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Introduction

Neuronal cells (neurons) mainly transmit signals by action potentials
or spikes. Neuronal electrical activity is recorded from experimen-
tal animals by microelectrodes placed in specific brain areas. These
electrochemical fast phenomena occur as all-or-none events and can
be analyzed as boolean sequences. Following this approach, several
computational analyses reported most variable neuronal behaviors
expressed through a large variety of firing patterns [13]. These pat-
terns have been modeled as symbolic strings with a number of differ-
ent techniques [23, 55]. As a rule, single neurons or neuronal ensem-
bles are manageable as unknown discrete symbol sources S = 〈Σ, P 〉
where Σ is the source alphabet and P is the unknown symbol prob-
ability distribution.
Within the hierarchy of Markov Models (MMs), Markov Chains
and Hidden MMs have been profusely employed to model neuronal
recording data [2]. However, due to the highly complex dynamic
profiles of single neuron (SN) and neuronal ensemble (NE) firing pat-
terns, those models failed to capture biologically relevant dynamical
features. K-Order MMs could overcome these failures, but their time
and space computational complexity turned them into unfeasibility.
Variable Order MMs (VOMMs) meet with these restrictions confin-
ing modeling to the effective symbols of a given sequence up to a D
maximum order. Formally a V OMM is characterized by a couple
〈s,D〉 where s ∈ Σ∗ is the training sequence and the returned P̂ is
an estimation of P from source S. Given an arbitrary finite sequence

15
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s ∈ Σ∗, delivered by a generic source S, a VOMM builds a structure
for S. Once a structure has been captured (or learnt) it may undergo
tasks like prediction or compression or, again, analysis [9]. Thus, a
lossless compression algorithm originated from a VOMM can per-
form prediction tasks and every prediction algorithm can perform
compression tasks [97].
Statistically Based Compression Algorithms (SBCAs) build a prefix
tree to estimate the symbol probability by combining conditional
probability of a symbol with a chain rule, given d previous symbols
(d ≤ D). In particular, just on the track of previously discussed
issues, I took into consideration three SBCAs: Prediction by Par-
tial Matching (PPM)[30], Context-Tree Weighting (CTW)[137] and
Probabilistic Suffix Tree (PST)[98].
Prediction capability of these algorithms can be exploited in at least
two ways: i) to draw a similarity function between experiments and
ii) to analyze the changes of stationary phase of specific experiment
dynamics from SN or NE datasets. The predictive accuracy can be
measured by functions like the average log-loss (self-information).
The average log-loss function measures the average compression rate
of s assuming its P̂ distribution and so the P̂ prediction accuracy.
Once the VOMM is trained with a given sequence source A, the
average log-loss between the obtained VOMM model and another
arbitrary sequence source B approximates their similarity measure
μ(A,B). Where the sequences represent whole recording experi-
ments, the VOMMs identify the similarity between different record-
ings, otherwise, if the sequences represent contiguous recorded ex-
periment subsequences, the VOMMs can detect the switching be-
tween stationary phases, through average log-loss peaks. These
VOMMs can also measure the information redundancy present in
the sequence. This application, as shown in results, is particularly
relevant for neurophysiologists and provides significant results when
applied to recordings of chronic pain animal models. To confirm,
by other estimation paths, the similarity measure between whole
recording stages, I chose to introduce a more computationally ef-
ficient similarity measure (the Normalized Compression Distance,
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NCD [10]) based on widely acknowledged faster compressors like
gzip, bzip2, lzma and others.
The results obtained with these methods come (i) from Ventrobasal
Thalamic Nuclei (VB) and Somatosensory Cortex (SSI) in Chronic
Pain Animals (CPAs), (ii) from Primary Visual (V1) and (SSI) in
rat Cortices and, finally, (iii) from IL human Thalamus Nuclei in pa-
tients suffering from states of disordered consciousness like Persistent
Vegetative State (PVS) and Minimum Conscious State (MCS).
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Chapter 1

Biological Background

The mammalian brain constitutes one of the most complex objects
of the known Universe. The brain is composed by different classes of
cells. The cells from brain are substantially of two types: neuronal
cells and glial cells. Although the already impressive number of
neurons (1011) in the Central Nervous System, the glial cells out-
number neurons by tenfold. However, neurons play the major role
in the brain functioning, yet not forgetting the impressive roles of
glia in many neuronal activities. The Nervous System can be grossly
divided into 3 parts: the Central Nervous System (CNS) that con-
tains the brain, spinal cord, and the retina. The Peripheral Nervous
System (PNS) consists of sensory neurons, clusters of neurons called
ganglia, and nerves connecting them to each other and to the CNS.
These regions are all interconnected by means of complex neural
pathways. Finally, the Enteric Nervous System, a subsystem of the
peripheral nervous system, has the capacity, even when severed from
the rest of the nervous system through its primary connection by the
vagus nerve, to function independently in controlling the gastroin-
testinal and other systems. This thesis is focused on CNS working
mechanisms in normal and pathological conditions and namely the
neural substrates of the sensory processes and of consciousness. Here
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20 CHAPTER 1. BIOLOGICAL BACKGROUND

below I present a sketchy survey of the structural and functional
substrates of the CNS. In particular are presented the basics of the
somatosensory system because it is strictly related to nociception
and chronic pain and of the human consciousness because relevant
results come from patients with consciousness disorders.

1.1 The Central Nervous System: a sur-

vey

The CNS is divided in brain, spinal cord, and retina. Stimuli and sig-
nals delivered from the PNS traverse the spinal cord and arrive into
the brain. Complex structures receive and elaborate these signals.
The central most important region involved in the signals and stim-
uli processing is the brain. The brain is constituted by clusters of
neuronal populations connected by an entangled network of complex
connections among neurons. Each neuron may receive signals from
up to 10000 other neurons. This obviously assumes that there is no
all-to-all connectivity but that selected connections among different
neuronal populations are privileged and constitute the structures of
the extant brain. Because the essence of signal processing resides in
the single cells, I will now introduce the neuronal physiology.

1.2 The Neurons

Although there are many more glial cells than neurons, the funda-
mental task of information trasmission and computation is carried
out by neurons. However, the glial cells perform several supplemen-
tary and support tasks to the neurons.

1.2.1 Elements of Neuronal Anatomy

The neuronal cells can be divided in four parts: the soma, the axon,
the synaptic terminals and the dendrities (see Figure 1.1). The den-
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drities are tree-like structures that represent the main receptive area
of the neuron. The soma is the central unit that contains the cellu-
lar nucleus and computes the signals trasmitted by dendrites. The
major diameter can be as large as 10 to 60μm. The axon is con-
stituted like a filament extending from the exit area of the soma,
called hillock, and can be meters long. The axon may be completely
nude or covered by one or more layers of myelin sheaths, composed
by wrapped myelin cells around the axons. Myelinization dramat-
ically increases the signal conduction up to 120m/s. In fact, the
myelin cover inhibits from the ionic exchanges at the membrane
level and the signal conduction is transformed from electrochemical
to electrotonic. The extension of the myelin sheath is not a continu-
ative coverage at every definite distance it is interrupted (about 1μm
gaps), leaving the axonal surface in contact with the extracellular
environment (node of Ranvier). These interruptions are strategic
being signal amplifiers of electrical signals subject to natural fading
along the myelinated axonal branch.
The synapse is a highly complex structure where the signal trasmis-
sion between neurons takes place. As a rule, a neuronal axon can
establish a number of synapses with the receiving structures of an-
other neuron (see Figure 1.2). Specifically, the transmission can be
established by the branching axon terminals on the dendrities, on
the soma or on the axon. The respective synapses are thus called
axo-dendritic, axo-axonic and axo-somatic. The axon terminals that
constitute synapses present bag-shaped enlargments that contain
vesicular bodies filled of neurotransmitters. In these regions (called
presynaptic terminals), the vesicle membranes coalesce, by a com-
plex mechanism, with the axon terminal membrane, delivering the
substance contained in vesicle. These substances, generally ammi-
noacids or peptides, are called neurotransmitters. On the postsynap-
tic membrane there is a lot of complex structures called receptors
(see Figure 1.3), mainly constituted by proteins, that can receive the
molecules delivered by the presynaptic vesicles. The space between
the presynaptic and postsynaptic membrane is called synaptic cleft
(about 20nm). The reception of a trasmitter by a receptor triggers
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Figure 1.1: A representation of neuron anatomy.

several fast electrochemical changings that induce the generation of
spike signals similar to the presynaptic spike. The ensemble of presy-
naptic membrane, synaptic cleft, postsynaptic membrane is called
synapse.
There exists a large variety of neurotransmitters (and of other sub-
stances called neuromodulators) as well as of postsynaptic receptors.
This extraordinary multiplicity of transmitters, modulators, recep-
tors allows incredibly flexible signal transmission.

1.2.2 Action Potentials and Signal Transmission

The cell membranes as well as all cellular membranes, present typi-
cally a lipid bilayers. Each layer is a flat sheet that forms a contin-
uous barrier around the cell, few nanometer thick and impermeable
to most water-soluble polar molecules. Numerous complex proteins
cross the membrane and estabilish a functional connection from the
inside to the outside of the cell. Some proteins are arranged as chan-
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Figure 1.2: A schematic representation of synapse.
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Figure 1.3: A protein that functioning as ion channel.
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nels allowing for the passage of substances (primarily neurotransmit-
ters and ions) across the membrane. These channels can be always
open or can present conditional closing mechanisms (called gates)
that allow the passage of substance only in particular functional
circumstances. Due to extremely sophisticated mechanism, the in-
ternal cellular fluid is relative negatively charged in comparison to
the extracellular fluid. This stable condition creates potential differ-
ence between the intracellular and extracellular fluids. The negative
charge can range between [−80,−55]mV depending on neuron type.
This implies that the electrical potential is negative, in the range
[−60,−80]mV. In addition, there are several dynamical properties
imported by the complex network of the ionic transmembrane chan-
nels. In fact, some of these channels are selectively permeable to
sodium, potassium, calcium (positively charged) or chlorine (nega-
tively charged) ions. The selective gating is specific for the various
ion types. Specifically the sodium ions are much more concentrated
outside the cellular membrane, the reverse being true for the potas-
sium ions. The concentration of the calcium ions is regulated on
much more robust and complex conditions. Finally, the chlorine
ions are more concentrated outside the cell membrane.
In order to understand the signal transmission, the electrical and
the chemical potential must be considered. Taking into account that
cell inside is strongly negative, positively charged sodium ions, more
concentrated outside the membrane, obviously show a tendency to
get into the cell both for electrical and chemical gradients. The
potassium ions, more concentrated inside the cell, are driven by a
chemical gradient that pushing them outside, the electrical gradient
being, on the converse, holding them inside. Given this picture, it is
easy to understand that chlorine ions tend to remain outside the cell
by electrical gradient and conversely driven in by chemical gradient.
The calcium ions, generally more concentrated (at resting) outside
of cell, show sodium-like behaviors.
The stable state of an ionic equilibrium reached by the system shows
the resting potential at the negative levels discussed before. The
resting potential undergoes continuos fluctuations due to incoming
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signal to the neuron. Most of this fluctuations are unable to trigger
an action potential but simply deviate the potential either towards
more positive level (depolarization) or towards negative level (hy-
perpolarization). The ion channels may exist with different dynamic
properties: either they are gated by complex structures called recep-
tors or they are gated by specific potential levels or again they may
be stably open allowing for a free ionic passage.
When an input strong enough moves upwardly the potential to a
threshold that may be between [−45,−35] all-or-none event takes
place and a fastest depolarization is triggered driven by a massive
sodium ion entrance into the cell. This massive flux reverses the
ionic balance across the membrane bringing the internal milieu to
positive values [+20,+35] relative to the external one. This sud-
den event has 400μs length. At the very peak of depolarization,
suddenly, all the sodium channels close under the electrochemical
gradient push and a new rush of potassium channel opening takes
place. Due to the current internal positivity, the potassium ions tend
to rush outside the cell both for chemical and electrical gradient, see
Figure 1.4. This potassium outflow has a greater temporal length
500-600μs and tends to restore the original negative resting potential
with the outflow of positive charges. The potassium current is so
powerful that the internal potential is pulled to even more negative
(−80mV) values before regaining the normal negativity. During this
hyperpolarizing period the neuron is unsensitive to further depolar-
ization input (absolute refractory period). The short time length
between the end of depolarization and the normal resting potential
there is a short period where the neuron is again excitable by inputs
stronger then the usual ones (partial refractory period). This depo-
larization/hyperpolarization schema shows different behaviours, one
of the most important is the unusual activation observed in hyperpo-
larized states where a calcium current normally inactive at standard
resting potential is undergoes a de-inactivation and becomes expres-
sive with a very powerful and long lasting calcium spikes displaying
over its crest fast supeimposed sodium spikes producing the typical
electrochemical behavior called burst.
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Figure 1.4: The action potential and its ionic current components.
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1.3 The Somatosensory System

The somatosensory system processes the sensory inputs to the body
and namely it displays estimating properties for proprioception, touch,
temperature, nociception and so on. The somatosensory system is
constitued by receptors placed in the periphery of the body (the cu-
taneous district, tendons and muscles, viscera, the special senses),
the peripheral sensory neurons and by the central neurons delivering
the signals up to the thalamus and to cortices. The sensory infor-
mation is, by these means, conveyed to the cortex. In the CNS,
two brain regions play a crucial role in the sensory information pro-
cessing: the primary somatosensory cortex located in the postcentral
gyrus of the parietal lobe (SS-I), (see Figure 1.5), and the ventrobasal
nuclear complex (VB) of the thalamus. These structures, along with
their connections, form the so called Thalamocortical loop.

1.3.1 A brief introduction to Thalamus Anatomy

The thalami are two paired symmetrical organs and represent the
major part of diencephalon. Each of the two thalami is a structure
divided in many subsets, histologically distinguishable, called nuclei
(see Figure 1.6). The nuclear nomenclature respects, in general, the
internal thalamus topography. In fact there are the anterior, medial,
intralaminar, posterior nuclei, etc. In particular, two important nu-
clei of VB complex for somatosensory information processing are
represented by the ventroposterolater (VPL) nucleus and the ven-
trolater (VL) nucleus.
All the neurons of the somatosensory thalamus and many neu-

rons of intralaminar and medial thalamus are populated by neu-
rons connected to the cortex: the thalamocortical (TC) neurons
(else thalamic relay neurons) and local inhibitory neurons. These
last are present only in the superior mammals. Another crucial nu-
clear complex involved in the function of thalamocortical loop is the
reticular-thalamic (RT) nucleus. While the relay thalamic neurons
are excitatory neurons (on the reticular thalamic neurons and on
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Figure 1.5: Cortical areas of human brain.
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Figure 1.6: Thalamus within the human brain (left). Thalamus
nuclei and their cortical projections (right).
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the cortical neurons), the reticular thalamic neurons display strong
inhibitions onto the thalamic relay neurons (see subsection below).

1.3.2 A brief introduction to Cortex Anatomy

The cerebral cortex meanly presents a layered structure with vari-
able number of layers and appearances being actually a smooth or
a folded structure. These folds help to structure the so called cere-
bral circumvolutions that thanks to their geometrical constractions
extend the cortical surface and volume. In mammals there is a grad-
ual evolution related to both cerebral surface and volume (strongly
influenced by folds) and to many kinds of neurons. Each of the six
layers endorses different functions that can express wholely in the
each specific cortical area. For instance, in the sensory cortex, the
fourth layer that receives the thalamic output is extremely developed
in comparison to its presence in the motor cortex where it expresses
a minor role. Conversely, deeper layers (the fifth and sixth) more
involved in motor roles are strongly developed in motor cortex.
Cortical neurons represent an heterogeneous population most var-
iegated for structural and functional features. The cortical circuits
of signal processing appear to be regular throughout the different
mammalian species but show profound differencies. In this work, I
will consider only a few types of cortical neurons that actively take
part in sensory signal elaborations. Specifically, the fourth layer
neurons that receive input from TC cells are called granular cells
for their granular-like appearing in histological observations. Just
on this track of morphological comparison the fifth and sixth layer
neurons because of their similarity with triangular shape are called
pyramidal cells. The fifth layer neurons are connected to the TC and
RT neurons and with other cortical layers. These connections are
predominantly excitatory. Cortical excitatory neurons can perform
the following behaviors:

1. Regular Spiking (RS). The most diffuse in cortex. They emit
a series of low, if necessary increasing, frequence spikes.
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2. Intrinsically Bursting (IB). They emit first a short burst of
spikes then a series of regular spikes.

3. Chattering (Ch). They generate a sequence of spike bursts (at
40Hz) spaced out (at 0.1 to 0.8Hz) by resting periods.

Cortical inhibitory neurons can perform the following behaviors:

1. Fast Spiking (FS). They emit a series of spikes like RS but with
higher frequency.

2. Low Threshold Spiking (LTS). They show high frequency reg-
ular spikes followed by a fast adapting phase.

1.3.3 The Thalamo-cortico-thalamic loop

Taking into consideration the connection between thalamus and cor-
tex and the diverse neurons in both structures, it is possible to divide
the thalamocorticothalamic (TCT) loop dynamics in three mecha-
nisms (see Figure 1.7):

1. The TC cells that receive input from sensory spinal cord path-
ways trasmit the signals (action potentials) onto the granular
cortical layer and onto the reticular thalamus. The former pro-
duces an excitatory effect on granular layer. Simultaneously
it can be observed an excitement of RT neurons that rapidly
induce a negative feedback, i.e. an inhibition on the TC cells
that began the stimulation. This system represents the first
loop of the whole TCT.

2. In the meantime the granular layer neurons induce an excite-
ment of pyramidal neurons of below layers. These pyramidal
neurons excite both the TC neurons of point 1 and the RT
neurons. This system represents the second excitatory loop of
the whole TCT.

3. Because from the fifth piramidal layer there is an other excita-
tory pathway onto the RT neurons, these last are reactivated
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Figure 1.7: Thalamocortical loop. We can observe the involved neu-
rons like TC neurons (relay cells) and granular/pyramidal cortical
neurons. The thalamic cells in red are RT neurons.
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and produce a second inhibitoty input onto the TC cells. This
last system is excitatory and inhibitory.

The slight temporal differences among the three mechanisms allow
a reached variety of discharging mode with complex rhythms and
oscillations. Furthermore the TC neurons present a peculiar behav-
ior that makes more complex the whole scenario. From a dynamical
point of view these cells have a bistability, i.e. they can work with
two different dynamical states. The choice is determined by intrin-
sic TCT loop modulations and by external loop input. Specifically
two different discharge patterns can be observed: the first called
tonic and the second called burst. The former presents a FS-like be-
haviour with frequency that can exceed frequencies of 300Hz. The
latter instead presents short spike patterns (6 to 10 spikes) at very
high frequency (approximating 1 kHz). This last behavior is mainly
due to the peculiar characteristic of calcium channels of TC neu-
rons. These channels are opened during hyperpolarizations (due to
an inhibitory input that brings the potential almost to −90mV) and
calcium ions enter into the cells. Thus, the inhibitoty input trigger
a generation of a series of very fast consecutive spikes that bring the
resting potential to regular values.

1.4 State of Consciousness

The concept of consciousness is massively variegated. The term con-
sciousness can be faced from several philosophical and psychological
perspectives. From a cognitive neuroscience point of view, the con-
sciousness recalls notions like awareness, wakefulness and attention.
In fact, a simple definition of consciousness often state that con-
sciousness is the ability to be aware of themself and surroundings.
Again, consciousness does allow us to know of our own existence
and of the existence of objects and events, inside and outside our
organism.
Consciousness has, obviously, a neural counterpart, i.e. neural pat-
terns that involve several brain regions (sometimes this concept is
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referred as neural basis of consciousness). A lot of neuroanatomical
and neurophysiological considerations support this brain-mind sce-
nario. For instance, various cell groups in the brainstem modulate
wakefulness by ascending projections to the cerebral cortex. Also,
there are presumably glutaminergic projections from the classical
reticular ponto-mesencephalic nuclei to the intralaminar nuclei of
the thalamus, which in turn project to large areas of the cerebral
cortex.
As a rule, the brains ascending reticular activating system (ARAS)
is considered one of the crucial system involved in the arousal and
wakefulness state (see Figure 1.8).
In this work I considered also neuronal recordings from patients with
disorders of consciousness.

1.4.1 Human Disorders of Consciousness

Although the ARAS has a redundancy of pathways and neurotrans-
mitters, a severe disrupting into the ARAS caused by trauma and/or
injury almost surely involves an alteration of the normal state of con-
sciousness that can be transient or persistent like coma. Not only
ARAS’s damage should cause coma. Cortex and thalamus injuries
but also metabolic and toxic disorder, seizures, infections can pro-
duce coma states.
Coma is typically defined as a state of unarousble consciousness.
Clinical evidences include failure of eye opening to stimulation, a
motor response no better than simple withdrawal type movements
and a verbal response no better than simple vocalization of nonword
sounds.
In the following subsections I focus on the two particular disorders
of consciousness: the Minimally Conscious State (MCS) and the
Persistent Vegetative State (PVS).
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Figure 1.8: The brains ascending reticular activating system
(ARAS) is responsible for arousal and substains the wakefulness.
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The Minimally Conscious State

The minimally conscious state is a condition of severely altered con-
sciousness that has been distinguished (only in the last years) from
the vegetative state (VS) by the presence of minimal but clearly
discernible behavioural evidence of self or environmental awareness.
Definite behavioural evidence of self or environmental awareness is
demonstrated on clinical examination. There is increasing evidence
from neurobehavioural and neuroimaging studies that important dif-
ferences in clinical presentation, neuropathology and functional out-
come exist between MCS and VS. However, no strong neurophysi-
ological differences are been found. The possible emergence of eye-
opening signals that the reticular system has regained control over
wakefulness, although individuals in VS remain completely unaware
of self or environment. In VS, the brainstem also resumes control
over vital bodily functions including respiration, heart rate and ther-
mal regulation. Although these functions may still be compromised
during VS, life-sustaining interventions such as mechanical venti-
lation are usually not required. To establish the diagnosis, there
must be an evidence of least one clear cut behavioural sign of cog-
nitive processing and the behaviour must be reproduced at least
once within the same examination. Because behavioural fluctuation
is common during MCS, it is generally necessary to conduct serial
examinations before an accurate diagnosis can be made.

The Persistent Vegetative State

The assessment of patients in the vegetative state is extremely com-
plex and depends frequently on subjective interpretations of the
observed spontaneous and volitional behaviour. In fact, until re-
cent developments, VS and MCS were not differentiated. In recent
years, a number of studies have demonstrated an important role for
functional neuroimaging in the identification of residual cognitive
function, and even conscious awareness, in some patients fulfilling
the clinical criteria for vegetative state. Such studies, when suc-
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cessful, may be particularly useful where there is concern about the
accuracy of the diagnosis and the possibility that residual cognitive
function has remained undetected. However, use of these techniques
in severely brain-injured persons is methodologically complex and
requires careful quantitative analysis and interpretation. Patients
in the vegetative state are, anyhow, awake but are assumed to be
entirely unaware of self and environment. If a vegetative state en-
dure for at least 3-6 month after acute traumatic or non-traumatic
brain injury, then the patient is considered in PVS. The persistency
denotes irreversibility.



Chapter 2

Computational

Neuroscience Modeling

Neuroscience is an interdisciplinary field that involves biology, com-
puter science, mathematics, philosophy, etc. Currently, the neuro-
science are divided in several branches. Each of these study topics of
interest employs different experimental and theoretical techniques.
This thesis covers the following neuroscience branches: the systems
neuroscience and the computational neuroscience. The former aim is
to study the neurophysiology of important neurological systems like
motor system, auditory system, somatosensory system, etc. To meet
these objectives, the systems neuroscience employs methods that
record the neurophysiological activity of neurons or groups of neu-
rons with microelectrodes, two-photon microscopy, functional mag-
netic resonance imaging, etc. The latter aim is to make models and
analyses for the observed data, in order to understand the hidden
fundamental functioning mechanisms of neurophysiological and cog-
nitive systems. In the following sections, I introduce crucial features
for both approaches involved in this thesis. In our lab we recorded
electrical activity of neuronal ensembles in the rat somatosensory

39
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system, while in the clinical environment we recorded from hu-
man intralaminar thalami by array of microelectrodes. Methods
for recording, modeling and analysing are presented in detail in the
following sections.

2.1 Multielectrode thalamocortical record-

ings

Sixty rats (Sprague-Dawley, Charles-River, Calco, LC, Italy) weight-
ing 300-400gm were used. The neuronal electrophysiological record-
ings were taken from the side contralateral to the treated paw, the
EEG recordings from the contralateral side of the skull, ipsilateral
to the treated paw. As for the EEG recordings a specially designed
electrode asset was used. For the analyses we chose electively the
EEG data from the second derivation that was mirrorlike comple-
mentary to the contralateral somatosensory primary cortex where
the neuronal cortical recordings were obtained. For the electrophys-
iological recordings, two 3 mm2 holes were drilled on one side of
the skull to gain access to the Ventro-Postero lateral nucleus and
to the SS-I cortex. The neuronal recordings were obtained by two
matrices of extracellular multiple electrodes framed in 3x3 arrays
of single shanks, inter-tip distance 150-200μm, tip impedence 0.5-
1MΩ (FHC Inc., ME, USA). Fast thalamic and cortical responses
to light stimuli on the sciatic innervation field (the plantar aspect of
the left hindlimb) were the anatomo-functional acceptance criteria
to start the activity acquisition. In this thesis Single Neuron record-
ings and Unit recordings are distinguished. These last are meant
as the collection of the neuron micropopulation read-out of single
shanks of the matrices. For signal amplification and data recordings
a 32 channel Cheetah Data Acquisition Hardware was used (Neural-
ynx, MT, USA) at 32 kHz sampling frequency. Electrophysiological
neuronal signals were digitized and recorded with filtering low-high
pass bands at 6 kHz and 300 Hz respectively. The EEG data were
digitized and recorded with filtering low-high pass bands of 475 Hz-
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1Hz respectively. Trace visualization was achieved by multitrace
electronic oscilloscopes (National Instruments, Milan, Italy). The
data stored were analysed off-line both by Matlab and by locally
developed softwares. Spike sampling was carried out by an adaptive
threshold parametrized on trace noise levels (40mV peak to peak as
a mean) with mean signal-to-noise ratio of 4. A histological con-
firmation of the placement of the electrodes was then obtained on
brain coronal sections stained with cresyl-violet after formalin per-
fusion of the animal at the end of the experiments.
The multiunit recordings were sorted to extract the single cell sig-
nals. The spike sorting procedure employed the Wave clus tool [91].
The next step provided discretization of the population spike train
into bitstrings where 1 represents a generation of an action potential
and 0 the no-spike event, within non-overlapping windows of 1 ms
size.

2.1.1 Spike Sorting

The term spike sorting indicates the extraction and grouping of
spikes into clusters based on a criterium of the similarity of their
sampled waveforms. As a matter of fact, in extracellular recording
assets, the position of the recording probe (the electrode tip) and
the active recordable neurons (within a radius of 150μm or so from
the tip) arranged in a kind of lattice, supposedly stable during each
recording stage (see Figure 2.1). This assumption, thus, admits that
the field of a depolarizing neuron can be steadily acquired through-
out a recording session providing self-similar signals. Each neuron
may be thus functionally labeled by a specific spike shape and each
resulting cluster corresponds to the collection of simil-shaped spikes
emitted by one putative single neuron. From now to the rest of work,
I call unit the activity of a single neuron.
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Figure 2.1: An electrode that records the electrical activity within a
micro-column. The dark blue circle represents the detectable region
that vary with the electrode impedence.

Spike Detection

As a rule, the raw acquired signal is band-pass filtered within the
range 300-3000Hz. After this step, an amplitude threshold is applied
to detect the spikes from filtered signal. False positive and negative
spikes are unavoidable, but good results could be achieved. In a
strong-supervised detection system, an expert user sets manually a
reasonable threshold. This choice is justified in case of high vari-
able experimental conditions, that are electrode impedences, envi-
ronmental noise, etc. In most situation, the experimental conditions
are quite stable and then the threshold can be set automatically.
Several techniques suggest to relate the threshold to the standard
deviation of the signal. Finally the spike are extracted with a fixed
sample size (e.g. 64 samples) and aligned in order to keep the spike
peak in the same sample point (see Figure 2.3). The latter stage is
called peak alignment.
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Figure 2.2: An example of the electrical activity recordings with
microelectrodes.
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Figure 2.3: 100 spike waveforms each of them with 64 samples

Feature Extraction

The collected spikes belong to one or more neurons. To establish
the distance between two spike waveforms is usually useful to re-
duce the dimensionality of the spike dataset in order to consider the
feature that strongly characterize a spike waveform. This stage is
called feature extraction procedure. The dimensionality reduction
must be reduced from a space of dimension m (with m the number
of samples per spike) to a lower dimensional space features.
The search for the best discriminating features improves the perfor-
mance of clustering algorithms and in many cases makes feasible the
cluster algorithm computations. For many years, the Principal Com-
ponent Analysis (PCA) has been employed to extract few principal
components that hold most of the signal variances [1]. However, the
principal components method with maximal variance does not pro-
duce at all times the best separations. In fact, the best separability
can be achieved, e.g. by a combination of a high variance principal
component with a one with a lower variance. Other newer more suc-



2.1. MULTIELECTRODE THALAMOCORTICAL RECORDINGS45

cessful approaches are based on wavelet analysis to extract features.
In fact, recently, wavelet trasform is widely employed to analyze
non-stationary and non-periodic signals. The wavelets trasform re-
constructs the signal using simple mathematical functions (as base
of a vectorial space) that can be translated and scaled in order to
recombine the original signal. The wavelet transform can detect
time-frequency features that the Fourier transform cannot discrimi-
nate [65].

Clustering

The set of collected features, i.e. the detected spikes, needs to be
grouped into clusters. The spike membership to a particular group
means that the spike has been generated by the neuron associated
with this group. The searching for the best clustering algorithm
usually involves theoretical and heuristic assumptions like apriori
feature distributions (often Gaussian). One of most used is the
Expectation Maximization methods with Gaussian distribution as-
sumption [48]. However, these assumptions bias the results because
consider the feature variability perturbed by Gaussian distributed
noise. A more recent clustering method, the Super-Paramagnetic
Clustering (SPC) [19], not assume any particular distribution of the
features. It is characterized by a temperature parameter that in
analogy with statistical mechanics, at low temperatures all the data
are grouped into a single cluster and at high temperatures the data
are split into many clusters with few members each. There is, how-
ever, a middle range of temperatures corresponding to the super-
paramagnetic regime where the data are split into relatively large
size clusters corresponding to the optimal sorting. This method has
been applied to spike sorting by Quiroga [91].

Validation

The sorting procedure is, however, a semi-supervised technique.
Each steps require the human supervision in order to prevent bi-



46CHAPTER 2. COMPUTATIONAL NEUROSCIENCEMODELING

ological no plausible results, e.g. an unsuitable detection threshold,
too many extracted cells with similar wave shapes or otherwise few
cells with vary different wave shapes. When this happens the pro-
cedure will be repeted changing opportunely the parameters of the
previous stages.

2.2 Neural Code

How information is represented in the brain by neurons and neu-
ronal ensembles remains an open and important challenge. Initially,
the problem was focused on the mechanisms that relate the single
and ensemble neuronal activity with specific stimuli. For instance,
in the first experiments on the visual system, the scientists observed
the changing of firing patterns before and after a light stimulus.
This allowed they hypothesize for the fundamentals of photoreceptor
cells functioning principles. In recent studies spontaneous activity
brought to the scene for its growing role in neural dynamics. Fur-
thermore, in CNS there are periodic neural collective spontaneous
activities involving simultaneously several structures. The outcomes
of these coordinated co-activations are called neural oscillations or
rhythms easily recordable by the electroencephalogram (EEG).
In this work I will discuss the theoretical background of spike activ-
ity recorded by microelectrodes. Thus I will introduce some prelim-
inary theoretic view point about the information carried by spikes.
Spikes can vary notably in duration, amplitude and shape but they
are typically treated as identical stereotyped events in neural coding
studies. Furthermore, if the brief duration of a spike (about 1ms
including rising and falling phases) is left out, a spike sequence, or
spike train, can be viewed simply by a series of all-or-none point
events in time. The lengths of interspike intervals (ISIs) between
two successive spikes in a spike train often vary, apparently ran-
domly and are also largely studied.
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2.2.1 Firing rate

One of the first coding scheme proposed, successfully applied during
the last 80 years, hypothesize that most information about the stim-
ulus is expressed by neuron firing rate (number of spikes per second).
Furthermore, Statistics and Probability model the variation of re-
sponses by a given stimulus from trial to trial. For instance, in most
sensory systems, the increasing of stimulus intensity corresponds to
an increasing of the firing rate increases [8], and to decreases in trial
to trial sequence showing a response habituation of neurons.
Considerations taken from behavioral experiments have shown that
reaction times are often rather short. For instance, a fly can react to
new stimuli and change the flight direction within 30-40ms. This is
not long enough a time for spike counting and averaging over some
long time windows. The fly responds after that a postsynaptic neu-
ron has received one or two spikes [39] thus a frequency code is not
appliable to these response events.
Firing rate is easy to measure experimentally and robust for noise
interference. However, characterizing a spike sequence by firing rate,
any information possibly encoded in the temporal structure of the
spike train is disrupted. Therefore in the last 20 years this encoding
scheme has been less intensively studied.

2.2.2 Spiking timing

The study of spike sequences with temporal codes emerges by the
limitations of firing rate encoding. In other words spike timing seem-
ingly largely represents the information content of signals. There is
no absolute time reference in the CNS, the information is carried
either in terms of the relative timing of spikes in a neuronal en-
semble or in respect to a spontaneous brain oscillation or again in
relation to a stimulus [39]. Thus, methods like correlations become
crucial for these studies. A variant of this hypothesis shows that in
experiments involving responses to stimuli the time-to-first-spike is
only considered [45]. From this point of view, the brain does not
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have time to evaluate more than one spike from each neuron per
processing step, thus, the first spike should contain most of the rele-
vant information. However, using Information Theory approach on
several experimental data, various groups have shown that most of
the information about a new stimulus is indeed conveyed during the
first 20 or 50 milliseconds after the onset of the neuronal response.
Thus, even the pure Spike Timing hypothesis does not appear to
fullfil the request of a complete coding scheme.

2.2.3 Population coding

In the late 40s, one important concept that D. Hebb brought forward
was that a stimulus is encoded by nervous system within ensemble
of neurons (he called them cell assemblies) that functionally work
for the same goal [49]. This idea has been exploit to propose a new
kind of coding that assumes that an information is encoded within a
population of neurons [140]. Population coding reducts uncertainty
due to neuronal variability and it is able to represent a number of
different stimulus attributes simultaneously. Population coding is
also much faster than rate coding and can reflect changes in the
stimulus conditions nearly instantaneously, such that it can solve
the previous problem of fly movements. Individual neurons in such
a population typically have different but overlapping selectivities,
so that many neurons, but not necessarily all, respond to a given
stimulus. This feature can also explain the information redundancy
abundantly observed in several experiments regarding on the visual
systems. In this work I will just on spiking timing and population
coding.

2.2.4 Stationarity issues

Spike trains as well as many others biological sequences are non-
stationary. Cells adapt their functioning by several external and in-
ternal factors. These adaptations produce metabolic changings. In
neurons, the metabolic adjustments could strongly modify the dis-
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charge patterns, i.e. the wave shapes, but they also variate the spike
patterns. These events are relatively slow. In fact, occur almost in
several minutes and hours or more. The stationarity assumption
for neuronal firing patterns can hold only within these short time
intervals.

2.3 Neuronal analytical Modeling

A biological neuron model is a mathematical description of the neu-
ron features designed to precisely model and predict the generation
of action potentials. The variables that describe a neuron are: an
input x with some synaptic weight vector w and an activation func-
tion φ determining output y. This is the basic structure used in
artificial neurons, which in an artificial neural network often looks
like

yj = φ

(∑
i

wijxi

)
(2.1)

where yj is the output of the jth neuron, xi is the ith input neuron
signal, w is the synaptic weight, and φ is the activation function.
Until the late 40s, these models were largely studied despite their
scarce biological plausibility.
In the following years, neuron physical analogues have been used
instead of abstractions such as ”weight” and ”transfer function”.
The input to a neuron is often described by an ion current through
the cell membrane that occurs when for instance neurotransmitters
cause an activation of ion channels in the cell. The cell itself is
bounded by an insulating cell membrane with a concentration of
charged ions on either side that determines a capacitance C. Fi-
nally, a neuron responds to such a signal with a change in voltage,
or an electrical potential energy difference between the cell and its
surroundings, which is observed to finally result in a voltage spike
called an action potential. This quantity, then, is the quantity of
interest and is given by V .
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2.3.1 Integrate-and-fire

One of the simplest and earliest models of a biological neuron is
certainly the Integrate-and-Fire model. This model sums the input
currents and whenever the sum is greater than a fixed threshold
it generates an action potential. If the sum does not achieve the
threshold, the membrane potential fluctuates near the resting po-
tential values. Formally this can be described as

v̇ = I + a− bv, if v ≥ vthreshold, then v = c, (2.2)

where a, b, c, vthreshold are model parameters and I is the total in-
put current. When the membrane potential v achieves the value
vthreshold the model emits a spike and then v is set to c, the resting
potential.
The model is computationally inexpensive and can be used for large
scale network simulations. However it cannot reproduce important
behaviors like bursting and adaptation. There exist little more com-
plicated model variants like the Quadratic Integrate-and-Fire model
(also known as theta-neuron) with a good biological plausibility.

2.3.2 Hodgkin-Huxley

In 1952 A.L. Hodgkin and A. Huxley, physiologists and biophysi-
cians, studying the axons of giant squid neurons, they developed a
quantitative model able to electrophysiological describe the propaga-
tion of action potentials within the axon [51]. From a mathematical
point of view, the model is a system of four non-linear ordinary dif-
ferential equations that includes the description of membrane poten-
tial, the activation of sodium and potassium currents. The model
is computational expensive, in fact, a 1ms simulation requires al-
most 1200 flops. This condition makes this model computational
tractable with simulations of few neuron networks. Formally the
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model is described as:

C
dV

dt
= I − IK − INa − IL

IK = gk(V − EK)

INa = gNa(V − ENa)

IL = gL(V − EL)

where i ∈ {L,Na,K} are defined as follow:

gi(V, t) = ĝnφ
αχβ

φ̇(V, t) =
1

τφ
(φ∞ − φ)

χ̇(V, t) =
1

τχ
(χ∞ − χ)

with C the membrane conductance, V the membrane electric poten-
tial. I is the total membrane current. Ik and INa are the potassium
and sodium currents. Ei (i ∈ {Na,K,L}) is the inverse Nerst’s po-
tential. The variable gK and gNa, functions of time t and voltage V ,
are the conductance of respectively potassium and sodium channels.
L is the leak channel that represents the natural ion permeability
of membrane. The maximum conductance values for potassium and
sodium are respectively ḡK and ḡNa. Finally m, h and n are the
gating variables that represent the linear dynamic of sodium and
potassium channels. The variable m and n are active for depolar-
ization instead of h that is inactivated for depolarization. These are
defined as follows:

dn

dt
= αn(1− n)− βnn, n∞ =

αn

αn + βn
, τn =

1

αn + βn

dm

dt
= αm(1−m)− βmm, m∞ =

αm

αm + βm
, τm =

1

αm + βm

dh

dt
= αh(1− h)− βhh, h∞ =

αh

αh + βh
, τh =

1

αh + βh
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These parameters have been empirically determined by the authors.

2.3.3 Izhikevich

Proposed by E. Izhikevich in 1999, this model revolutionize the sce-
nario of analytical neuron models. Its most successful features are
the contained computational cost and the high-level biological plau-
sibility [55]. In fact this model can describe a large number of
neuronal types particularly for thalamus and cortex. The Izhike-
vich’s model was born from a deep study of neurons from a dynam-
ical system point of view. Bifurcation methodologies reduce many
biophysically accurate Hodgkin-Huxley neuronal models to a two-
dimensional system of ordinary differential equations ([56]) of the
form

v̇ = I + 0.04v2 + 5v + 140− u (2.3)

u̇ = a(bv − u) (2.4)

with the auxiliary after-spike resetting

if v ≥ +30, then v = c, u = u+ d, (2.5)

where v is the membrane potential, u is a recovery variables which
accounts for the activation of potassium ionic currents and inacti-
vation of sodium ionic currents, and it provides negative feedback
to v. The total input current is represented by I and a, b, c, and
d are dimensionless parameters. The part 0.04v2 + 5v + 140 repre-
sents a fitting of the spike initiation dynamics of a neuron. With
the right choice of parameters, i.e. a = 0.02, b = 0.2, c = −65, d = 6,
the model reproduces a RS neuron or with a = 0.02, b = 0.2, c =
−50, d = 2 a IB neuron.
I performed several simulations with this model in order to repro-
duce synthetic spike sequences.



Chapter 3

Mathematical Modeling

Methods

A study at the microscopic level involves an observation of neural
cells or neurons. In this perspective neurons behave in most various
fashions exhibiting action potentials or spikes. The recordings of a
neural ensemble can be studied at two granular levels. At the micro-
scopic level the dynamic features exhibited are expressed by single
neuron (SN) spike trains, i.e., the time series of neuronal action po-
tentials. At the mesoscopic level, the collection of the recorded spike
trains is identified in the multitrace recordings by definite time win-
dows (from now called neuronal ensembles, NE). I label both data
types as neurophysiological sequences.
Machine Learning (ML) is an interdisciplinary field (primarly from
computer science and mathematics) that studies the ability of com-
puter algorithms to infer new knowledge starting from some obser-
vations. The observations are usually called, in diverse scientific
fields, empirical data. Since the empirical data train the ML algo-
rithm, they are also called training sets. Generally, the training set
is treated by numerical systems (e.g. decimal, floating-point, binary,
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etc). Numerous successful ML algorithms require this assumption.
In fact, for instance, Support Vector Machine (SVM) algorithms
are able to infer a discrimination rule among the observed numeri-
cal data. The SVM algorithm works with a quadratic optimization
method into an euclidean space.
Whatever the training set is made of text, images, sounds, or any-
thing else, it can be considered as a symbolic sequence. In the train-
ing set, viewed as symbolic sequence, the single item represents the
state of the set of states that the symbol source (the observable that
delivers the observations) can assume. In this perspective the label
that tags a system state doesn’t assume a particular meaning. A par-
tial order does not hold among the state labels. Learning of features
and structures within a symbolic sequence (the training set) is called
sequential data learning. Lossless compression algorithms perform
sequential data learning in order to exploit the extracted structures
and regularities to compress the training sequence [105, 59, 60].
In this thesis I combine methods from sequential data learning with
neurophysiological sequences.

3.1 Symbol Sources

As a rule, single neuron or neuronal ensembles are manageable as
unknown discrete symbol sources S = 〈Σ, P 〉 where Σ is the source
alphabet and P is the unknown symbol probability distribution.
In a first instance, the evolution of neural activity in time can be
modeled by a Bernoulli stochastic process {Xt}t∈N, where Xt are
Bernoulli random variables with Xt ∈ {0, 1}. A Bernoulli stochastic
process implies that every Xt is independent and that each vari-
able is characterized by an unknown common parameter p. I am
interested to the dynamics that drive the evolution of Xt in order
to estabilish potential dynamical features like recurrent behaviours,
changing in modes and multiple interactions among neurons. But
bernoullian independence implies that the process is memoryless.
Thus this simple Bernoulli model fails to capture immediate rules
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like “is higher probable that a spike (symbol 1) is followed by a 0
(no-spike) than vice versa“.
Passing from modeling to analyses perspective, for decades the anal-
yses of these symbolic signals were carried out by elementary func-
tions like correlation, estimated by e.g. Pearson coefficient, that can
only measure the linear relation between two neuronal spike trains.
This approach points out two problem classes:

1. Pearson correlation coefficient can estabilish (potentially) a
linear relation between two spike trains

2. any correlation function is symmetric. In our perspective I
could map spike trains in a Potential Field. In this space a
similarity function between point couples shows, as a raw, no
true symmetry but trivial cases. In other words, where X and
Y are two spike trains, it can be easier to achieve X from Y
than the reverse.

Mutual information, and other statistical dependence measures like
rank correlations, address only the first class. Therefore I must face
the task to solve both problems simultaneously. On this track I pro-
pose a general framework based on spike train structure learning, a
method able to catch linear as well as non-linear relationships such as
recurrent schemes and predictive rules within the given spike train.
This would allow us to potentially test the Y -predictability from X.
With such an approach, it could be accessible the information about

X-Y relationship direction. Given an ensemble of spike trains, I try
to exploit this general method as consisting of these two stages:

1. Structure discovery for sequence. I develop a pattern cap-
turing predictive model for the neurophysiological sequences.

2. Structure similarity between sequences. I compute a
similarity matrice as a kind of correlation matrix on a sequence
collection.
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Single neuron sequence structures can quantify the neuronal be-
havioural redundancy. Redundancy is proportional to the predictabil-
ity. Historical works show that high level prediction is equivalent to
high level compression [97, 9]. In fact, ideal compression (i.e., com-
pression at or very near to the entropy of the sequence) would be
achieved if using the past observed symbols then it is possible to
predict with probability 1 the next symbols.
Defining neurophysiological sequence similarity indicates the com-
plexity level (inverse to the amount of shared patterns) of the neu-
ronal ensemble. As for point 1, I will discuss Makov Processes and
their related estimation algorithms. For point 2, I present an analy-
sis based on similararity distances through compression algorithms.

3.1.1 Finite Markov Process

Now I try to take into consideration several stochastic models with
arising complexity and predictability. The Bernoulli stochastic model
assumes the independence of its binary trials. The tossing coin out-
comes follow this model. Of course, any next coin toss outcome
doesn’t depend on the previous one. Biological evidence suggests
that action potential generations is strongly dependent on short-
term previous history. In this modeling stage, the aim is to capture
the time dependence between trials as many as possible. So I leave
a Bernoulli process to introduce a more powerful process family able
to deal with time dependence between outcomes, the Markov Models
(MMs).
Given a finite stationary process {Xt}t∈N with values Xt ∈ Σ and
|Σ| < ∞, 1 representing the spike activity of single neuronal cell, if
the following condition, called Markov property, holds:

P{Xt = xt|Xt−1 = xt−1, . . . X0 = x0} = P{Xt = xt|Xt−1 = xt−1}
(3.1)

1in our experimental framework Σ = {0, 1} for spike trains modelling and
Σ = {σ1, σ2, . . . } with |Σ| < ∞ for neuronal ensembles modelling
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then the process {Xt}t∈N is a Markov process. In other words, if
the stochastic process outcomes depend on by the immediatly past
event then the process is Markovian. Starting with an initial state
X0 = x0, the events are linked one-by-one and this justify the term
chains. The concept of Markov Chain completes and expands the
classical Markov process. A formal definition of Markov Chain is
the following statement:

A Markov Chain is a triplet given by a finite set Σ = {1, 2, . . . , k}
called states, an initial probability distribution μ : Σ → R and
a stochastic matrix M called transition matrix such that mi,j ≥
0∀i, j ∈ Σ and

∑
j∈Σ

mi,j = 1

In particular, the element mi,j ∈ M tells us the probabilities to
pass from state i to state j. Suppose that the processed spike train
consists of a Markov Chain with Σ = {0, 1}. The 2x2 transition
matrix M contains the probabilities to pass, e.g., from 0-state to
1-state. Knowing M , after some estimation procedure, I can extract
useful informations. In fact, M has a predictive power. In the
following example if I observe a 1-state I can conclude, that with
probability 0.9, the next state will be 0.

M =

[
0.8 0.2
0.9 0.1

]
(3.2)

Although the improvement compared to the Bernoulli process,
the prediction power of a Markov Chain model for spike trains is very
poor. In fact, neurons may exhibit many different and quite regular
behavioural patterns of activity like tonic spiking or bursting [8].
The Figure 3.1 represents the typical behaviour of a thalamic neu-
ron (remarking that the timescale is τ = 1ms) represented by the se-
quence σ = 000010000100001000010000100001000010000100001000-
01101011010110101101011010110101101011010100001000010000100-
001000010000100001000010000100001, displayed in Figure 3.2. In
this case the prediction accuracy is very low because the model is
unable to catch any of two important schemes within the sequence
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Figure 3.1: A tipical behavioural pattern of a thalamic cell during
tonic-bursting phases

Figure 3.2: The respective symbolic sequence where black cells rep-
resent spikes.

σ (the repetitions of ”00001” and of ”11010”). This is meanly due
to the fact that the Markov property holds only for one backward
event. The σ sequence will represent in the rest of this section a
toy example. If I extend the number of past events that conditions
the outcome of the next state, the prediction power of these models
arises. This concept leads to the definition of Markov Chains order
or length. Formally

Given a stationary process {Xt}t∈N with values Xt ∈ Σ and
|Σ| < ∞, if the condition P{Xt = xt|Xt−1 = xt−1, . . . X0 = x0} =
P{Xt = xt|Xt−1 = xt−1, . . . , Xt−k = xt−k} is satisfied for some
0 < k ≤ t, with k, t ∈ N, then the process is a Markov process of
order (or length) k (k −MM).

The k-MMs are able to construct models that estimate every con-
ditional probabilities p(σ|ck) where σ is the next outcome of the ck
sequence, i.e. the k past events before σ. So if there’s some recurrent
context that triggers a particular sequence of events this will be de-



3.1. SYMBOL SOURCES 59

tected for some value of k. For example, suppose that a neuron emits
a spike after a string pattern c = 10100001010. When I construct
the k-order Markov model for this neuron, if I choose k = 11 then I
am sure that, with some estimation procedure, p(1|10100001010) is
close to 1.
With k = 2 states and a 1-order model, then I have 4 possible
transition to estimate. With a 2-order model I have 23 possible
transition and so on. So, the dimensionality explosion takes the
upper hand increasing the model length. In the previous exam-
ple, with a 11-order, I would estimate 2048 possible transitions, but
with 7 possible states, the number of transitions would be almost
two billion! The general asymptotic combinatorial rule is that the
dimension grows as O(|Σ|k). This issue brings the k-order Markov
Chain to be unfeasable in most pratical cases. In our experiment,
the neurophysiological sequences are usually long 106ms and |Σ| = 2
for spike trains and |Σ| ≈ 103 for neuronal ensembles. However, I
should remark that, generally, many transitions will never occur.
So, the estimations of the respective probabilities will be close to
zero. On one hand, I would choose k as big as possible to increase
predictability, on the other hand, I choose k as small as possible to
avoid dimensionality explosion and zero-probability issues that bias
the estimations.

3.1.2 Variable Order Markov Models

A solution to both problems is represented by Variable Order Markov
Models (VOMM, also knows as Variable Length Markov Chains)
proposed by Rissanen [96] in 1983. A VOMM outlines the possibility
to take in consideration only transition probabilities that effectively
appear in an examined sequence. Namely, there exist p(σ|ck) with
k ∈ {1, 2, . . . ,K} only for the ck contexts encountered in the training
sequence, where K is the maximum order of temporal dependency
allowed. Formally a VOMM is defined as follow

Let {Xt}t∈N be a stationary stochastic process with values Xt ∈
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Σ, |Σ| < ∞. Let K be the maximum allowed order with 0 ≤ K ≤ ∞
and let c() be the function that establish the order s for any given
context xj

i = xixi+1 . . . xj with j < i and i, j ∈ N, so that

P{Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . } =

P{Xt = xt|Xt−1 = xt−1, . . . , Xt−s = xt−s}

with s = c(Xt−1

t−K). Then {Xt} is called the Variable Order Markov
Model of order K.

The VOMMs of maximum order K are as powerful as the equiv-
alent all-k-order MMs (all j-order MM with 1 ≤ j ≤ k) but employ
the minimun amount of space. VOMMs are able to locally optimise
memory model usage and could efficiently captures long and short-
term temporal dependencies within sequences. In any pratical case,
given a context, the c function tell us whenever the context exists
in the sequence. This time the toy example can be modelled setting
K = 10 and constructing, for instance, the following conditional
probabilities:

• p(1|0000) ≈ 1

• p(0|000010) ≈ 1

and so on for other simple regularities easly detectable.

An example of VOMM

Suppose that we observe the sequence xT
1 = x1 · x2 · · ·xT = x11

1 =
abracadabra generated by the source S = 〈Σ, P 〉 with Σ = {a, b, c, d, r}.
Then, we let K = 2. To build a VOMM for this sequence, we need to
estimate the symbol probability distribution P with P̂ through the
estimation of conditional probabilities p(σ|s) such that sσ is a sub-
sequence of xT

1 . Thus, we first extract the contexts of length 1 that
trivially are the alphabet symbols and then we proceed with contexts
of length 2 that are s ∈ {ab, br, ra, ca, ac, ad, da}. Summarizing,
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seven 2-length contexts plus five 1-length contexts for the VOMM es-
timation and twentyfive 2-length contexts plus five 1-length contexts
for an all-K-order MM estimation. By definition of VOMM, cases
as ba are not explicitly estimated and fall into the zero-probability
problem that is efficiently solved by VOMM estimation algorithms.
Efficient data structures that help to estimate the conditional prob-
abilities for a given sequence are the Prefix Trees. These data struc-
tures store in their nodes every prefix of a given sequence. Recalling
the previous toy example, we can build a prefix |Σ|-ary tree with
depth K for sequence x11

1 = abracadabra that is

ε

a

b c d

b

r

c

a

d

a

r

a

Thus, prefixes of length 1 are stored in the root-to-first-level node
paths, prefixes of length 2 are stored in the root-to-second-level node
paths and so fourth.

Comparison with Hidden Markov Models

The Hidden Markov Models (HMMs) are MMs with hidden states.
A set of observable states is mapped into the set of hidden state
with an emission probability distribution. Several HMMs for neuro-
physiological sequences have been developed. A VOMM overcames
several HMMs issues. Although the HMMs can model complex se-
quences, they may not be suitable to capture longer range sequential
dependencies. Furthermore, HMMs suffer from local optima during
estimation phase.
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3.2 Lossless Compressor Codes

The Kolmogorov complexity (KC) of an object x expressed as a
string (or symbol sequence) represents the length of the shortest
program, for a universal Turing machine, that outputs the x string.
In other words, the Kolmogorov complexity measures the amount
of useful knowledge to compute a given object that is the semantic
object content. The KC is uncomputable and this can be proved
by the reduction from the uncomputability of the Halting Problem.
The first important inequality is that:

KC(x) ≤ |x|+ c, ∀x

where c is a costant and |x| is the x length.
Some information contents are syntactically accessible, some others
not. For instance, considering the digits of the natural constant π,
no syntactic information can be extracted. In fact, π (as many other
natural constants) passes every randomness test. No structure can
be extracted only from their digits. Nevertheless it is quite simple
to write a short computer program that outputs the π digits. Thus,
only semantic information allows π digits compression.
However many symbolic sequences involved in real-world problems
could be syntactically compressed. Moreover, many symbolic schemes
are unaccessible by a human observer being the million symbol long
recurrences within a string undetectable.
Lossless compression algorithms allow syntactic compression of an
object like a binary string. The basic idea is that, given a fixed ob-
ject, a compression algorithm is able to rewrite the object such that
the length of the rewritten version is smaller than the original ver-
sion length. The reduced object length proves the compression algo-
rithm capacity to describe the object in terms of rules and schemes.
Hence the compression algorithm abilities purely act on a syntactic
level. In this way compression algorithms impose an upper bound
to Kolmogorov complexity. This upper bound is stronger than the
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previous inequality since:

KC(x) ≤ C(x) ≤ |x|+O(1), ∀x

where C(x) is the x compressed version length. The idea that com-
pressor codes could approximate Kolmogorov complexity was first
presented in several works [29, 28, 10] that led to the definition of
a similarity metric called Normalized Compression Distance and to
that of a kernel function based on it. Their results showed success-
ful applications with unsupervised and supervised tasks such as text
categorization, protein and music clustering.
Learning of sequential data remains still an open challenge. VOMMs
obtain good results in several classification tasks on symbolic data
[9]. Lossless Compression Algorithms (LCAs) given a string σ of
fixed length n return a coded string ζ with length c with c ≤ n.
In the Lossless family, the compressed string ζ can be univocally
decoded in order to reobtain σ. There exist several LCAs. Each
of them is based on specific techniques like dictionary, statistics,
block-sorting and many others. The basic idea behind every LCA
is to find regularities, recurrent patterns within the sequence in or-
der to exploit this information to compress the string. For exam-
ple, the string 011011011101011011011101011011011011 is long 36
characters. If I rewrite it in the form aaabaaabaaaa will be long
only 12 character with the additional information that a = 011 and
b = 101. Any LCA implicitly constructs a VOMM. I selected three
types of statistical-based LCAs considered the state-of-art for their
compression ratio performances. These are: Context-Tree Weighting
(CTW) [137, 138], Prediction by Partial Matching (PPM) [30, 122]
and Probabilistic Suffix Tree (PST) [98, 11]. In general, any loss-
less compression algorithm, even a simple Lempel-Ziv [135, 147], can
be used for prediction. Sometimes, less compression ratio but more
computational efficient algorithms could be preferred.
Finally, once the conditional probabilities were estimated, the com-
pression algorithm uses an encoding scheme, usually the arithmetic
encoding, to generate the compressed code for the string. The first
stage of these algorithms can be exploited to compute conditional
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probabilities of each symbol, for every encountered context shorter
than a fixed constant K.

3.2.1 Prediction by Partial Matching

Let xT
1 = x1 . . . xT , xi ∈ Σ be a sequence of symbols and K be the

maximum order for context. A PPM algorithm constructs a tree
S rooted in node ε, the empty word, where each path from root
to node represents an existing sequence prefix2 s, of xT

1 , with as-
sociating occurence counter N(sσ), where σ is the last encountered
symbol. The depth of S is always K+1 except for trivial cases. The
algorithm starts with the tree containing the only empty word ε and
then processes the sequence xT

1 one symbol at time togheter with
its context of length K. Given xi and its prefix xi−1

i−K , the algorithm

verifies if there exists the xi
i−K path within the tree S. If it exists,

the counters of each path node will be updated, otherwise a specific
tree branch labeled with the missing path node will be created.
The PPM, like any other statistical-based compressor, needs to han-
dle the occurence of zero-probability symbols. In other words, if I
ask to compute p(σ|s) with N(sσ) = 0 once the estimation pro-
cedure is done (i.e. the tree construction), I can’t conclude that
p(σ|s) = 0. This problem resides in both theoretical and pratical
aspects. Given a symbol source with an associated probability dis-
tribution, it’s impossible to compute the source entropy if even only
one symbol probability is zero. I neither can pass to an arithmetic
encoder a zero probability symbol [31]. PPM estabilishes two mech-
anisms to overcome the zero-probability problem: exclusion and es-
cape. With the escape process, for each context s of length k ≤ K,
a probability P̂k(escape|s) for non appearing symbols after context
s is assigned. For other non-zero count symbols, the probability

2this data structure is usually known as trie or prefix tree
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1− P̂k(escape|s) will be distributed

P̂ (σ|snn−K+1) =

{
P̂K(σ|snn−K+1), if snn−K+1 ∈ xT

1 ;

P̂K(escape|snn−K+1) · P̂K−1(s|s
n
n−K+2), otherwise.

(3.3)

and for the empty context ε, P̂ (σ|ε) = 1/|Σ|. The exclusion mech-
anism enhances the escape estimation. The basic consideration is
that if a symbol σ with context s with |s| ≤ K, then σ can be
missed from the estimation of P̂|s|(·|s

′), ∀s′ such that s′ is a suffix
of s. A Smaller alphabet incurs in potentially accurate estimation.
The operative core of the conditional probabilities estimation is de-
fined by the following equations

P̂k(σ|s) =
N(sσ)

|Σs|+
∑

σ′∈Σs

N(sσ′)
, (3.4)

P̂k(escape|s) =
|Σs|

|Σs|+
∑

σ′∈Σs

N(sσ′)
(3.5)

with N(σ) be the function that counting the σ occurences in xT
1 ,

Σs = {σ : N(sσ) > 0} and with |s| = k. If n is the length of the
sequence and K the maximum order allowed, PPM requires O(n) in
computational time and O(Kn) in computational space.

Prediction with PPM

To compute P̂ (σ|s) I start from the root and traverse the tree accord-
ing to the longest suffix of s, denoted s′, such that s′σ corresponds
to a complete path from the root to a leaf. Probability estimation
uses the above equations 3.3-3.5.
If |s| is the length of the sequence to predict, the prediction proce-
dure requires O(|s|2) in time.

3.2.2 Context-Tree Weighting

The CTW algorithm is an ensemble method, combining exponen-
tially many VOMMs, where each of such models is estimated by
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zero-order conditional probability estimators. Without loss of gen-
erality I present the binary alphabet (Σ = {0, 1}) version of CTW al-
gorithm that uses the Krichevsky-Trofimov (KT) estimator as zero-
order conditional probability estimators [62]. Several extensions to
the multialphabet case exist and require a further explanation of
technical details. A part of results is obtained using a multi-alphabet
CTW version called decomposed CTW that provides a hierarchical
decomposition of the multi-value problem into binary ones. For fur-
ther details see [125].

Tree Source

CTWmodels the symbol source that generates the training sequence
with trees called tree sources. A tree source represents a VOMM,
that’s a full binary tree with depth up to K, each leaf having an as-
sociated probability distribution over the binary alphabet. Formally
the tree source is a set S ⊆ Σ≤K of suffixes where each node is a
path from a leaf to the empty word root ε and where each left son
edge is labeled by 0 and each right son edge by 1. I denote with CK
the set of all tree sourced with K-bounded depth. The zero-order
distribution of a leaf s is denoted by ps(σ), ∀σ ∈ Σ.
A K-bounded tree source S induces a probability distribution over
Σn for each sequence of length n. The probability is inducted by the
chain rule:

PS(x
T
1 ) =

T∏
i=1

P (xi|x
i−1

i−K) (3.6)

Denoting by ym1 = SUBs(x
T
1 ) the ordered non-contiguous subse-

quence of symbols appearing after the contex s in xT
1 and defining

ps(x
T
1 ) =

∏m
i=1

ps(yi) with ps(ε) = 1 then the Equation 3.6 becomes:

PS(x
T
1 ) =

∏
s∈S

ps(x
T
1 ) (3.7)
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The CTW method

The CTW algorithm firstly guesses the topology (the set S) of the
best tree source and then estimates the distributions associated with
its leaves. As first point, the CTW algorithm assigns to each s ∈ S
(assuming that the best tree topology is known) a KT-estimator
p̂s that estimates ps considering all the occurrences s in xT

1 and
constructing p̂s by counting and smoothing. In particular if a and
b are, respectively, the number of zeros and ones in the sequence q,
the KT-estimator is equivalent to

P̂KT (0|q) =
a+ 1

2

a+ b+ 1
(3.8)

P̂KT (1|q) =
b+ 1

2

a+ b+ 1
(3.9)

and

P̂ s
KT (x

T
1 |q) =

T∏
i=1

P̂KT (xi|qs) (3.10)

Pratically the best tree source topology, for a given sequence, is un-
known. Thus, the CTW algorithm considers all possible K-bounded
topologies in S, i.e the all possible subtrees of the complete binary
tree of depthK and then estimates its zero-order (e.g. KT) leaf prob-
abilies. Finally, the CTW mix all predictions in a computationally
efficient way, notwithstanding the exponential size of subtrees, and
outputs PCTW (xT

1 ), remarking that
∑

σ PCTW (xT
1 σ) = PCTW (xT

1 ).
The probability PCTW (xT

1 ) can thus be considered as

PCTW (σ|xT
1 ) =

PCTW (xT
1 σ)

PCTW (xT
1 )

(3.11)

that is the next symbol probability for each σ ∈ Σ. Furthermore the
sequential zero-order estimation for xT

1 is, by the chain rule, again

p̂s(x
T
1 ) =

m∏
i=1

p̂s(yi|y
i−1
1 ) (3.12)
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The Algorithms 1 and 2 define the CTW method.

Algorithm 1 Estimation of the tree sources

CTW (xT
1 , x

0
1−K ,K)

for s ∈ Σ≤K do
compute and store p̂s(x

T
1 )

end for
return PCTW (xT

1 ) = mix(ε, xT
1 , x

0
1−K)

Algorithm 2 Mixing the estimations

mix(s, xT
1 , x

0
1−K)

if |s| = K then
return p̂s(x

T
1 )

else
return 1

2
p̂s(x

T
1 ) +

1

2

∏
σ∈Σ

mix(σs, xT
1 , x

0
1−K)

end if

It is notable that the original version of CTW algorithm assigns
fixed weights equal to 1/2. Further CTW extensions exploit this step
with other assignment policy well known in other fields like expert
advice learning. The best CTW implementation requires O(KT ) in
space and time.

Prediction with CTW

Prediction with CTW requires O(K|s|) and it is performed by Al-
gorithm 2.

3.2.3 Probabilistic Suffix Trees

Probabilistic Suffix Trees are variants of probabilistic finite automata.
A PST tries to build a K order VOMM using several parameters.
In fact, this method is more supervised than CTW and PPM and
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tipically needs parameter specifications and tunings to deliver sound
results. It is simple to implement and requires low computational
space and time.
Given the xT

1 the training sequence, the algorithm builds a suffix
tree S in three steps:

1. build the suffix tree S where each node represents contiguous
subsequence s of xT

1 with |s| ≤ K. The tree S contains all
the encountered contexts with length up to K. Hence the fre-
quency of s in xT

1 must be larger than a user defined threshold.
Thus the maximum likelihood estimator for P̂ (σ|s) is obtained.

2. grub probability estimations that doesn’t satisfy one of the
following conditions:

(a) P̂ (σ|s) ≥ some user defined threshold

(b) If s = σkσk−1 . . . σ1, then its parent node is its longest
suffix s′ = σk−1 . . . σ1. Thus

P̂ (σ|s)

P̂ (σ|s′)
≥ r or

P̂ (σ|s)

P̂ (σ|s′)
≤

1

r
(3.13)

where r is another user specified parameter.

3. smoothing: if P̂ (σ|s) = 0 then a minimum (user specified)
probability is assigned and the resulting distribution re-normalized.

This algorithm requires O(Kn2) in space and O(Kn) in time.

Prediction with PST

The PST requires O(K) for prediction. It is done visiting the tree
starting from root and following the respective branch of symbol
context. The reached node contains the estimated conditional prob-
ability.
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Figure 3.3: The estimation framework for VOMM with lossless com-
pression algorithms.

3.3 Estimation Framework

To clarify the proposed estimation of VOMM with the algorithms
above, I present the diagram in Figure 3.3. Once the neurophysio-
logical sequence is obtained from an observed source (neuron), the
VOMM construction follows these three steps:

1. Split the sequence in two parts: the first sequence will be used
as training sequence (qn1 ) and the second as test sequence (xT

1 ).

2. Estimate for each LCAs (PST,CTW,PPM) the VOMM ob-
taining a P̃

3. Select the estimated distribution P̂ among the three P̃ , the
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best one that optimize the following problem: P̂ = argmaxP̃ P̃ (xT
1 ).

Thus, this simple procedure selects the estimated model with the
highest propability assignment on the test sequence.

3.4 VOMM’s model similarities

Let’s set a similarity function μ between two sequences a and b gen-
erated by VOMMs Xa and Xb. Once a VOMM for sequence a is
built, then I compute the probability that the sequence Xb could be
generated by a model. Now I evaluate the possibility to make μ as
a metric.
Once I have a set of models Ψ for a set of neurophysiological se-
quences, the model can be comparable defining a metric μ for every
couples of Ψ elements. Let μ be a distance function (or metric) de-
fined as μ : Ψ2 → R that satisfies ∀Xa, Xb, Xc ∈ Ψ (the space of
VOMMs) the following conditions:

1. μ(Xa, Xb) ≥ 0 (non-negativity)

2. μ(Xa, Xb) = 0 iff x = y (identity of indiscernibles)

3. μ(Xa, Xb) = μ(Xb, Xa) (simmetry)

4. μ(Xa, Xc) ≤ μ(Xa, Xb) + μ(Xb, Xc) (triangle inequality)

Unfortunately our requirements don’t match the four conditions all-
together. In fact, as I have previously discussed, I need an asymmet-
ric distance function where the second property doesn’t imply x = y.
This means that it’s possible (but very unusual) to find two neuro-
physiological sequences so stricly coupled to reduced their distance
to zero. Even the fourth condition doesn’t hold. The mathemat-
ical notion of distance function does not match out requirements.
Thus, the expected similarity function must respect only the non-
negativity condition. However, computational issues arise with this
approach. An approach based on the arithmetic encoders is more
computationally efficient.
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3.4.1 Average Log-Loss

The recorded sequences SN and NE are non-stationary over long
time periods, i.e. several minutes [2]. Stationarity is measurable
in epochs not exceeding one minute or so. As I introduced in the
previous Section, every examined SBCA returns, given a symbolic
sequence s = s1s2 · · · sn, an estimation P̂ for P . Suppose that two
sequence qT1 , s

n
1 are both observed from source S. The former is the

training sequence and the latter is the test sequence. The training
sequence builds the VOMM, i.e. the estimated probability distribu-
tion P̂ . The average log-loss uses the test sequence to compute the
learning error to evaluate the loss due to employing the distribution
P̂ instead of P . The average log-loss function is, thus, definied be-
tween an estimatated probability distribution P̂ and a test sequence
as follows

l(P̂ , s) = −
1

n

n∑
i=1

log P̂ (si|si−1 · · · s1)(3.14)

= −
1

n
log

n∏
i=1

P̂ (si|si−1 · · · s1) = −
1

n
log P̂ (sn1 ) (3.15)

and can be employed to estimate similarity between sequences. It
is worth to note that minimizing the average log-loss is completely
equivalent to maximizing the probability assignment P̂ (sn1 ). This
fact is very common in the machine learning framework that the
best accuracy performance in classification tasks is obtained by min-
imizing the error over the test set instead of training set that other-
wise would bring the classificator to overfitting problem. Given two
sources S1 =

〈
Σ, P 1

〉
, S2 =

〈
Σ, P 2

〉
, their observed sequences s1

and s2, a SBCA algorithm (e.g. PPM) and the sequence s1, the av-
erage log-loss returns P̂ 1

PPM . Thus, the similarity function between
the two sequences μ(s1, s2) can be defined as

μ(s1, s2) = l(P̂ 1
PPM , s2) = −

1

n

n∑
i=1

log P̂ 1
PPM (s2i |s

2
i−1 · · · s

2
1) (3.16)
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Function μ supplies analyses that involve the study of similarity be-
tween experiment runs (SN or NE) and the dynamic of stationary
phases within an experiment. These studies on experiment couples
allow for quantifying diversity (or similarity) among the whole ex-
perimental issue in the database, for instance, PVS vs MCS patients
or CPAs vs normal rats.
In spite of the polynomial time complexity of these algorithms, they
spend a lot of memory and fail on large datasets (in particular
CTW).

3.4.2 Compressor-based similarity function

In the recent years, some similarity functions based on the com-
pressed length have been proposed. The most widespread is cer-
tainly the Normalized Compression Distance (NCD). However, sev-
eral comparisons show that in many real-world problems the accu-
racy is not significantly differ [105]. This similarity function has
been presented in several works by Rudi Cilibrasi and Paul Vitany
([29] ,[28]). The concept behind this function regards the conditional
Kolmogorov complexity that brings to the non-computable distance
function called Normalized Information Distance:

NID(x, y) =
min{K(x|y),K(y|x)}

max{K(x|y),K(y|x)}
(3.17)

that could be approximated with compression algorithms

NCD(x, y) =
C(x · y)−min{C(x), C(y)}

max{C(x), C(y)}
(3.18)

where C(·) function represents the compressed sequence length and
· is the sequence concatenation operator. When NCD(x, y) = 0 the
objects are considered similar otherwise when it is equal to 1 the ob-
jects are very dissimilar. However, since the idempotence property
can be violated by some compression algorithms3, it can exceed 1

3when C(x · x) > C(x) instead of C(x · x) = C(x)
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for little ε. This distance was successfully applied to text and music
clustering tasks [28]. Although worse performing in compression ra-
tio, widely used Unix compressors (gzip, bzip2, lzma, etc) achieve
comparable results in faster ways. Computing the compressed se-
quence lengths by Unix compressors, I could define the Normalized
Compression Distance (NCD) as:

NCD(s1, s2) =
C(s1 · s2)−min{C(s1), C(s2)}

max{C(s1), C(s2)}

I remark that the NCD function is a feature-free distance function,
i.e. the similarity estimation is not based on some fixed features.
On the contrary every other similarity measure is feature-based, i.e.
they require detailed knowledge of the problem area in order to mea-
sure the similarity/dissimilarity between two objects.
The computational efficiency, in this case, allows for the similarity
computation between many paired SN sequences. Given a SN set, I
computed the similarity between all the possible pairs. Obtaining a
similarity matrix, it’s possible to compute L2 (or Frobenius) matrix
norm and to assume this feature as an estimator of NE redundancy.

3.4.3 Stationary Phase Detection

Considering SN sequences it is possible to detect stationary phases
and to study dynamical features like sojourn time distributions. De-
tection of stationary phases can be done in two stages: first by split-
ting the SN sequence inN overlapping windows of fixed lengthm and
overlap size β, where ct represents the subsequence st ·st+1 · · · st+m.
Second by finding the time window i, where μ(ct, ct+1) ≥ η, for
some fixed constant η. The constant β usually belongs to [m

3
, 2m

3
].

The constant η can be computed by reference value from the shuf-
fled original sequence. To achieve more robust results it is possible
to compute the numerical forward derivative of the average log-loss
comparing its value with a geometrically interpretable threshold.
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The Figure 3.4 shows an example of this technique capability to high-
light the chaotic phase of the Logistic Map within the intermittent
region.

3.5 Neuronal Groups Discovery

Starting from the NCD matrix (see for e.g. Fig 3.5), I considered
a functional direct relationship A → B between corresponding SNs,
computing the set Γ = {A → B|μ(A,B) ≥ θ}. I called this method
Neural Group Discovery (NGD). For instance, the NGD procedure
computes the graph displayed in Figures 3.6-3.7. A NE functional
dependency graph delivers several statistics extraction like the node
degree distribution, the connection density and the hub count [21].

3.5.1 Small-World Networks

The NGD method is very closely related to the recent developments
in the Small-World Networks theory. The Small-World Networks are
graphs (see examples in Figures 3.8 and 3.9) that hold the following
properties:

• Scale-Free Topology: the graph topology is very similar in dif-
ferent scale like a finite fractal. This property lies in the node
degree distribution that looks like a power-law distribution.

• Clique Presence: in the graph there are several, typically small,
complete subgraphs, i.e. subgraphs where each nodes are con-
nected with each one.

• Small Mean Shortest-Path Between Nodes: the communica-
tion between two random nodes is very fast.

• Hub Nodes Presence: there exist nodes with a high degree.

Robustness emerges from the architecture of these graphs. Simple
experiments show that if few edges are randomly deleted in a Small-
World Network and in an equivalent random network (same number
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Figure 3.4: In the panel above the Logistic Map within the Intermit-
tent Chaos Region (α ∈ [3.8284, 3.8287145]). In the central panel
the average log-loss computed on sliding windows of 500 units at
50 units. In the panel below the peaks of the derivative of average
log-loss follow the chaotic region while the periodic phases represent
low values of average log-loss.



3.5. NEURONAL GROUPS DISCOVERY 77
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Figure 3.5: An example of NCD matrix from a thalamus of an ex-
perimental chronic pain animal model. The recording gathers 33
neurons.
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Figure 3.6: An example of NGD procedure computed on the NCD
matrix in Fig 3.5 with the 33x33 matrix.
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Figure 3.7: An example of NGD procedure computed on the NCD
matrix in Fig 3.5. with an extract of 20 cells.
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of nodes and connections) the mean shortest-path between nodes is
preserved in the Small-World Network while in the random network
the mean length can grow very fast.
Furthermore several results suggest a Small World interpretation (or
assumption) of brain networks. From this perspective, some brain
network properties hold from microscopic (our subject) to macro-
scopic point of view (fMRI, PET and other imaging techniques on
brain functional areas)[21].

Figure 3.8: An example of small-world network

3.6 Graphs, Trees and Statistics

Each of the presented SBCA constructs a VOMM by a tree to esti-
mate the conditional probabilities. The SBCA tree structures can be
used to extract features like, for instance, the average tree arity for
NE sequences (except for CTW that builds full trees). This endorses
special feature of the sequence extracting the expressiveness of the
recorded neuronal network. Furthermore another VOMM tree fea-
ture called High Probability Paths (HPPs) highlights most probable



3.7. MODELING INTERMITTENT CHAOS 81

Figure 3.9: Another example of small-world network

depth-first search paths (according to the highest probability or the
probability over a fixed threshold of the children nodes). Using this
feature, it is possible to detect neuronal firing modes, such as tonic
spiking, intrinsically bursting, etc., nested into SN sequences.

3.7 Modeling Intermittent Chaos

Analyses performed in our lab and several theories on neuronal os-
cillations show that cortical ongoing activity alternate chaotic and
regular behaviors. This evidence suggested to model this peculiar
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behavior with the intermittent chaos of the logistic map adapting
the genetic algorithms by the α value of the logistic parameter. In
the following Section I present first, the prepocessing phase of the
cortical signals, then I introduce the logistic map and finally the
logistic parameter optimization will be shown.

3.7.1 Class Extraction

I define the MxN matrix X. Each element xi,j represents the spike
count for the ith unit in the jth time window. I called T the time
window duration. Each column x.,j represents the multi unit activity
in the jth time window. Whether the temporal sequence x.,j with
j = 1, . . . , N − k and 1 ≤ k � N has regular patterns, then it is
possible to predict future activities x.,j+k, i.e. x.,j and x.,j+k are
correlated in the range of k temporal lags. To make the problem
computationally tractable I approximated the sequence x.,j , with
j = 1, . . . , N with the symbolic sequence {sj} obtained by clustering
the vectors x.,j into a reasonably small number of Ns classes. The
procedure is described in details in [115]. In brief I ran the clustering
algorithm on the sequence {x.,j} for T = 10 ms, M = 9. Then I
mapped x.,j into the set C = {C1, . . . , CNs

} obtaining the sequence
{sj}, j = 1, . . . , N , sj ∈ C and Ns ∈ {2, 3, . . . , 8}. I called Activity
Class Sequence (ACS) the sequence {sj}.

3.7.2 Information Analysis

I assumed that the ACSs were stationary so that P (si = Cn) =
P (s0 = Cn) and P (si+k = Cn|si = Cm) = P (sk = Cn|s0 = Cm) for
i = 1, . . . , N − k and n = 1, .., Ns. I also define s0 = {s0, . . . , sN−k}
and sk = {sk, . . . , sN}. To quantify the temporal autocorrelations
I estimated the mutual information between successive states at k
lags

I(s0; sk) = H(sk)−H(sk|s0) (3.19)
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given the entropy functions

H(sk) = −

Ns∑
n=1

P (ski = Cn) logP (ski = Cn) (3.20)

H(sk|s0) = −

Ns∑
m,n=1

P (ski = Cn, s
0
i = Cm) ·

· logP (ski = Cn|s
0
i = Cm)

The estimation of I(s0; sk) was corrected by using the quadratic
extrapolation [118]. To interpolate I(s0; sk) I used the following
expression

Î(s0; sk) = ae−bk + ce−dk (3.21)

I estimated the parameters a, b, c, d through least square optimiza-
tion by using the Matlab function lsqcurvefit.m (The MathWorks,
Natick, MA).

3.7.3 Logistic Modeling

To model a class sequence I used the logistic map [79]

yi+1 = αyi(1− yi) (3.22)

and a realization of gaussian white noise ξ distributed as N(0, σ).
The resulting sequence is

zi = y3i + ξ3i (3.23)

and I let α vary in the range [3.8280, αc] with αc = 3.8284271271245.
Because in this region the map exhibits periodic-like cycles of length
3 I built z by extracting one sample every three as shown in equa-
tion (3.23). Downsampling preserves chaoticity while in the laminar
phase the period changes from 3 to 1. This trick eliminates tiresome
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long range ripples in autocorrelograms and allows long reiteration
of the same class. I divided the z range into Ns intervals so that
each interval was associated with a distinct activity state. The size
of the interval was adjusted so that the fraction of state occurrence
matched the experimental data. I called Iz(s0; sk) the temporal au-
tocorrelation function for the z.

3.7.4 Parameter Optimization

Classes tend to reiterate themselves for a while before switching. I
called τsw the distribution of temporal intervals between two succes-
sive class switches. Then τr and τ̂r represent the average residence
time within an activity state (i.e. the average over τsw) estimated,
respectively, on the real and on the modeled sequences. I jointly
matched Iz(s0; sk) with I(s0; sk) and τ̂r with τr by optimizing the
parameters (α,σ). For this task I used a genetic algorithm strategy
that took as score the average D of the two following distances

D1(α, σ) =

∑
k |I(s0; sk)− Iz(s0; sk)|∑

k |I(s0; sk)|
(3.24)

D2(α, σ) =
|τr − τ̂r|

τr
(3.25)

A candidate solution, constituted by an admissible choice for (α,σ),
was defined as a chromosome. The algorithm initialization was pro-
vided by the random generation of 100 chromosomes that repre-
sented the initial offspring. The 5 best chromosomes (lowest D
values) constituted the best offspring. The crossover strategy con-
sisted of selecting the 5 worst chromosomes and regenerating them
by computing the average of α and σ of random chromosome couples
extracted from the 5 best chromosomes. Then an additive random
gaussian mutation with zero mean was applied to both parameters
in all chromosomes but the best offspring. The stop criteria were
either a maximum number of iterations [200, 1000] and a maximum
score (D ≥ 10−2).
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Experiments

To collate a relevant and statistically significant set of electrophysio-
logical recordings is a complex task. Our experiments can be divided
in two categories: experiments on cortex and thalamus of rats and
experiments on intralaminar thalamus of patients with disorder of
consciousness (pdc). Electrophysiological recordings in the rat tha-
lamocortical circuit are introduced in Section 2.1. Technical aspects
like anesthesia, preparation and many more require to be also pre-
sented.
The experimental animal models used in the labs mimic the originat-
ing conditions starting the chronic pain symptomatology. Control
animals (CRs) are used to test the results.
The recordings from pdc take part to a project that involves the Pain
Neurophysiopathology Labs (National Council of Research, Segrate,
Milan, Italy) where I worked out my PhD program, the Department
of Neurosurgery (Policlinico San Matteo, Pavia, Italy) and the In-
stitute of Biomedical Technologies (National Council of Research,
Segrate, Milan, Italy). The recording were made in five pdc, sched-
uled to receive Deep Brain Stimulation (DBS) by bilateral implants
in intralaminar thalamic nuclei. At present, 3 out of 5 patients have
been successfully operated in the period from July 2009 to July 2010.

85
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4.1 Neuropathic Animal models

Peripheral neuropathic pain is a complex syndrome resulting from
damage to the peripheral nervous system due to trauma, infection,
tumors, immune and methabolic diseases, and other causes. A num-
ber of animal models have been reported to simulate human periph-
eral neuropathic conditions, most of which are based on procedures
at or near sciatic nerves. Methods differ in the location and form
of injury. We employed three different models for our experiments:
the chronic constriction injury model (SC or Bennett [12]), the par-
tial sciatic nerve ligation model (SL or Seltzer [107]) and peripheral
inflammatory model (PI) [132].

Animal Preparation

The animals were maintained with regulated 16 hrs light- 8 hrs dark
cycles, food and water ad libitum. The rats underwent preliminary
barbiturate anesthesia (50mg/Kg ip) for the surgical experimen-
tal preparation. The jugular vein and the trachea were delicately
desheated and cannulated to gain, respectively, a drug delivery path-
way and the connection to the anaesthesia-ventilation device. The
rats were then mounted on a stereotaxic frame and the head was
firmly fixed to the frame by usual stereotactical constraints (Nar-
ishige, Tokyo, Japan). An electronically regulat ed thermal bed
maintained the rat temperature at 37.5 oC. The scalp was removed
and the skull plane was prepared for the placement of both the ma-
trix electrodes and the EEG electrodes. The stereotactical measures
were chosen along a stereotactic brain atlas.

Anesthesia

Before the placement of electrodes, the rats were paralyzed by in-
travenous gallamine thriethiodide (20 mg/kg/h) injection and con-
nected to the respiratory device delivering a gaseous mixture of
Isoflurane c© (2.5%, 0.4 to 0.8 l/min) and Oxygen (99.9%, 0.15-0.2
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l/min) at 1 stroke/s. Curarization was maintained stable through-
out the whole experiment by Gallamine thriethiodide refracted in-
jections.

Electroencephalography

The electrodes were fast-implantable/removable skull-surface slid-
ing pins mounted on a fixed support. Five bone embeddings were
drilled (to enable a better placement of the 4 recording plus refer-
ence EEG electrodes) in fronto-occipital sequence. The stereotac-
tic positions of the EEG derivations were taken using the Bregma
as zero point: Frontal cortex Antero-Posterior (AP) +3.0, Medio-
Lateral (ML) −2.0; Fronto-Parietal Cortex [Somato-sensory primary
Cortex] AP −1, ML −2.5; Mid-Parietal Cortex [Hippocampus] AP
−4.3, ML −2.5; Parieto-Occipital AP −10 [Lambda +1], ML −2.0).
A conductive EEG paste was placed at each contact to ameliorate
the electric coupling. No difference in quality with the traces ob-
tained from classic electroencephalographic recording methods was
noticeable.

Surgical Procedure and Stereotaxis

After the removal of the excised bone tiles, the dura mater was
delicately removed, under surgical binocular microscope supervision,
by the use of eye micro-scissors and forceps.
Each electrode matrix, one for the cortical and the other for the
thalamic recordings, was placed into a 3x3 mm2 hole. The cortical
hole (−0.1 to −3 mm AP and 0.1 to 3 mm ML) was drilled over the
virtual center of the hind limb cortical projection sensory map (AP
+0.3 mm, −2.3 mm; ML −0.1 −3.5) of the SomatoSensory Primary
Cortex (SS-I). The cortical matrix was then lowered until layer IV.
The thalamic hole was drilled posteriorly (AP −6.0 mm, ML −2.8
mm). The thalamic matrix was then positioned with 25o of postero-
anterior slant in order to reach the VL in the VB complex hindlimb
projection field at 5200-5500μm. After positioning on the cortical
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surfaces the matrices were separately advanced in 2μm steps each
driven by a separate motor-stepper device (Transvertex, Stockholm,
Sweden and Narishige, Tokyo, Japan).

Chronic Constriction Injury Model (SC)

Bennett and Xie reported a rat model of painful peripheral mononeu-
ropathy in 1988 [12]. Along this model the model loosely ties the
sciatic nerve (left or right side) with four chromic gut ligatures at
the mid-thigh level. SC rats show behavioural signs of spontaneous
pain such as mild to moderate autotomy, guarding, excessive licking
and limping of ipsilateral hind paw, and avoidance on placing weight
on the injured side. Hyperalgesia due to noxious thermal and me-
chanical stimuli is detectable, as are also cold allodynia and tactile
allodynia.

Partial Sciatic Nerve Ligation Model (SL)

In an attempt to simulate causalgia as a result of partial nerve injury
in humans, Seltzer and colleagues reported a rat model of neuro-
pathic pain in 1990 [107]. The experimental procedure involves the
ligation of the ipsilateral sciatic nerve at the high-thigh level, so that
1/3-1/2 thickness of the sciatic nerve is trapped in the ligature. SL
rats exhibit signs of allodynia to von Frey hair stimulation and hy-
peralgesia to both termal and mechano-noxious stimuli within hours
of ligation.

Peripheral Inflammatory Model (PI)

Several studies have used a neuritis model to inflict nerve damage.
Freund’s adjuvant is injected near the sciatic nerves to cause inflam-
matory damages. After few hours, allodynia and hyperalgesia are
seen instead of thermal hyperalgesia.
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4.2 Patients with disorders of conscious-

ness

Extracellular recordings from IL nuclei in coma patients were per-
formed during the surgical session to install a bilateral deep brain
stimulators (12h/die, 100Hz, 3mA) [103]. Intrasurgical EEG elec-
trophysiology (three patients GM, MN, SM) consists of two frontal
and two occipital electrodes. The neuronal electrophysiology implies
recordings by 5 microelectrode channels (FHC, Bowdoinham, ME,
USA) with 1 MΩ impedence.
We have recordings the ongoing activity and the neuronal responses
during mechano-tactile stimulation or during deep electrical stimu-
lations.
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Chapter 5

Implementations

Data collected from electrophysiological recordings are encoded in
Neuralynx format (.Ncs). These files can be preprocessed using a
Matlab routine supplyed by Neuralynx or following the data type
specification of the Neuralynx format. In both cases the recorded
signal is processed by Wave clus Matlab toolbox for the sorting of
spikes. In particluar, I used a modified version of the Get spikes CSC.m

function to perform the spike detection and the Do clustering CSC.m

to clustering the extracted spikes. Thus the original raw signal is
converted into a set of temporal binary sequences each of them rep-
resents the spike train of a detected neuron.
In this chapter I present some technical aspects concerning the im-
plementation of the methods and the employed programming lan-
guages.

5.1 Average Log-Loss Similarity

The average log-loss similarity measure presented in Section 3.4.1
is based on three different VOMM algorithms (PPM, CTW, PST).
The PPM and PST algorithms are easy and intuitive to implement.
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Substantially, they build a single suffix tree and most of their steps
are recursive. On the contrary, the implementations of CTW is a
very hard task. There exist a couple of open source implementations
on the world wide web and one of them is strongly limited by the
value that the parameter (K the maximum Markov order allowed)
can assume. In 2004 R. Begleiter et al. present a self-contained
toolbox written in Java as supporting material of a paper published
on the Journal of Artifical Intelligence Research that highlights the
prediction capabilities of VOMMs based on the state-of-art compres-
sion algorithms (PPM, CTW, PST). The toolbox, called vmm offers
a complete set of Application Program Interface (API) that I used
to compute the average log-loss [9].
Modifing original source code, it’s been possible to extract tree
statistics like HPP and the average tree ariety.
However as I discussed in method Section (see 3), these algorithms
are not so fast: notably, the CTW spends large amounts of mem-
ory and execution time notwithstanding the numerous implementa-
tion tricks to save the memory usage. The Java program execution
paradigm based on the bytecode for the Java Virtual Machine deliv-
ers worse performances. Finally, in a typical experimental session,
the temporal dependencies expected within a neurophysiological se-
quence is included into [50, 500] ms. With a 500-bounded source
tree, the CTW algorithm, exceeds every computer RAMs.

5.2 NCD Similarity

The computational issues discussed in Section 3.4.1 justify the uti-
lization of less accurate but more computationally efficient Unix
compression algorithms like gzip, bzip2, lzma. Furthermore, these
implementations are open source and distributed by the General
Public License (GPL). Several developed methods work on the NCD
matrix that is built computing the NCD similararity between all se-
quence couples. The NCD matrix computation involves obviously
a quadratic number of steps. Therefore the single effective NCD
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similarity computations must be very fast in practice in order to
make the NCD matrix computation feasible. The vmm toolbox can-
not achieve this requirement.
I therefore developed a computer program in C++ linked with the
Unix compression algorithms directly by the source code of the GPL
libraries. This allows for optimizing as much as possible the execu-
tion time because the compiled binary code doesn’t require external
library calls (expect for the system calls). In fact, to compute the
NCD matrix of 20 minutes experimental sessions with 30-70 recorded
neurons, it takes 2-5 minutes and 1.5-2 GB of RAM. A parallel
paradigm, for future enhancements, is well-suited to compute the
NCD matrix.

5.2.1 NGD routine

To compute the NGD graph (see Section 3.5) I have developed a
Matlab function graphplot based on the Matlab biograph object
(Bioinformatics Toolbox). The function graphplot requires an ad-
jacent matrix, i.e. the NCD matrix, and automatically displays the
edge weights as the thickness of the diplayed graph edges.
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Chapter 6

Results

The results obtained with the methods presented in Chapter 3 come
(i) from Ventrobasal Thalamic Nuclei (VB) and Somatosensory Cor-
tex (SS-I) in Chronic Pain Animals (CPAs), (ii) from Cortical On-
going Activity (Primary Visual (V1) and (SSI) in rat Cortices) and,
finally, (iii) from IL human Thalamus Nuclei in patients suffering
from disordered levels of consciousness like Persistent Vegetative
State (PVS) and Minimum Conscious State (MCS). Summarizing:

i Chronic pain (CP) exhibits a large repertory of signs and
symptoms. Notwithstanding the large body of studies with dif-
ferent techniques, a core neural construct still remains uniden-
tified. To address the point, animal experiments (20 Con-
trol Animals, CR, and 30 Chronic Pain Animals, CPAs, su-
divided in three different models) were carried out. Simul-
taneous electrophysiological extracellular recordings were per-
formed on isoflurane mildly anesthetized rats by two matrix
electrodes placed one in the VB complex of the thalamus, the
other in the Primary Somatosensory (SS-I) cortex. The aim
of the present research was to identify the spiking signatures
of CP in the somatosensory Thalamocortical loop. I used di-
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verse techniques ranging from the Normalized Compression
Distance (NCD) to the analysis of nonlinear symbolic dynam-
ics are used. CPAs exhibited higher redundancy, estimated by
NCD, both in single and multi unit firing patterns. Functional
graphs were defined by NCD-based similarity among those pat-
terns. CPAs graphs presented randomlike structures while CR
graphs preserved small world properties. From symbolic dy-
namic analysis, CPAs revealed a reduced number of distinct
states. The profound diversities between CR and CPAs sug-
gest a well identifiable neural signature for chronic pain. The
main results, coherent across different pain models, are not
inferrable from the diverging evidences of imaging techniques.
Furthermore these results suggest a potential attribution of CP
to a class of neural pathologies called functional connectivity
disorders.

ii Cortical Ongoing Activity:

– During the spontaneous activity (SA) of the cortex, pe-
culiar events called drifts are distinguishable. Drifts are
functional reconfigurations of small population neuron
network activity. Drift have primarily been observed in
CA3 region of hippocampus [102]. By means of the above
report methods (3.4.3) I have been able to extract these
phenomena also in primary cortices of rats.

– While a plenty of experiments provided a wide range of re-
sults about stimulus evoked activities in primary sensory
cortices, the functional role and the dynamics of corti-
cal SA has been by far less largely addressed. From the
dynamical perspective, a major open problem is consti-
tuted by the evolution of SA, most modeling works tacitly
assuming SA activity to be essentially random. The alter-
native possibility that SA is, at least for a significant part,
deterministic, although highly chaotic, did not gain much
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attention. The problem, by a novel synthetic approach is
here below addressed. The first step is the classification
of the multi-unit spike patterns into a reasonable num-
ber of classes. Through the use of symbolic dynamics the
methods described the SA by characterizing their long
range correlations and the maximum residence times for
a pattern class. The results show that the nonlinear dy-
namics of a logistic map tuned in the region of Type I
Intermittency can be exploited. The methods presented
in Section 3.7 applied on recordings taken both from CRs
and CPAs found a great variety of behaviors. Some data
exhibited complex dynamics. Others were more regular
with intermittent-like phases constituted by long reitera-
tions of the same pattern class. By combining a random
noisy component with a logistic map, the method could
generate class sequences faithfully reproducing the long
range correlations and maximum residence times mea-
sured on the dataset.

– When a group of neurons emit spikes simultaneously these
events are considered synchronized. During microelec-
trode recordings, absolute synchronies are rarely detected.
More frequently, it occurs that groups of spikes may be
detected in somewhat large temporal window (20-50 ms).
I called, these closly occurring co-activations, Loose Syn-
chronies (LS) in alternative to the previously discussed
(absolute synchronies). Using the VOMMs, I studied the
predicibility of these events comparing the results with
surrogated sequences. Two important facts emerge from
this analysis: (i) Ls predictability vary from 10% up to
100% and (ii) the window temporal dependencies ranged
in {5, . . . , 15}.

iii Disorders of consciousness. Analyzing the SN sequence of IL
neurons I found that the bursting states (typical intralaminar
neuron behavior) are more lasting in the MCS patient than in
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PVS patients.

6.1 Chronic Pain

Along its definition in IASP files [75], chronic pain (CP) represents
the common perceptual motif accompanying many pathological con-
ditions that exhibit excruciating sensory disorders yet in distinc-
tive modal, magnitude, origin or temporal features [38]. Because
of its exceeding complexity, the entangled neural and extra neural
substrates generating CP, from the molecular up to the perceptual
stage, are, at best, poorly understood, notwithstanding recent im-
portant conceptual advancements [128, 130, 78]. Additionally, at
odds with acute pain, CP is not necessarily ignited from the primar-
ily involved body regions that may have been freed by much time
now from the pain provoking causes [40]. Whatever these causes,
eventually leading to this dissociation, a reverberating perception of
pain is often the prevalent or sole remnant. The neural counterpart
reflecting this complex perceptual state is complementarily compos-
ite and often not linearly related to the perceptual signs. For in-
stance, experimental spontaneous pain or allodynia and hyperalgesia
are seemingly mirrored, in the neuronal spinal cord, by spontaneous
hyperactivity or hyperresponsiveness to related stimuli [47, 113, 88].
Concurrently, strong correlations between spatial patterns of altered
brain activity and pain related behavior in rat chronic pain model
have also been shown [72]. Comparably, in humans, coherence of
activation magnitude with the estimated intensity of pain has been
reported in imaging and electrophysiological studies [37, 89, 41]. In
contrast, many neuronal recordings and imaging data often showed
mutually inconsistent mosaics of brain area activations and inac-
tivations [22, 53]. Thus, neither actual linear intensity coding for
having pain is arguable, nor a necessary and sufficient regional ar-
rangement or its potential hierarchy clearly emerge [7, 129]. These
questions interlace with general problems of default mode of brain
function [92] and on the issuing concepts of functional connectiv-
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ity and intrinsic hierarchies [126, 111]. All these problems vividly
inspire the appraisal of default activity and connectivity in chronic
pain [127]. Models of distributed pain representation in the brain,
like the Neuromatrix Hypothesis [73] a more recent integration the-
ory [5], diversely interpret CP as the result of integrative regional
activities active also in resting states. Accompanying anatomical
findings showed also reduced gray matter density in CP [3]. These
yet well framed backgrounds, however, give no hints on the way the
neuronal brain substrates behave in CP. Because it is not the unit
activity to be representative of the perceptual complexity of pain,
it is however arguable that some feature, a kind of neural signature,
either in the single neuron or in the network activities may embody
markers of spontaneous CP. These results try to clarify some as-
pects of the problem of neuron dynamics and network behaviours
in spontaneous ongoing activity both in control animals (CRs) and
in chronic pain animal models (CPAs). Furthermore they try to ex-
tend some inference that in CPAs the current spontaneous neuronal
dynamics could contain some feature or marker strongly related to
the condition itself. Previous results from our lab on spinal cord
dorsal horn neurons, simultaneously recorded from superficial and
deep laminae, showed that CP induce a disarray of cross-correlations
among the two layer neurons [15]. This evidence suggests to ex-
plore potential rearrangements in the functional connectivity of the
thalamo-cortical axis. To capture and quantify the latent features
of those rearrangements, the analyses of ongoing activities in the
default mode pose hard challenges, one amongst them the experi-
mental variability due for instance to anesthesia conditions [123, 95].
The set of presented techniques are applied both on single neurons
and on small networks. As for single neurons, it is assumed that the
neuronal firing patterns may be shared by more cells in the neural
ensemble. Each distinct firing pattern may enclose an individual
message and distinct firing patterns might be shared by many units.
When a number of patterns is shared among units, these would likely
convey reduced information because of the message redundancy. The
redundancy within a recorded ensemble, is quantified by a measure
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of similarity between firing patterns and averaged the results over
all possible pattern pairs [10, 28]. CPAs exhibited an increased re-
dundancy that would imply reduced message variety, giving hint for
an altered functional connectivity [21]. The neurophysiological and
conceptual consequences will be discussed in view of a potential clas-
sification of chronic pain in terms of a disconnection syndrome.
To get a preliminary picture of the basic properties of the ongoing
activity recordings firing rates and correlations for Units and sorted
single cells are estimated (see Figure 6.1). Each recording block
lasted 20 minutes and was divided into non-overlapping epochs of
50s. Firing rates were not significantly different between CRs and
the CPAs either in thalamus (VPL) or in cortex (SS-I). The corre-
lation coefficients, computed on 10 ms time windows, showed high
standard deviations and were about one order magnitude larger in
units in comparison with single cells. A comparable intrathalamic
or intracortical correlation degree and a collapsed correlation in the
VPL-SS-I pair were detected. Again no significant differences were
observed between CRs and CPAs. The high variability in firing rate
and correlation coefficient was due to major difficulties in keeping the
anesthetized animals in comparable conditions. This inter-animal
variability, widely acknowledged in the literature [133], exerted ma-
jor effects on firing rates and correlations on several time scales rang-
ing fron synchrony (1-2ms) to much wider time windows. In spite of
careful anesthesia procedures (see 4.1), largely different EEG power
spectra were observed 6.2 with bandwidths ranging from [0, 4] Hz up
to [0, 20] Hz. Notwithstanding these drawbacks, isoflurane remains
a sound choice as many resting state characteristics, reflective of in-
trinsic brain organization, are largely preserved at light-mild level of
anesthesia like the one used [133].
Anyway, to deal with the above criticalities, subtler techniques less
sensitive to anesthetic states, were required to understand potential
markers labelling neural anomalies in CP models. In order to in-
vestigate hidden properties like spike train similarities and regular
patterns I resorted to the application of the presented techniques.
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Figure 6.1: Preliminary evidences: Firing rate (above) and Correla-
tion (below) throughout the experimental classes (CR, PI, SC, SL)
and the recording sites (VPL and SS-I).
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Figure 6.2: EEG power spectra for four different CPAs

6.1.1 Single Cell Analyses

I first asked whether the complex activity patterns exhibited by sin-
gle neurons might be shared by more cells in the neural ensemble.
Let’s assume that each distinct firing pattern encloses an individ-
ual message. Whence shared over many elements, these patterns
are likely to convey reduced information because of the message re-
dundancy. To quantify redundancy within a recorded ensemble, a
measure of similarity between neurons and averaged the results over
all possible pairs are used. Modern compression algorithms capture
redundancies in many relevant cases undetected by classical correla-
tion estimates based on 2nd order statistics (e.g. Pearson correlation
coefficient).
I therefore chose more sensible methods like NCD (Normalized Com-
pression Distance) that measures symbol sequence similarities. The
NCD does not uniquely rely on synchrony and is much less sensitive
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to altered correlation levels produced by anesthesia. Figure 6.3 dis-
plays three raster plots respectively sampled from CR, SL and SC
recordings. SC spike trains looks more stereotyped (or redundant)
than CR spike trains, these last being more similar to SL. Thus, as
expected, the NCD norms of CR and SL were 20.8% and 5.7% larger
than SC. The norm computed on Pearson Standard Correlation co-
efficient matrix, enables to discriminate only between CR and SC
(30%), missing the CR vs SL divergence (0.3% only). I computed

Figure 6.3: Raster plots from (respectively) SC, CR and SL animals.

the NCD data norms and the results for the whole data set are drew
in Fig. 6.4A. In the x and y axes are respectively reported the values
for cortical and thalamic neurons. I found that CR and PI exhib-
ited the highest complexity both in VPL and in SS-I although with
different magnitudes. The straight line determines the classification
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Figure 6.4: (A) NCD Matrix Norms for CR and CPAs experiments.
The x- and y-are respectively reported the values of the cortex and
the thalamus NCD matrix norm. The straight line represents the
classification of experiments through a Support Vector Machine with
linear kernel. Different labels reported for each models. (B) Number
of distinct Network states on cortex and thalamus axis. Straight line
as for (A).

of experiments through a supervised learning algorithm, the Sup-
port Vector Machine (SVM) with linear kernel (see Methods). The
separation between CR and the SC and SL models was significant
while there was no separability between CR and PI. The angular
coefficient of the separating line is 2/5. Since the inverse tangent of
2/5 is 21.8◦ it can concluded that VPL accounted for approximately
75% of the whole discrimination.
I then summed-up thalamus and cortex NCD-matrix norms showing
an increase of the overall similarity level (i.e. pattern redundancy) in
CPAs (Fig. 6.5). I used Functional Graph Statistics to compute the
Node Degree Distribution. Representative functional graphs for the
different models are reported in Fig. 6.8. I found, as reported in Fig.
6.9, that CR had a power-law distribution with a heavy tail, SC and
SL had a Gaussian-like distribution and PI had a complex binomial-
like behavior. This result supports the view of a disrupted functional
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Figure 6.5: NCD matrix norm distribution summed from thalamus
and cortex
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Figure 6.6: Estimated thalamocortical redundancy within the four
experimental classes.
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Figure 6.7: Estimated corticothalamic redundancy within the four
experimental classes.

connectivity altering the CR Small World properties [21, 134], with
a label common to CPAs. More in details, CR showed a largest
number of cells with low (1-3) and a minor contingent with high
(12-16) outgoing connection degrees. PI, SC and SR showed a stan-
dard deviation reduction around an intermediate range (8-12). In
addition, analyzing the node distribution tails, where the hub nodes
lay, CR graphs display a higher number of hub neurons than PI, SC
and SL.

6.1.2 Multiunit Analyses

I estimated the number of distinct network activity configurations.
Each configuration are called Multi Unit Spike Pattern (MUSP).
MUSPs were constructed over the spiking rasters of the recorded
neuronal ensembles. A MUSP is a vector where each single value
represents the spike count of a unit in a time window of width T .
Because of the stereotyped activity exhibited by single neurons in
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Figure 6.8: Samples of Functional Graphs, respectively from CR,
PI, SL and SC.
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Figure 6.9: The mean node degree distributions computed on the
whole experimental dataset.

CP conditions, I investigated if, at higher level of observation, also
the variability expressed by small networks, captured by MUSPs,
was affected in CP. I first set T = 1ms and counted the number of
distinct MUSPs in each recording. I found that CR and PI expressed
a more ample repertory of distinct MUSPs (Fig. 6.4B). Following
the previously adopted SVM separation method, I obtained that the
cortex accounted for 45% and thalamus for 55% on the separation
line.

6.1.3 Discussion

One of the most impressive features of chronic pain is the wide-
distributed origin of its causal agents. A chronic or persistent pain
can be originated by traumatic events, degenerative diseases, onco-
logic pathologies, inflammation, hypoxia or peripheral neuropathies
[75]. Though all of these pathological conditions have diverse physi-
cal, biochemical, neural and metabolic cores, the common perceptual
label is seemingly that of pain. At most, in the neuropsychological
context there’s a most wide semantic refinement of sensory, affec-
tive, qualitative or synaesthesic features accompanied, for instance,
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by metaphoric (like burning, gnawing, stabbing) or temporally de-
fined (persistent, wax-and-waning) terms [90]. Despite the semantic
variations, the basic issue is indeed dominated by a seemingly routi-
nary pain perception.
The results show that SC and SL chronic pain models increase redun-
dancy in single unit spiking patterns, decrease the number of distinct
network states (or Multiunit Spike Patterns, MUSPs), constrain and
regularize the network dynamics and trigger redistributions of activ-
ity within the local networks. PI models, not yet established as CP
states, exhibit neural features laying in between the CR and the
CPAs models. This suggests that any model has somewhat a clear
expression and that all the models together, and each by itself, cre-
ate dynamical conditions rarely or never visited by the system in
normal conditions. Each pain model appears to replicate, prefer-
ably keeping on a thalamocortical (TC) loop district. The different
neural pictures contrast with the gross perceptual homogeneity as-
sessed during behavioral tests [14]. This mismatch suggests that
potentially diverse agents may convey comparable percepts. The
choice of the TC loop is far to be complete in comparison to the
whole network in spontaneous ongoing activity, as obvious, but it
spots on the main axis of most sensory processes. In addition it
focuses a crucial engine of the pain neuromatrix [73]. The impor-
tance of the TC loop is further supported in the literature by most
different experimental and clinical approaches [57, 109] showing, for
instance, that important features of dysrhythmic thalamocortical
dynamics can account for several pathological states from psychosis
to neurogenic pain [68]. The analysis provides quantitative indices
to sketch an objective description of the network connectivity and its
derangements, avoiding ambiguities based on controverse clinical ex-
perimental appraisals. No electrophysiological study at the neuronal
level has been made in long lasting spontaneous brain recordings in
models of CP.
In CP models, most elementary labels of the spontaneous neuronal
activity like increased anomalous discharge frequency [113], sus-
tained wind-up, activity dependent plasticity disorders and recep-
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tor potentiation have been profusely described and exhibited stereo-
typed neuronal classes in the spinal cord [36, 73, 120, 101, 34]. The
preliminary results, instead, no significant difference was recognized
in terms of firing rates and of correlation coefficients in the TC loop,
in the intrathalamic or the intracortical circuits.
The main analyses explored the active configurations of spiking neu-
rons in spontaneous activity patterns of single cells and small pop-
ulations. The single cell firing patterns were not unique or specific
for a particular neuron but were also consistently replayed by other
cells, indicating a certain degree of redundancy. TC dysrhytmia in
neurogenic pain exhibited increased coherence within the theta-beta
EEG bands [68], a higher spectral power over the frequency range
of 2-25 Hz and a shifted dominant peak towards lower frequencies
[100]. These results are reasonably consistent with the redundancy
in single cell patterns and in the number of distinct MUSPs that
was previously observed. These functional anomalies, out of the
CPAs seem largely independent from the background EEG spectral
composition and, allegedly, from the anesthesia level. In fact, the
MUSP variability was observable in the presence of widely different
EEG patterns. Many works showed how brain functional networks
are charachterized by Small World properties. These properties rep-
resent a kind of label related to normal and activated states or to
pathological states [21]. I extended a previous approach on neuronal
firing connectivity [142] to define functional relationships between
neurons, relying on the assumption that similar firing patterns are
the result of significant functional relationships. In experiments, the
functional graph degree distribution highlighted a substantial rear-
rangement of the distribution of outward node degrees in the func-
tional graphs. In fact, CPAs had strongly random functional graphs,
in comparison to the standard Small World graph encountered in
CR animals. Matching results reported in psychiatric and degenera-
tive disorders suggested that functional disconnection might provide
a unifying conceptual substrate [24]. Disconnection in the present
context does not mean an anatomical disengagement of fibres but
altered functional graph architectures. The current knowledge is in-
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sufficient to identify a minimal neural correlate for pain perception.
The extension and the amount of the TC connection disorders would
represent a part of the neural features of chronic pain representing
a fragment of a minimal neural configuration for pain.
A contiguity or a parallelism (if not a dependence) may be thus hy-
pothesized between some neural and perceptual states. In fact, in
CPAs I measured a substantial redundancy both in the repertory
of distinct firing patterns and in their temporal evolution. The re-
dundancy increase may be interpreted either as an emphasis of the
relevant core of the message (e.g. pain, per se) or as a loss of system
plasticity (at the neuronal and at the network level) compromising
the local information flow. Because of the scarcely evolutionary rele-
vance of a chronic pain [139], the positive hypothesis of message rep-
etition seems unlikely. The alternative hypothesis of a pathological
sequence of events related to property loss appears therefore prefer-
able. Rich array of neuronal configurations of CR animals can be
explained by a major adaptability or plasticity, lost in CPAs, on the
simultaneous converging inputs. These results may also explain data
in the literature showing that cortical or subcortical stimulations ef-
fectively reduce the perception of intractable pains [66, 67, 63]. The
delivery of a timed input could in fact rearrange the disordered net-
works returning some level of plasticity. Furthermore, chronic pain
represents a stereotyped condition corresponding to representations
of different neural events and conditions. Further electrophysiolog-
ical investigations are needed to explore the complex dynamics of
neural activity in CP as the very substrate of perceptual events.
From a clinical point of view, they may open new potential thera-
peutical paths based on opportunely tuned stimulations of specific
brain areas associated or not with pharmacological approaches.

6.2 Cortical Ongoing Activity

The brain is spontaneously active even in the absence of external
input. This ongoing background activity impacts on neural infor-
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mation processing. Most neuroscience studies have focused on brain
responses to task or stimulus. However, the brain is very active even
in the absence of explicit input or output. Research on spontaneous
activity led to the hypothesis that specific brain regions constitute a
network supporting a default mode of brain functioning [42]. Spon-
taneous activity might be informative regarding the current mental
state of the person (e.g. wakefulness, alertness) and is often used in
sleep research. Certain types of oscillatory activity, such as alpha
waves, are part of spontaneous activity.
The following results investigated the nature of the spontaneous ac-
tivity in rat primary cortices. Primarily, the presence of drifts (ac-
tivity reconfigurations within neuronal ensembles) is studied. Then
I asked whether their presence is linked to other cortical events such
as motif repetitions with neuronal synchronizations [54] or intermit-
tent chaotical behaviors [136]. For the former question, I studied
the predicibility of high-order events of collective synchrony within
a neuronal ensemble from cortical spontaneous activity in rats. For
the latter question, I built a model based on the intermittent chaos
of the logistic map in specific parameter range using evolutionary
strategies (i.e., genetic algorithms). The existence of such models,
able to reproduce some cortical events, enlighted important aspects
about the intrinsic mechanisms of cortices.

6.2.1 Drifts

A further result came from the study of specific NE activations, cap-
tured from ongoing recordings (drifts) [54, 102] observed in primary
cortices, for the first time in our lab. In these findings, we suggest
that the network states are metastable, rather than multistable, and
might be governed by local attractor-like dynamics. Drifts behave
like transient co-activations of NEs spread over the populations iden-
tified by the recording electrodes. Drift-like patterns had been al-
ready observed in different experimental conditions in other cortical
structures like the hippocampus, a region involved in complex tasks
like learning and memory. In particular, I investigated their presence
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in primary V1 and SS-I cortices. Studying the evolution of the aver-
age log-loss in inter-stage NE sequences from those cortical areas, I
found the stationary phase changes (e.g., see Figures 6.10-6.11) cor-
related with the occurrence of drift phenomena recognized with the
NGD procedure that shows significant differences in the functional
graphs just before or after a drift occurrence (see Figures 6.12-6.13).
The method works automatically, evaluating the distance between
the NCD matrix of candidate windows (i.e., that potentially contain
drifts). In fact, in the perspective of an attractor-like dynamic, the
attractor changes produce an alteration of the predicibility (mea-
sured via the average log-loss) in contiguous time window. The
method I developed is more direct and efficient than the synfire
chain-based methods [54]. As presented in Section 3.4.3,

Figure 6.10: Stationarity analysis of NE sequence with eighteen neu-
rons for 50 seconds. In the raster plot of the NE sequence the white
cells represent spikes.
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Figure 6.11: The average log-loss computed on overlapping windows
on NE sequence in Figure 6.10. High predicibility regions (i.e., low
values of average log-loss) correspond to weak synchrony of the en-
semble. Note the peaks evidenced by red ellipses.
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Figure 6.12: The Neural Group Discovery procedures applied to the
SN sequences at the window before the first drift.

In the work of Ikegaya et al. [54], the network reconfigurations
are considered as spatial rearrangements of activity. These collec-
tive events are detected computing the covariance (and other basical
statistical techniques) of spike activities in short temporal windows.
This approach requires a supercomputer because its computational
cost, while the average log-loss method can run on desktop PC and
requires only few minutes to detect a significative changing of sta-
tionary phase and to check whether a drift took place. Moreover,
drifts are detected from a high level perspective. In fact, the NGD
procedure computes the functional graph of NE so that the results
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are based on significant activity features according to the method
used in [102] that employs the principal component analysis of NE
activity.

6.2.2 Intermittent Chaos in Spontaneous Corti-

cal Activity

Until now the vast majority of experimental works on sensory pro-
cessing has been focused on evoked activity. In the last decades the
development of intracellular and multi-unit extracellular recordings
allowed experimenters to characterize the neuronal receptive fields
in primary sensory cortices of the diverse sensory systems [94, 84].
In these areas spontaneously arising action potentials account for
a substantial fraction of the overall firing activity, their functional
significance is not understood. Although the ongoing activity in
primary cortices has been poorly addressed several works in the sen-
sory spinal cord described significant changes of both ongoing and
evoked activities. In particular, beyond the activity changes in the
discharge profiles of single neurons, correlations between neurons in
superficial and deep laminae collapsed in chronic pain models [15].
Because in chronic pain spontaneous activity perturbations occur
along with receptive field modifications [77], spontaneous activity is
likely to interfere with sensory processing.
Neural activity is sparse and, probably under the action of energy
saver mechanisms [17], only a fraction of cells are significantly acti-
vated at the same time. Within local assemblies, neurons arrange
highly connected networks and provide a vast array of collective
behaviors, the onset and fading of specific activity states among
the most relevant. It has been suggested that such configurations
could occasionally evolve in non-random fashion and follow regular
dynamics [32, 71]. The intertwined nature of random and determin-
istic dynamics driving the configurations poses an implicit question
of their respective contributions to the overall event. Separating
the random from the deterministic could shed some light on the
self-organizing behavior of cortical neuron assemblies. The inter-
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play between ordered and random drive is critical, the first allowing
for faithful representations and propagation of inner states, the sec-
ond for the assembly activity to evolve and adapt. From non-linear
analysis it is well known that a number of systems on the edge of
chaos exhibit an intermittent regime where relatively regular phases
interleave with highly chaotic and unpredictable bursts [87]. Even a
simple mono-dimensional, time-discrete system such as the logistic
map can express two diverse intermittent behaviors defined as Type I
intermittency and crisis-induced intermittency [79]. I tried to apply
the previous strategy to data collected from multi-unit extracellular
recordings of SS-I cortex. Earlier results showed that, in the same
brain region, the residence time in an activity state is longer than ex-
pected by chance [115]. Other authors obtained matching outcomes
in the hippocampal CA3 layer [102]. Together, these evidences could
indicate the presence of intermittent regular behavior. This results
show, as first, that the evolution of cell assembly dynamics is sig-
nificantly constrained by long-range correlation. It is been found
that the decay of temporal autocorrelations, quantified by Shannon
Information, can be described by the sum of a slow and a fast expo-
nential function, accounting for fast and slow decays respectively at
short and long delays. Then the logistic maps to generate symbolic
sequences are used, each symbol being associated with a distinct ac-
tivity state of a cell assembly. Setting the logistic parameter in the
neighboring of Type I intermittency the results show a variety of long
range correlation profiles. Although the main result exhibits that it
is possible to classify and model the experimentally extracted long
range correlations between activity states by exploiting the Type
I intermittency of a logistic map. In this stage, no spike sorting
procedure was applied so that more than one cell could be present
in a single unit. Given standard impedance value (1 MΩ) and the
relatively large electrode spacing (150 μm) no spike occurrence was
detected by more than one electrode. The resulting picture was
constituted by 9 neuron clusters. Only recordings where all nine
electrodes revealed a substantial presence of spikes were selected for
analyses. Further details are provided in [115]. For a multi-unit
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recording of spontaneous activity the number of all possible activity
states grows exponentially with the number of cells and quickly goes
out of control. Accordingly I preprocessed our data by a clustering
algorithm in order to identify a reasonable number of activity classes
(see 3). In Figure 6.14(B,C) it’s reported the result of a clustering
(data obtained from an SL animal). Note how chaotic phases inter-
leave with more regular ACSs chunks constituted by long repetitions
of the same activity class. Compare the clustering sequence of Fig-
ure 6.14(B) with a randomly permuted version in Figure 6.14(C):
the intermittent behavior disappeared in the latter and the same
chaotic regime was maintained along the sequence. I first described,
on the whole dataset of 94 recordings, the dynamics of multi-unit
activity by estimating the temporal autocorrelation of the activity
class sequences (ACSs) and fitting it with a sum of exponentials
(6.2.2). Then the four representative recordings are selected and I
modeled the ACSs by combining a logistic map and a random noise.
The real and modeled ACSs are compared by estimating the tem-
poral autocorrelation (6.2.2) and the average residence time (6.2.2).
The optimal values for α and σ were estimated by using a genetic
algorithm. The I(s0; sk) and τr are called respectively the temporal
autocorrelations and the average residence time for activity classes.
The scoring function of the algorithm took into account both the dis-
tance between the autocorrelation functions, I(s0; sk) and Î(s0; sk),
and the distance between average residence times, τr and τ̂r. The
distances and the overall scores are reported in Table in 6.2.2. For
further details see the Section 3.7.

SL1 SL2 CR1 CR2
D1 0.2011 0.3387 0.7171 0.2845
D2 0.0455 0.0306 0.0124 0.1170
Score 0.1233 0.1847 0.3647 0.2007

Long range correlations of cell assemblies

To quantify the temporal correlations among successive activity classes
I computed the Shannon Information I(s0; sk) for each lag k ∈
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{1, 2, . . . , 100}. The time window duration in which I sampled each
state was set at 10 ms and I recorded blocks of 50 s in order to ob-
tain ACSs of 5000 elements. I fitted I(s0; sk) with a weighted sum of
exponential functions following the expression (3). A representative
case in Figure 6.15(A,B) is draw. The first exponential accounted
for the fast initial decay at low k values while the second explained
the slower decreasing trend at higher k values. In 6.15(C) is reported
the distribution of the coefficients a and c. The fast time constant b
is larger than the slow time constant c and a is 73% larger than c.
The latter result indicates that the fast exponential function had a
larger weight in the fitting.

Model fitting for the temporal autocorrelation

I investigated the possibility of using a subsequence z of the logistic
map with additive noise (see Equations 3.21,3.22) to generate ACSs
that matched the temporal autocorrelation I(s0; sk) measured on
the data. By setting α in a periodic region, Iz(s0; sk) approached
a constant whose value was determined by the noise level σ (Figure
6.16A,B). Conversely, when I selected an α value associated with a
highly chaotic regime, Iz(s0; sk) was negligible or null for any pos-
itive k (Figure 6.16C,D). It was interesting to find an α range for
which the behavior of Iz(s0; sk) landed in between these extremes.
I selected the region just before αc value at which the saddle-node
bifurcation occurs. In this region a regular behavior was interrupted
by chaotic bursts and the average duration of an inter-burst inter-
val for the logistic sequence y scales as (αc − α)−1/2 [87]. Because
after a burst the state of z became unpredictable from the pre-burst
states, the duration of laminar phases constituted the critical pa-
rameter that shaped the temporal autocorrelation Iz(s0; sk). For α
approaching αc I could obtain Iz(s0; sk) with an arbitrarily slow de-
cay. While the shape of Iz(s0; sk) was mainly determined by α, the
parameter σ accounted for the stochastic component that affected
the gain of Iz(s0; sk) and the class predictability within the laminar
phases as in Figure 6.16E,F. In Figure 6.17 I report the results from
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4 recordings (2 on SL models, Figure 6.17(A,B) and 2 on CR, Fig-
ure 6.17(C,D). The former recordings exhibited significantly larger
Iz(s0; sk) for the whole range k ∈ {1, . . . , 100} (blu lines). The z
sequences that it’s been generated could fit the data reasonably well
in all cases (red lines). For comparison I also draw the temporal
autocorrelation estimated with a Markov Chain (Figure 6.17, green
lines). The much faster autocorrelation decay iss inappropriate to
model long range constraints on ACSs. The percentage distances
(D1) between I(s0; sk) and Î(s0; sk) are reported in the first row of
Table in 6.2.2.

Model fitting for the residence times

Previously it’s been observed from Figure 6.14 the significant occur-
rence of regular phases constituted of reiteration of the same class.
The duration of laminar phases for the logistic map increases, as
approached with these methods, the critical parameter value αc. It
is shown that the largest residence time corresponds to the inverse
of the distance between Lorenz lines in the low frequency region of
the power spectrum [110]. I found a similar behavior for the subse-
quence z (Figure 6.18A,C), discernible even σ > 0 and the sequence
is corrupted by a moderated level of noise (σ = 0.3), slightly larger
than the one it’s used to model the ACSs. To compare real and mod-
eled ACSs the distribution of τsw representing the intervals between
two successive class switches are estimated. I found on the modeled
ACSs that the maximum residence time was highly variable across
different realizations associated with the same parameters (α, σ),
even for ACSs extending up to 200000 iterations. Instead I selected
the average residence time τr that was far more stable. I normalized
τr with τ∗r by applying the following formula:

τnormr =
τr − τ∗r

τ∗r
(6.1)

where τ∗r is the average value computed on the randomly permuted
class sequence. All data exhibited positive τnormr values, indicating
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that residence times are on average longer than expected by chance
(Figure 6.18B, blue bars). The modeled ACS expressed the same
property and the τnormr values are proportional to the ones mea-
sured on the data (Figure 6.18B, red bars). The fractional distance
(D2) between τr and τ̂r are reported in the second row of Table in
6.2.2.

Discussion

These results concern the spontaneous population dynamics of cor-
tical ensembles. I first applied a recently developed approach to
classify multi-unit activity states [115] and then I studied the pop-
ulation activity through the analysis of the associated activity class
sequence (ACS). The results show that ACSs exhibited intermittent
behavior characterized by regular phases composed of long reitera-
tion of the same activity class and by highly chaotic bursts.
Long range temporal autocorrelation on ACSs are estimated by us-
ing the Shannon Information. Autocorrelation decayed monotoni-
cally at increasing delays and is well fitted by the sum of a fast and
a slow exponential function. Logistic map tunes at the edge of Type
I intermittency the ACSs obtained from the data. The temporal
autocorrelation of the sequences generated by the map, after oppor-
tune parameter optimization, matched the ones estimated on the
data. To confirm the intuition that long range correlations in the
experimental ACSs were accounted by class reiteration I estimated
the relation between residence time in a class for the data and for
the logistic map-based model.
At the present, this is the first time a partially deterministic model-
ing of cortical dynamics is tempted, previous approaches being en-
tirely stochastic [43, 2]. Type I intermittency of the logistic map was
used in biological science to model heart rate variability and blood
flow in arteries [145, 83] while, in computational linguistics, tuned
at the Feigenbaum point, the map was used to simulate language-
like processes [35]. This modeling is supported by previous results
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where it is showed that activity class tend to reiterate themselves
more than expected by chance. Sasaki and coworkers reported that
CA3 ensembles undergo metastable states with long residence times
[102]. In vivo, by recording from spinal cord neurons, the Lévy index
appeared able to discriminate between modalities of different nox-
ious stimuli both in normal and injured animals [16]. Other authors
found, in vitro, that the temporal sequence of network activation ex-
hibits long range correlation and scale-invariant Levy distributions
[106].
The utility of this approach is dual. From one hand the association
with the logistic parameter α and a random component σ can pro-
vide a useful classification of the ongoing dynamics. As it showed
such dynamics are highly variable both in normal and pathological
conditions. From the other would provide a useful tool for simu-
lating biologically plausible background activity in computational
models of neural coding.

6.2.3 Predictability of Higher order Synchrony

The previous results show how the cerebral cortex exhibits highly
complex dynamic regimes during spontaneous activity. A plethora of
parameters were tried to capture this complexity focusing on differ-
ent features. One of the most relevant, showed by the spontaneously
running cortical networks, is represented by synchronies. While the
instantaneous higher order interactions (that incorporate also higher
order synchronies) have been well described by weak pairwise corre-
lations [104], their temporal dynamics has not yet been thoroughly
analyzed. A previous work shows that multiunit firing activity ex-
hibits intermittent chaotic behavior [117]. I therefore focused on pre-
dictability of higher order loose synchronies (LSs), i.e. firing events
jointly occurring within 30-50ms temporal windows. I analyzed ex-
tracellular simultaneous multiple recordings of spontaneously active
SS-I cortex.
I first developed a statistical method based on a hypothesis test com-
bined to a data clustering to extract and classify synchronous and
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non-synchronous events. The resulting symbolic sequence represents
the multiunit spiking activity where some symbols are associated
with LSs and others with non-synchronous events. I approximated
the Kolmogorov complexity of these sequences within fixed length
sliding windows by the compressed sequence length (CSL) computed
with a set of Unix compressors (zip, gzip, bzip2) [10]. On comparing
the real sequences (RS) with surrogate sequences obtained through
random permutations, I found long strings of significantly low CLS
regions in comparison with the surrogated sequences (SS) (Figure
6.19A). The rate of LS occurrences showed high positive correlation
with CLS values. LS predictability was analyzed with Variable Or-
der Markov Model techniques estimating both short and long range
sequence dependencies [9]. I found that the LSs in RS were 10 to
100% more predictable than LSs in SS and that only the last 5 to 15
symbols were relevant for prediction (Figure 6.19B). Unexpectedly,
the rate of correct LS predictions wasn’t significantly correlated with
CLS. Finally, the rate of LS prediction and the rate of LS occurrence
resulted positively correlated. These results deliver important cues
on the events leading to the occurrence of LS. The high predictabil-
ity variability suggests that the cortical LSs may potentially endorse
diverse tasks merged in the shared functional state of spontaneous
activity [146].

6.3 Human Disorders of Consciousness

Finally, preliminary result came from the study of SN sequences from
IL neurons in human patients suffering from PVS and MCS. The
analysis focussed on the sojourn time in the stationary phases of the
sequences. As from the preliminary results, PVS bursting states are
less frequent than MCS phase changes. In MCS the burst-stationary
sojourn times are more lasting than in PVS, see Figure 6.20. These
results can be obtained by two strategies: detecting the stationary
phase and then selecting the bursting-like one and again computing
the sojourn time distribution or roughly by computing the HPP (see
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Section 3.6) of the sequence with some VOMM algorithm and com-
paring the possible bursting paths probability. Burst and tonic are
the two most commonly observed firing modes.
Along recent studies the concept of consciousness may be divided

into two main worlds: the ”core consciousness” that provides the
subject the sense of self and of being placed in a specific location
and the ”extended consciousness” that allows the organism for a
sense of self in her/his existence in a before and a past. The first is
strongly biological and is not dependent on memory, language and so
on. The other is an extremely complex event involving memory, lan-
guage and, contrarily to the former, evolves in time and is subjected
to changes. When core consciousness is impaired also the extended
consciousness is deranged. The problem of disorders of consciousness
features extremely complex clinical aspects that involve heavily both
sides of the world, apart from their related philosophical contexts.
Where, until few years ago the disorders of consciousness were mis-
tankenly interpreted for most of diagnoses, recent developments of
the discipline have favoured a strong ameliorment of the diagnostic
criteria. Terms like Minimal Conscious state (MCS) and Persistent
Vegetative state (PVS) and their differences are now more commonly
well identified by specialists. While deep irreversible coma states are
characterised by an irreversible stage of disordered consciousness,
MCS, and PVS in a minor degree, are potentially subject to changes
up to the restitution to a form of true voluntary interactions with
the external world. Notwithstanding the tremendous complexity of
the networks subserving all the neural dynamics of consciousness,
some crucial points seem well evidenced: the axis from the dorsal
pontine nuclei to the intralaminar/medial thalamus and to many of
the cortices seems a necessary circuit. Many patients with disor-
ders of consciousness show severely damaged brains. Those patients
with minor damages or with damages not compromising current vital
functions may be enrolled in clinical trials devoted to the placement
of chronic electrostimulators in a crucial region of the above circuit
and namely into the intralaminar thalamic nuclei. Many other places
are also considerable. In the experience of our group the choice of
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the thalamic intralaminar nuclei is based on the very central to-
pographic and functional role of these nuclei in the circuit. The
stimulation of these nuclei is programmed in the view of obtaining
diffuse cortical re-activations (or activations) in order to reinstate a
positive response of the cortico-thalamic pathway. This reactivation
would enable or facilitate a restart of the thalamo-cortico-thalamic
loop, thought to be one of the very engines and at the base of all the
consciousness phenomena. The obtained results about the sojourn
time of the bursting mode is widespreadly held as a forced infor-
mation transfer mode, this outcome assumes a potentially crucial
importance as a likely predictive marker to identify at the neural
level the very stage of consciousness and supposedly a reference for
the clinical outcome after the placement of stimulatory electrodes
[103].
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Figure 6.13: The Neural Group Discovery procedures applied to the
SN sequences at the windows just after the first drift. Notwithstand-
ing the same neurons involved, the similarity weights distribution is
very different.
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Figure 6.14: Classification of multi-unit activity. A) Sample activity
of 5 s duration extracted from a 50 s recording from SL1. The
cumulative spike count in 10 ms bins is drawn at the bottom. B)
ACS obtained from the data. C) Randomly permuted ACS.
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Figure 6.15: Interpolation of I(s0; sk) for SL1. A) Model fitting for
the estimated I(s0; sk). B) The two exponential functions summed
to obtain the fitting function. C) Average and standard error for
coefficients a and c. D) Average and standard error for coefficients
b and d.
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Figure 6.16: Tuning the parameters α and σ within the Type I
intermittency region. A) Autocorrelation Iz(s0; sk) computed for
α = 3.5 and σ = {0, 0.15, 0.3} (respectively blue, red and green
line). B) Sample of 200 iterations from z sequence (α = 3.5, σ = 0)
C) Autocorrelation Iz(s0; sk) computed for α = 3.9 and σ = 0.
D) Sample of 200 iterations from z sequence (α = 3.9, σ = 0). E)
Autocorrelation Iz(s0; sk) computed for α = 3.82842 (blue and green
lines for σ = 0 and σ = 0.3) and for α = 3.82835 (red and black
lines for σ = 0 and σ = 0.3). F) Sample of 200 iterations from z
sequence (α = 3.82835, σ = 0)
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Figure 6.17: Temporal autocorrelation I(s0; sk) and Iz(s0; sk) es-
timated on the data (blue lines) and on the modeled ACSs (red
lines) for CR1,CR2,SL1,SL2 (respectively A,B,C,D). Green lines in
C,D indicates autocorrelations for markov chain models estimated
on the data.



130 CHAPTER 6. RESULTS

Figure 6.18: Model fitting evaluation for residence times. A)
The inverse of the peak distance in the frequency spectrum in-
dicates a well defined maximum residence time for a z sequence
(α = 3.82824,σ = 0). B) The peaks emerge even in presence of noise
(σ = 0.3) C) Residence coefficient τnormr from data (blu bars) and
modeled ACSs (red bars)
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Figure 6.19: Complexity and Predictability of a NE cortical sequence
compared with a surrogated one. Above the blue line represents the
CLS of the RS, the green line represents the mean of 100 surro-
gated sequences. Below the number of predicted and observed LS
respectively in red and blue.
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Figure 6.20: Box-Whisker plot of the distribution of the sojourn time
in bursting phase of neurons extracted from PVS patients (left) and
from MCS patient (right).



Chapter 7

Conclusions

This work explores the capabilities of recent sequential prediction
methods with data from neurophysiological recordings. Several au-
thors investigated the possibility to analyze neurophysiological record-
ings with methods coming from Coding and Information Theory.
In particular, Blanc et al, used Lempel-Ziv complexity to estimate
neural correlations [18] and Christen et al, tried to define a dis-
tance between spike trains based on Lempel-Ziv complexity [26].
Another important work emphasized again the Lempel-Ziv com-
plexity in the analysis of biomedical signals [52]. Finally, London
et al, measured the synaptic information efficacy with a technique
based on the context-tree weighting algorithm [70]. No one of these
methods define a general methodology for neurophysiopathological
recording analyses. In this thesis I studied and used the Variable
Order Hidden Markov Models (VOMMs) as tools to model SN or
NE sequences in order to understand some basics of the spontaneous
activity dynamics. Notwithstanding the positive results of the appli-
cation, able to extract important features of the spontaneous activity
like for instance fine dynamics of phase shiftings, VOMMs are sen-
sitive to single symbol missings or mistakes due to misclassifications
inherited from spike detection procedures, thus failing the capture

133
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of crucial patterns. In this view the adoption of more robust and
efficient algorithms would lead to definitely better estimations of the
real neural model.
The central result, concerning chronic pain, highlights the efficacy of
my methods to discover latent features within the spontaneous activ-
ity. Furthermore, the dynamics of several cortical spontaneous activ-
ity phenomena have been explored suggesting important hypotheses.
Finally, although the results of the disorders of consciousness are ob-
viously preliminar, due to the sample paucity, they methods have
been still able to adapt in this difficult contexts. The sequential
data learning is in constant evolution. Spiking temporal sequences
are far from being mere addition of spiking events on a temporal
line but enclose complex dynamical features like the multiple input
sources coming to a single cell. The single neuron spike trains (SN)
and the multiunit spike trains (NE) appear as symbolic sequences
with most variable behaviors (or firing patterns). Preliminary works
done in our lab [146, 115] showed that these complex dynamic pro-
files are jointly represented in the single neuron discharge profile. As
it emerges clearly from the above chapters, a multiregime is a pro-
file displaying several dynamic behaviors as, for instance, alternating
laminar and chaotic cycles. One important sign of a phase shifting
to another phase is the appearance of a specific marker sequence
of single neuron or neuronal population events. This indicates the
presence of a weak schematic structure within the symbolic sequence.
The dynamics of the neural structures either of single neurons or of
neuronal networks displayed extremely complex features that were
only seemingly open to immediate analytical approaches like the
study of frequency of discharge or the evaluation of the time lags in-
terleaved among the electrical events (or spikes). Thus, subtler and
subtler methods are requested to try to understand the complex
message delivered into the spike trains of neurons both as individual
activities and as the response to most diverse inputs.
In this context some preliminary seminal works have considered the
problem of input coding in the central somatosensory networks. The
tactile sensory system has been investigated at thalamocortical level
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in rat whisker system [82, 33, 84]. Rats typically exhibit a complex
exploratory behaviour in order to acquire through actively driven
exploratory acts the most relevant features from the external en-
vironment. In these papers, several features have been analysed,
focussing on coding localization, frequency, amplitude and orienta-
tion of whisker deflections. As it emerged, in front of the peculiar
diversity in neuronal responses to different features, it has been evi-
denced that the time of occurrence of the very first spikes represents
the most common coding mechanism [86, 6, 85].
These important results show the fast and strong mechanism of
coding of sensory stimuli that are however merged into the com-
plex thread of the spontaneous or ongoing activity. Because of the
pervasive influences that spontaneous activity may inject into the
response repertoire of sensory system it appears an important step
to explore the relationships that continuously regulate this inter-
section between the two dynamic regimes (spontaneous and evoked
activities). Indeed, the spontaneous activity is not necessarily syn-
chronized with the time of stimuli onset and imports variability in
the neuronal responses. Furthermore it is ubiquitous at the thalamic
and cortical level and thus, the neuronal coding scheme has to cope
with this variability source. The strategies used by neuronal coding,
still a matter of speculation, oblige therefore in order to understand
them, an appropriate description of spontaneous activity dynamics.
Because, to date, scant attention has been paid to this aspect, my
work tries to add some new knowledge about spontaneous activity.
Several controversial aspects still need to be clarified, e.g. the im-
pact of correlations on the population coding. In fact, although the
pairwise correlation impact seems neither to add nor to substract
a substantial information amount[81], the impact of spatiotempo-
ral higher order correlations still needs further investigation. From
this perspective, the intermittent occurrence of long range correla-
tions, that I identified in normal and more frequently in neuropathic
rats (at the best of my knowledge this is the first report of such
phenomenon), could have a significant impact on the amount of
trasmitted information [117].



136 CHAPTER 7. CONCLUSIONS

7.1 Future developments

Very recent works (2010) showed stronger than VOMM based meth-
ods like the Variable Order Hidden Markov Models (VOHMMs).
The VOHMMs are Hidden Markov Models that allow temporal high
order dependencies between hidden states. The application of these
methods to SN and NE could identify and extract schemes nested
into the temporal sequences even perturbed by gaps. The tech-
nique peculiarities rely on a variable gap sequence mining method
to extract frequent patterns with different lengths and gaps between
elements. Then it uses these mined sequences to build a VOHMM
that explicitly models the gaps. These last implicitly model the or-
der of the VOHMM and explicitly the duration of each state [144].
This algorithm, named by the acronym VOGUE (Variable Order and
Gapped HMM for Unstructured Elements) extracts, in addition to
the previous actions, the distribution of gap symbols for each mining
pattern. These distributions allow for recognizing the nature of these
gaps. I hypothesize, with the support of these results [117], that cru-
cial symbols are scattered within an intermittent (laminar-chaotic)
behavior within the sequence. A further advantage is represented by
the existance of a work about the parallelization of these algorithms
in shared-memory computing environments [143]. Recent develop-
ments on General Purpose Graphical Processing Units permit to
achieve complex computational data mining tasks. In particular,
parallel versions of sequence mining algorithms can be developed by
NVIDIA Compute Unified Device Architecture (CUDA) framework.
It is possible to extract a functional relationship between the SN and
NE sequences defining a similarity measure between VOHMMs. The
set of all the direct extracted relationships constitute a direct graph
that expresses the functional dependencies of the recorded neural as-
sembly. The Neural Group Discovery (NGD) algorithm, presented
in previous works [116], achieve such a goal. This strategy, however,
misses the temporal evolution of clusters and the statistics computed
over the graph.
Possible developments of this project have the aim to achieve a sound
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and consecutive temporal snapshot, built by NGD algorithm, of the
connectionist perspective evidencing the subtlest fluctuations into
the cluster temporal developments. Similar works, strictly related
to Small-World Networks and Graph Theory, showed functional con-
nectivity redistributions among cerebral areas in several nervous sys-
tem disorders [21]. Thus, the extension of these techniques in the
temporal dimension could supply further results and confirmations
to even clinically relevant problems.

This thesis faced the problem of the neuronal ongoing activity.
One of the most intriguing problems in the current neurophysiolog-
ical debate, in fact, is the understanding of the neural activity in
absence of any stimulus. The problems related to the spontaneous
activity are associated to exceedingly numerous cognitive, sensorial
and perceptive tasks taking simultaneously place in the brain. In
fact, the whole story of neurophysiology until now has evolved on the
basis of stimulus induced responses visual, auditory or somatosen-
sory. The spontaneous activity studied with electroencephalography
and imaging techniques in human subjects has recently evidenced a
disparate and flexible background in spontaneously running record-
ing stages, pointing out surprising and richest functional landscapes
of a state once thought to express only flat dynamics. The prob-
lem increases observing ongoing activity patterns during pathologi-
cal states of the nervous system. Namely, the study of the neuronal
spontaneous activity from neurosurgical patients can be done ei-
ther in conscious waking patients or in patients with disorders of
consciousness. In both cases, the spontaneous activity assumes a
special importance in that it delivers the hallmarks of the multiple
tasks simultaneously carried out in the recorded networks. More
specifically, in studies on the neural states of patients with disorders
of consciousness, the evaluation of the spontaneous neuronal activ-
ity by microelectrode recordings into the cerebral cortex and into
regions of the brain called intralaminar thalami could deliver crucial
issues for diagnosis and prognosis on the outcome of the interven-
tions devoted to the placement of neurostimulators.
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Experiments on animals are devoted to further study crucial dy-
namic signatures of the thalamic and cortical physiology and patho-
physiology. The thalamus and the cortex are the two crucial com-
ponents of the reverberating circuit TCT. The TCT loop represents
the fundamental pillar enclosing most of the sensory processes and
acting as the neural background of consciousness processes. The
overall functional picture of the TCT has been partially clarified
in a plethora of studies that, notwithstanding great achievements,
still misses completeness. In this perspective the analysis with the
defined similarity measure defined above, would assume a funda-
mental importance for achieving a better knowledge of sensory pro-
cesses both in normal animals and in neuropathological models as
in chronic pain animals.
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