60, and the Poisson circle process, with
both R2 = 10 and R2 = 30, each considering the values of λ2 in {0.002,0.004,0.008}.

processes of angiogenesis, we could obtain a more reliable approximation
of the upper bound of the variance of our estimators. An example of confi-
dence interval computed with the variance estimated from Equation (7.2)
is reported in Figure 7.24. We can notice that the intervals estimated in
Figure 7.24 are not smaller than the ones estimated on 100 images of Φ1

in Figure 7.17.

7.2 Applications to angiogenesis

In solid tumors, cell proliferation is helped by the formation of a vascu-
lar network (angiogenesis) around the tumor. In fact, the vessels supply
nutrient to the cells, allowing the growth of the tumor. Therefore, a chal-
lenge in cancer research is to find an antibody which is able to inhibit the
angiogenesis.

The protein VE-Cadherin plays a fundamental role in the creation of
new vessels, thus the inactivation of this protein can inhibit the angio-
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ĉ/

σ̂
2

of
L̂

A
,1

 

 
L̂A,1,seg ,l2=20

L̂A,1,seg ,l2=60
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Fig. 7.23 Ratio ĉ/σ̂ 2 of the estimator L̂A,1 computed on 100 images of the Poisson
process of arcs of parabola Φ1 (λ1 = 0.004 and lx = 20). As fibre process Φ2, we
used the Poisson segment process, with both l2 = 20 and l2 = 60, and the Poisson
circle process, with both R2 = 10 and R2 = 30,each considering the values of λ2 in
{0.002,0.004,0.008}.

genesis. In collaboration with an USA company, at IFOM (FIRC institute
of molecular oncology foundation, Milan) several anti VE-Cadherin an-
tibodies have been developed [14]. In order to determine which of these
antibodies was more able to inhibit the formation of new vessels, they per-
formed two types of in vivo experiments on mouse cornea. In the first type,
they implanted on a mouse cornea a pellet, containing an angiogenic fac-
tor (called hrFGF-2) together with an antibody (non-systemic treatment).
In the experiments of the second type, the antibody has been injected in-
traperitoneally to the mouse starting from the day after the pellet implan-
tation, and thus the pellet contained only the angiogenic factor (systemic
treatment). In both cases, photos of the eyes of the mice have been taken
after 6 days from the pellet implantation (see, e.g. Figure 7.25).

The mice were treated with two types of antibodies: either the anti-
body nonimmune rat IgG (Rt-IgG), which has no inhibitory effect (i.e. is
a placebo), or one of the developed anti VE-Cadherin antibodies. The anti
VE-Cadherin antibodies used in the non-systemic treatment were 10G4,
8D6, 13E6 and 6D10, while in the systemic treatment they were 19E6
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1-L̂A,1,seg ,λ2=0.002,l2=20

2-L̂A,1,seg ,λ2=0.004,l2=20

3-L̂A,1,seg ,λ2=0.008,l2=20

4-L̂A,1,seg ,λ2=0.002,l2=60

5-L̂A,1,seg ,λ2=0.004,l2=60

6-L̂A,1,seg ,λ2=0.008,l2=60

7-L̂A,1,circ ,λ2=0.002,R2=10

8-L̂A,1,circ ,λ2=0.004,R2=10

9-L̂A,1,circ ,λ2=0.008,R2=10

10-L̂A,1,circ ,λ2=0.002,R2=30

11-L̂A,1,circ ,λ2=0.004,R2=30

12-L̂A,1,circ ,λ2=0.008,R2=30

13-L̂circles
A ,R=5

14-L̂circles
A ,R=10

15-L̂circles
A ,R=30

16-L̂measure
A

LA,1

Fig. 7.24 Confidence intervals of the intensity of the Poisson circle process Φ1 (λ1 =

0.004 and R1 = 10), computed on an image of Φ1 by applying estimator L̂A,1. As fibre
process Φ2, we used the Poisson segment process, with both l2 = 20 and l2 = 60, and the
Poisson circle process, with both R2 = 10 and R2 = 30, each considering three values
of λ2 (0.002, 0.004, 0.008).

and E4B9. For each antibody, a sample of two images (of two eyes) was
available. The small sample size is due to both the cost and the ethical
issues related to the experiments on animals. We were not involved in the
planning of the experiment.

In order to quantify the effect of a specific antibody in the inhibition
of the angiogenic process (induced by hrFGF-2) from the images of the
vessels, we can estimate one or more parameters that characterize their
geometry. We modeled the capillaries as a stationary planar fibre process
and, to compare the behavior of the antibodies, we estimated the intensity
of the corresponding processes.
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Fig. 7.25 On the left-hand side, the image of a mouse eye non-systemically treated with
the antibody rat-IgG. In the center, the image of a mouse eye non-systemically treated
with the antibody 6D10. On the right-hand side, the image of a mouse eye systemically
treated with the antibody 19E6. Credits to E. Dejana et al. [14].

For the estimation of the intensity of the process of the vessels, we had
to identify the capillaries in the images. Since the capillaries were of a
vivid red color, while the background of the eye was pale red, we used
the saturation values to select the capillaries. The saturation represents
the degree of purity/intensity of a color and its range of values is in [0,1]
(1 means a pure color). Therefore, the capillaries have a higher satura-
tion (close to 1) than the background (see Figure 7.26). Instead of using a
threshold on the saturation values, which does not allow a reliable detec-
tion of thin capillaries, we computed the number of intersections by count-
ing the number of extended maxima [76] in the saturation values along
the fibre of the test process (L̂A,1,seg and L̂A,1,circ) or the system of circles
(for L̂circles

A ). The extended maxima are defined as the regional maxima of
the h-maxima transform. In practice, we first suppress all maxima whose
depth is smaller than h, then we consider all connected components of pix-
els with a constant value and whose pixels at the boundaries have a lower
value. The the choice of the h parameter is less critical than the choice of
the threshold for the binarization of the image and, in our case, an expert
of image analysis set h = 0.03 for all images. By counting the number of
extended maxima, we automatically avoid false multiple intersections for
thick fibres.

Other algorithms for image analysis that could be used to identify the
fibres are, for example, skeletons [76], curve fitting [16] and filament seg-
mentation [23, 24]. Our images of angiogenesis represent a very challeng-
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ing problem in image analysis and therefore some tools for image analysis
are not applicable. Skeletons would require a binarization of the image,
which we are currently avoiding. Moreover, this morphological technique
has a critical dependency on the threshold parameter for the binarization.
The capillaries in our images show a complex and cluttered structure, thus
they are hard to detect with sufficient reliability by curve fitting and other
high-level approaches. Instead, filament segmentation is a recent and more
sophisticated technique that could improve the calculation of the number
of intersections. Nevertheless, we decided to not apply this algorithm since
it is recent and not standardized and its code was not available. We will try
to apply this technique as future work.

Fig. 7.26 Image analysis of a mouse eye non-systemically treated with the antibody
rat-IgG. On the left-hand side, the original image, in the center, the saturation values of
the image, on the right-hand side, the selected window of observation W .

Moreover, in order to consider the vessels as a stationary fibre process,
for each eye, we selected, as window of observationW , only the part of the
eye over the limbic vessel (i.e. the round vein) occupied by the capillaries
(see Figure 7.26), where the process looked stationary.

To achieve a low variance, we used λ2 = 0.008 for both L̂A,1,seg and
L̂A,1,circ and we decided to increase the values of l2 and R2 (see Subsec-
tion 7.1.1 for notations and definitions). Since the portion of eye which
contains the capillaries can be always included in a rectangle of sides
250×450 pixels (and sometimes is quite smaller than the area of that
rectangle), we set l2=100 and R2=50. Concerning the estimator L̂circles

A ,
in order to obtain a low variance we chose a small value of R (see Subsec-
tion 7.1.1) but not too small so that the circles are not all contained in the
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fibres (since the capillaries have a width larger than a pixel). Therefore,
we set R = 10. We did not compute L̂measure

A since it did not perform well
in the experiments on simulated images in Subsection 7.1.3 and the capil-
laries have a variable width, usually larger than a pixel (and thus it is not
possible to measure the length of the fibres by counting the pixels).

Fig. 7.27 Density histogram
of the saturation values of the
pixels inside the windows of
observation inside all images
of mouse eyes.

In order to better compare the geometry of the angiogenic processes,
we also calculated or estimated other geometric parameters:

• the area fraction (ratio between the area of W and the area of the whole
eye),

• hmax fraction (ratio between the height of the bounding-box of W and
the height of the bounding-box of the whole eye, where the bounding-
box is defined as the circumscribed rectangle),

• mean width fraction (defined as the ratio between the area fraction and
hmax fraction),

• mean capillary width (estimated as the ratio of the area occupied by the
capillaries and their estimated length).

To estimate the area occupied by the capillaries, we used a threshold
computed on the basis of the saturation values of the pixels inside the
windows of observations. As we said previously, the capillaries can be
identified by a high value of the saturation of their pixels. But, since the
capillaries are often thin, most of the pixels in W (the ones around the
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borders of the capillaries) have a saturation value that lays between the one
of the capillaries and the one of the background. Therefore, we estimated
the density of the saturation values of the pixels (see Figure 7.27) and we
computed a confidence interval around the mean value of the saturation
(which represents the saturation value of the pixels around the borders of
the capillaries). Then, the upper bound of this confidence interval was used
as a threshold to determine the area occupied by the capillaries: all pixels
with saturation value above this threshold were considered as belonging to
the capillaries (see Figure 7.28).

Fig. 7.28 Example of computation of the area occupied by the capillaries. On the left-
hand side, the saturation values of the pixels in the window of observation, on the right-
hand side, the estimated area occupied by the capillaries.

7.2.1 Results

Since we had only a sample of two images per treatment, we decided to
compute a confidence interval of the intensity for each eye. Moreover,
due to the dimension of the window of observation, we could not esti-
mate the variance of the estimators by using a sample of subimages (see
Subsection 7.1.2). Thus, we could estimate only the intervals based on
the estimators L̂A,1,seg and L̂A,1,circ, by simulating, and overlapping to Φ1,
100 i.i.d. copies of the process Φ2 (see Subsection 7.1.2). In Figures 7.29
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Table 7.1 Geometric parameters computed on the images of eyes of mice non-
systemically treated. The mean capillary width was computed, by using as intensity
the value estimated by L̂A,1,circ.

mean mean
area hmax width capil.

antibody eye fraction fraction fraction width L̂A,1,seg L̂A,1,circ L̂circles
A

Rt-IgG 1 0.278 0.760 0.366 6.999 0.093 0.088 0.101
Rt-IgG 2 0.343 0.769 0.446 10.535 0.095 0.089 0.098
10G4 1 0.272 0.669 0.407 12.182 0.078 0.073 0.084
10G4 2 0.311 0.737 0.422 6.468 0.099 0.096 0.108
8D6 1 0.146 0.526 0.278 1.689 0.091 0.086 0.105
8D6 2 0.165 0.603 0.274 1.847 0.096 0.092 0.103
13E6 1 0.288 0.775 0.372 2.949 0.091 0.088 0.099
13E6 2 0.195 0.550 0.355 0.952 0.092 0.087 0.098
6D10 1 0.110 0.395 0.279 0.609 0.094 0.093 0.105
6D10 2 0.136 0.496 0.274 1.243 0.093 0.088 0.101

and 7.30, we can observe that generally L̂A,1,seg had a larger variance than
L̂A,1,circ. Usually, the interval based on L̂A,1,circ was almost included in the
one based on L̂A,1,seg. Instead, L̂circles

A seemed to overestimate the intensity,
maybe because its variance is high due to the small number of circles in
the test system.

Table 7.1 and Figure 7.29 report the results obtained on the images of
non-systemic treatments. In Figure 7.29, we can observe that the antibody
10G4 had contrasting effects: in eye 1, the intensity decreased, but in eye
2, it increased. Also for the antibody 8D6 we had similar results, but in
this case the variance is so large that we cannot say that the intensities
corresponding to the mice treated with 8D6 are significantly different from
the control ones, of the mice treated with Rt-IgG. The estimated intensities
corresponding to the treatments with 13E6 and 6D10 were similar to the
intensity of the capillaries in the control eyes.

In Table 7.1, we can see the effects of the treatments on the other geo-
metric parameters. We observed a reduction of the area of observation for
all treatments, apart from 10G4, and 8D6 and 6D10 achieved the small-
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est area. But in the eyes of the mice treated with 6D10, the width of the
capillaries was smaller than in the eyes of the mice treated with 8D6. The
thinner capillaries supply less nutrient to the “tumor” (i.e. the pellet) and
thus are less able to favor its growth. Therefore, the best non-systemic
treatment was the one using the antibody 6D10.
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Fig. 7.29 Estimated confidence interval for the intensity of the capillaries at level 95%,
computed on eyes non-systemically treated. Since we had to compute the interval on
one image and it was small, we could compute it only for the estimators L̂A,1,seg and
L̂A,1,circ. We report also the value of L̂circles

A .

Regarding the eyes treated in a systemic way, we discovered that the
antibody 19E6 had the effect to slightly reduce the intensity of the cap-
illaries (Figure 7.30). Instead, the antibody E4B9 had contrasting results,
since in one eye the intensity decreased and in the other one it increased
(Figure 7.30). Moreover the other geometric characteristics of the process
showed some differences, by the effects of these two treatments (see Ta-
ble 7.2). In both cases we had a reduction of the fraction of area occupied
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by the window of observation. But, for the antibody 19E6, the main reason
of the reduction of the area of W was the decreased length of the capillar-
ies (that can be seen through the reduction of the mean width fraction).
Therefore, even if the capillaries in eye 1 were wider, they were not able
to reach the “tumor” and thus to potentially favor its growth. For all these
reasons, the antibody 19E6 performed better among the antibodies used in
the systemic treatments.

For both types of treatments, the results we found were coherent with
the qualitative results of the biomedical experts. In any case, due to the
small sample size, the best selected antibodies should be tested on other
mice in order to confirm their properties in inhibiting angiogenic pro-
cesses.

Table 7.2 Geometric parameters computed on the images of eyes of mice systemically
treated. The mean capillary width was computed, by using as intensity the value esti-
mated by L̂A,1,circ.

mean mean
area hmax width capil.

antibody eye fraction fraction fraction width L̂A,1,seg L̂A,1,circ L̂circles
A

Rt-IgG 1 0.365 0.777 0.469 6.761 0.097 0.093 0.104
Rt-IgG 2 0.299 0.797 0.375 4.548 0.092 0.087 0.098
19E6 1 0.124 0.761 0.163 9.499 0.084 0.079 0.092
19E6 2 0.110 0.696 0.157 2.183 0.090 0.085 0.107
E4B9 1 0.179 0.591 0.302 3.878 0.078 0.072 0.083
E4B9 2 0.162 0.586 0.276 4.445 0.101 0.097 0.108
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Fig. 7.30 Estimated confidence interval for the intensity of the capillaries at level 95%,
computed on eyes systemically treated. Since we had to compute the interval on one
image and it was small, we could compute it only for the estimators L̂A,1,seg and L̂A,1,circ.
We report also the value of L̂circles

A .





Conclusion

In the second part of the Thesis, I first proved a central limit theorem (CLT)
for positive functionals of a point process independent at distance l and
then I derived the asymptotic normality of the estimators L̂circles

A , L̂A,1 and̂̂LA,1, under suitable conditions. The Theorem ensures that, in presence
of large samples, the distribution of the estimators can be approximated
with a Gaussian, and thus (asymptotic) confidence intervals for the inten-
sity can be computed. The structure of the proof of my CLT recalls the
one of Theorem 3.1 in [61], where the authors showed a CLT for a func-
tional of a Poisson or Binomial point process. Their proof was based on
the fact that the process has independent increments, but this property does
not hold for point processes derived from the intersection between two fi-

bre processes (for L̂A,1 and ̂̂LA,1) or between a fibre process and a fibre
system (for L̂circles

A ), since the fibres have length different from zero and
points obtained by intersection with the same fibre are obviously corre-
lated. Therefore, I generalized the proof to relax the hypothesis over the
point process, requiring only the independence in Borel sets with distance
greater than l. This hypothesis can be verified, for example, if the fibres
are generated independently and have finite maximum length.
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For practical applications (where the window of observation is finite
and thus the number of fibres and of intersection points is finite), I verified
on simulations the speed of convergence of the distribution of the estima-
tors to the normal distribution in dependence of the parameters of the test
process (L̂A,1) or the system of circles (L̂circles

A ). The aim was to show if
even with samples of “small size” the approximation with the asymptotic
distribution was good. I observed that already with windows of relatively
small size, if compared with the fibre process under study (side of win-
dow 100, length of a fibre 20 and mean number of fibres in the window
40), the distribution of the estimators is well approximated by a Gaussian,
and their variance can be reduced by a suitable choice of the parameters
of the test process. I also tested these properties on simulated images of
fibre processes, since the behavior of the estimators could change because
of the pixel approximation of the fibres. Moreover, since in practice only
one or few images of the fibre process under study are available, I derived
a method for the approximation of the variance of L̂A,1 in presence of one
single image, so that it is always possible to compute a confidence interval
for the intensity LA,1. Finally, I applied both estimators L̂circles

A and L̂A,1 on
images of angiogenic processes on the cornea of mice. On these images I
estimated the intensity and other geometric characteristics of the fibre pro-
cess and, by comparing these quantities for the different processes, I found
results coherent with the qualitative conclusions of experts in biology.

The application to real images has two critical aspects: 1) the parti-
tion of the image in parts where the process is stationary, 2) the usage of
a tool of image analysis which allows to count the intersections between
the fibres. In the real images we used, we solved the first issue with the
selection of the part of the image of interest by an expert, but, as future
work, we could define some statistical techniques to look for a suitable
and maybe better partition of the window of observation. We managed the
second problem by using the saturation values of the pixels to identify the
capillaries and by employing the notion of extended maxima for the iden-
tification of the intersections between fibres. This technique leads to bias
in the estimation of the number of intersections, therefore in the future we
will try to apply other techniques, like, e.g. a recent and more sophisticated
method which is called filament segmentation [23, 24].
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31. P. Hupé, N. Stransky, J.P. Thiery, F. Radvanyi, and E. Barillot. Analysis of array
CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics,
20(18):3413–3422, 2004.

32. M. Hutter. Bayesian Regression of Piecewise Constant Functions. In J.M.
Bernardo, M.J. Bayarri, J.O. Berger, A.P. David, D. Heckerman, A.F.M. Smith,
and M. West, editors, Bayesian Statistics: Proceedings of the Eighth Valencia Inter-
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