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Chapter 1
Introduction

An interesting fact in nature is that if we observe agents (neurons, particles, animals,
humans) behaving, or more precisely moving, inside their environment, we can recog-
nize - tough at different space or time scales - very specific patterns. The existence of
those patterns is quite obvious, since not all things in nature behave totally at random,
especially if we take into account thinking species like human beings. On the contrary,
their analysis is quite challenging. Indeed, during the years we can find in the literature a
lot of efforts to understand the behavior of complex systems through mathematical laws.
If a first phenomenon which has been deeply modeled is the gas particle motion [68] as
the template of a totally random motion, other phenomena, like foraging patterns of an-
imals such as albatrosses [44], and specific instances of human mobility [56] wear some
randomness away in favor of deterministic components. Thus, while the particle motion
may be satisfactorily described with a Wiener Process (also called Brownian motion) -
hence particle coordinates distributed like Gaussian variables with variance increasing
with time - other phenomena like albatrosses’ foraging patterns or human mobility are
better described by other kinds of stochastic processes called Levy Flights. Both may
be simulated at discrete time with an infinite sum of equally distributed steps. But the
former are Gaussian, the latter have heavy tailed distributions like Cauchy or Pareto dis-
tributions. Many researcher did try to explain this peculiar aspects in terms of stochastic
models often based on complex superstructures, yet only seldom they got a strong plau-
sibility. Minding at these phenomena in a unifying way, in terms of motion of agents –
either inanimate like the gas particles, or animated like the albatrosses –the point is that
the latter are driven by specific interests, possibly converging into a common task, to be
accomplished. Since the moment when these needs arise, agents move from one place to
another moulding long or even short lasting communities, whose importance has led the
scientific community to terms as social communities. These kind of spontaneous groups
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2 1 Introduction

are as interesting as the motions per se: indeed we can consider social communities as
a real effect of the intentional (either physical or virtual) motion.

The whole thesis work turns around the concept of agent intentionality at different
scales, whose model may be used as key ingredient in the statistical description of com-
plex behaviors. The two main contributions in this direction are:

1. the development of a “wait and chase” model of human mobility having the same
two-phase pattern as animal foraging [44] but with a greater propensity of local
stays in place and therefore a less dispersed general behavior [13];

2. the introduction of a mobility paradigm for the neurons of a multilayer neural net-
work and a methodology to train these new kind of networks to develop a collective
behavior. The lead idea is that neurons move toward the most informative mates to
better learn how to fulfill their part in the overall functionality of the network.

With these specific implementations we have pursued the general goal of attributing
both a cognitive and a physical meaning to the intentionality so as to be able in a near
future to speak of intentionality as an additional potential in the dynamics of the masses
(both at the micro and a the macro-scale), and of communication as another network in
the force field. This could be intended as a step ahead in the track opened by the past
century physicists [50] with the coupling of thermodynamic and Shannon entropies in
the direction of unifying cognitive and physical laws.

This thesis is organized as follows:

• Chapter 2 is intended as a compendium of useful preliminary notions and concepts to
read the rest of the thesis. It comprises both the necessary mathematical foundations
and the main basic definitions to support next chapters, without any exhaustiveness
pretense.

• Chapter 3 runs along a path starting from some theoretical consideration on stochas-
tic processes with and without memory and the relationship lying between them.
Then, it continues with the presentation of a human mobility model that supports
a real application embedded in concrete contexts - the opportunistic networks, gps
communities, etc. - as an implementation of the previous theoretical considerations.

• Chapter 4 prosecutes the study at a micro scale. Here, taking inspiration by brain
morphogenesis, we add a mobility functionality to the neurons of an artificial neural
network and toss this new cognitive device on well known benchmarks. We prove
the social attitude acquired by the neurons thanks to their mobility to be beneficial to
the learning task of a deep architecture neural network.

• Chapter 5 contains some concluding remarks and considerations for a future work.



Chapter 2
Mathematical tools

In this chapter we will present a streamline of theoretical results which are at the basis
of both the motivations and the methodologies of this thesis work.

By first, we introduce the Levy flights, as the reference point process of our mobility
model. Actually, we will locate our model at an intermediate position between them and
the Brownian motion, hence owning the same infinite divisibility properties. To study
this process, we cannot strictly apply the tools from Palm calculus which we discuss in
this chapter. Rather, we simply obtain from them some insights about an almost station-
arity of the process. As a result, the relevant times follows a heavy tailed distribution
law, but with a more contained variance, thus allowing for suitable statics to infer the
distribution parameters. To accomplish this inference task we adopt the Algorithmic In-
ference framework that we recall in the third part of this chapter. Here we introduce
only the basic concepts; while the actual inference procedures will be discussed at the
moment of their implementation later on. Then we list in a very essential way some def-
inition and algorithms attaining the neural networks that we will use for accomplishing
the training task of our intentional agents. They are very popular notions that we recall
with the unique aim of fixing the notation. We conclude this roundup with the blowup
of a special expedient we use to improve the signal representation during the training
of our neural network. It consists of extracting boolean features from the signal, and we
show an entropic device to get them.

We just list definitions and results in order to provide the reader some pointers to
topics that are covered with more details (and often a greater rigor as well) in numerous
textbooks an papers in the literature.

3



4 2 Mathematical tools

2.1 Lèvy processes

2.1.1 Preliminary notions

Before introducing the definition of Lèvy Process, we provide some preliminary notions.
Let S be a non-empty set and F a collection of subsets of S. We call F a σ -algebra

if the following hold.

1. S ∈F
2. A ∈F ⇒ Ac ∈F
3. If (An,n ∈ N) is a sequence of subsets in F then

⋃
∞
n=1 An ∈F

The pair (S,F ) is called a measurable space.
A measure on (S,F ) is a mapping µ : F 7→ [0,∞] that satisfies:

1. µ( /0) = 0,
2.

µ

(
∞⋃

n=1

An =
∞

∑
n=1

µ(An)

)
for every sequence (An,n ∈ N) of mutually disjoint sets in F

The triple (S,F ,µ) is called a measure space.
For our purposes it is useful to define two measures:

• Let S be a subset of Rd . We equip S with the topology induced from Rd , so that
U ⊆ S is open in S if U ∩S is open in Rd . Let B(S) denote the smallest σ -algebra of
subsets of S that contains every open set in S. We call B(S) the Borel σ − algebra
of S. Elements of B(S) are called Borel sets and any measure on (S,B(S)) is called
a Borel measure. The linear space of all bounded Borel measurable functions from S
to R will be denoted by Bb(S)

• Here we usually write S = Ω and take Ω to represent the set of outcomes of some
random experiment. Elements of F are called events and any measure on (Ω ,F ) of
total mass 1 is called probability measure and denoted by P. The triple (Ω ,F ,P) is
then called probability space.

Definition 2.1. (Measurable mapping). For i = 1,2 let (Si,Fi) be measurable spaces.
A mapping f : S1 7→ S2 is said to be (F1,F2)-measurable if f−1 ∈F1 for all A ∈F2.
If each S1 ⊆ Rd ,S2 ⊆ Rm and Fi = B(Si), f is said to be Borel measurable.

Remark 2.1. In what follows, we will speak only of measurable mappings that are
equipped with a Borel σ -algebra.

Definition 2.2. (Random Variable). Given the probability space (Ω ,F ,P), the mea-
surable mapping X : Ω 7→ Rd is called random variable.
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2.1.2 Lèvy family

Definition 2.3. (Stochastic Process). A stochastic process

{Xt}t∈T

is a collection of random variables Xt , taking values in a common measure space (S,F ),
indexed by a set T .

Lèvy processes are essentially stochastic processes with stationary and independent in-
crements. Their importance in probability theory stems from the following facts:

• they are the analogues of random walks in continuous time;
• they form special subclasses of both semi-martingales and Markov processes for

which the analysis is on the one hand much simpler and on the other hand provides
valuable guidance for the general case;

• they are the simplest examples of random motion whose sample paths are right-
continuous and have a number (at most countable) of random jump discontinuities
occurring at random times, on each finite time interval.

• they include a number of very important processes as special cases, including Brow-
nian motion, the Poisson process, stable and self decomposable processes.

Definition 2.4. Suppose that we are given a probability space (Ω ,F ,P). A Lèvy pro-
cess X = (X(t), t ≥ 0) taking values in Rd is essentially a stochastic process having
stationary and independent increments; we always assume that X(0) = 0 with probabil-
ity 1. So:

• each X(t) is define d in Ω 7→ Rd ;
• given any selection of distinct time-points 0≤ t1 < t2 < · · ·< tn, the random vectors

X(t1),X(t2)−X(t1),X(t3)−X(t2), . . . ,X(tn)−X(tn−1) are all independent;
• given two distinct times 0 ≤ s < t < ∞, the probability distribution of X(t)−X(s)

coincides with that of X(t− s).

2.1.3 Infinite divisibility

2.1.3.1 Convolution of measures

Definition 2.5. Let M (Rd) denote the set of all Borel probability measures on Rd . We
define the convolution of two probability measures as follows:
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(µ1 ∗µ2)(A) =
∫
Rd
(A− x)µ2(dx) (2.1)

for each µi ∈M (Rd), i = 1,2,and each A ∈B(Rd), where we note that A− x = {y−
x,y ∈ A}.

Proposition 2.1. The convolution µ1 ∗µ2 is a probability measure on Rd .

Proposition 2.2. If f ∈Bb(Rd), then for all µi ∈M (Rd), i = 1,2,3,∫
Rd

f (y)(µ1 ∗µ2)(dy) =
∫
Rd

∫
Rd

f (x+ y)µ1(dy)µ2(dx),

µ1 ∗µ2 = µ2 ∗µ1,

(µ1 ∗µ2)µ3 = µ1 ∗ (µ2 ∗µ3).

Now let X1 and X2 be independent random variables defined on a probability space
(Ω ,F ,P) with joint distribution p and marginals µ1 and µ2 respectively.

Corollary 2.1. For each f ∈Bb(Rd),

E( f (X1 +X2)) =
∫
Rd

f (z)(µ1 ∗µ2)(dz). (2.2)

By Corollary 2.1, we see that convolution gives the probability law for the sum of two
independent random variables X1 and X2, i.e.

P(X1 +X2 ∈ A) = E(χA(X1 +X2)) = (µ1 ∗µ2)(A) (2.3)

where χA is the indicator function defined for any A ∈F by

χA(x) =
{

1, if x ∈ A
0, if x /∈ A

Proposition 2.2 tells us that M (Rd) is an abelian semigroup under ∗ in which the
identity element is given by the Dirac measure δ0, where we recall that in general, for
x ∈ Rd ,

δx(A) =
{

1 if x ∈ A
0 otherwise

for any Borel set A, so we have δ0 ∗µ = µ ∗δ0 = µ for all µ ∈M (Rd).
We define µ∗

n
= µ ∗ · · · ∗ µ (n times) and say that µ has a convolution n-th root, if

there exists a measure denoted µ1/n ∈M (Rd) for which (µ1/n)∗
n
= µ .

Remark 2.2. In general, the convolution n-th root of a probability measure may not be
unique. However, it is always unique when the measure is infinitely divisible



2.1 Lèvy processes 7

Definition 2.6. Infinite divisibility. Let X be a random variable taking values in Rd with
law µX . We say that X is infinitely divisible if, for all n ∈ N, there exist i.i.d. random
variables Y (n)

1 , . . . ,Y (n)
n such that

X = Y (n)
1 + · · ·+Y (n)

n (2.4)

Let ΨX (u) = E(ei〈u,X〉) denote the characteristic function of X , where u ∈ Rd . More
generally, if µ ∈M (Rd) then Ψµ(u) =

∫
Rd ei〈u,y〉µ(dy).

Proposition 2.3. The following are equivalent:

1. X is infinitely divisible;
2. µX has a convolution n-th root that is itself the law of a random variable, for each

n ∈ N;
3. ΨX has an nth root that is itself the characteristic function of a random variable, for

each n ∈ N.

Proposition 2.3(2) suggests that we generalize the definition of infinite divisibility as
follows: µ ∈M (Rd) is infinitely divisible if it has a convolution nth root in M (Rd) for
each n ∈ N.

2.1.3.2 Lèvy-Khintchine formula

Now we will present a formula, first established by Paul Lèvy and A.Ya. Khintchine
in the 1930s, which gives a characterization of infinitely divisible random variables
through their characteristic functions. First we need a definition.

Definition 2.7. Let ν be a Borel measure defined on Rd −{0} = {x ∈ Rd ,x 6= 0}.We
say that it is a Lèvy measure if∫

Rd−{0}

|y|2

1+ |y|2
ν(dy)< ∞ (2.5)

for each y ∈ Rd .

Theorem 2.1. (Lèvy-Khintchine) µ ∈M (Rd) is infinitely divisible if there exist a vec-
tor b ∈ Rd , a positive definite symmetric d × d matrix A and a Lèvy measure ν on
Rd−{0} such that, for all u ∈ Rd ,
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ψm(u) = exp
{

i〈b,u〉− 1
2
〈u,Au〉+∫

Rd−{0}

[
ei〈u,y〉−1− i〈u,y〉χB̂(y)

]
ν(dy)

}
(2.6)

where B̂ = B1(0)1. Conversely, any mapping of the form (2.6) is the characteristic func-
tion of an infinitely divisible probability measure on Rd .

The Lèvy-Khintchine formula represents all infinitely divisible random variables as aris-
ing through the interplay between Gaussian and Poisson distributions. So, a vast set of
different behavior appears between these two extreme cases.

2.1.4 Stable random variables

We consider the general central limit problem in dimension d = 1, so let (Yn,n ∈ N) be
a sequence of real-valued random variables and construct the sequence (Sn,n ∈ N) of
rescaled partial sums

Sn =
Y1 +Y2 + · · ·+Yn−bn

σn

where (bn,n ∈ N) is an arbitrary sequence of real numbers and (σn,n ∈ N) an arbitrary
sequence of positive numbers. We are interested in the case where there exists a random
variable X for which

lim
n→∞

P(Sn ≤ x) = P(X ≤ x) (2.7)

for all x ∈ R, i.e. (Sn,n ∈ N) converges in distribution to X . If each bn = nm and σn =√
nσ for fixed m ∈R,σ > 0, then X ∼ N(m,σ2)by the Laplace-de-Moivre central limit

theorem.
More generally a random variable is said to be stable if it arises as a limit, as in (2.7). It
is not difficult to show that (2.7) is equivalent to the following. There exist real-valued
sequences (cn,n ∈ N) and (dn,n ∈ N) with each cn > 0 such that

X1 +X2 + · · ·+Xn = cnX +dn (2.8)

where X1,X2, . . . ,Xn are independent copies of X . In particular, X is said to be strictly
stable if each dn = 0.

1 The open ball of radius r centered at x in Rd is denoted Br(x) = {y ∈ Rd ; |y− x| < r} and we will
write B̂ = B1(0).
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To see that (2.8) ⇒ (2.7) take each Yj = X j,bn = dn and σn = cn. In fact it can be
shown that the only possible choice of cn in (2.8) is of the form σn1/α , where 0<α ≤ 2.
The parameter α plays a key role in the investigation of stable random variables and is
called the index of stability. It follows immediately from (2.8) that all stable random
variables are infinitely divisible. The characteristic functions in the Lèvy-Khintchine
formula are given by the following result.

Theorem 2.2. If X is a stable real-valued random variable, then its characteristic func-
tion must take, according to (2.6), one of the two following forms:

1. when α = 2, v = 0, so X ∼ N(b,A);
2. when α 6= 2, A = 0 and

ν(dx) =
ci

x1+α

χ(0,∞)(x)dx+
c2

|x|1+α
χ(−∞,0)(x)dx,

where c1 ≥ 0,c2 ≥ 0 and c1 + c2 > 0

A careful transformation of the integrals in the Lèvy-Khintchine (2.6) formula gives a
different form for the characteristic function, which is often more convenient.

Theorem 2.3. A real-valued random variable X is stable if and only if there exist σ >
0,−1≤ β ≤ 1 and µ ∈ R such that for all u ∈ R:

• when α = 2,

ψX (u) = exp
(

iuµ− 1
2

σ
2u2
)

;

• when α 6= 1,2,

ψX (u) = exp
{

iµu−σα |u|α
[
1− iβ sgn(u) tan

(
πα

2

)]}
;

• when α = 1,

ψX (u) = exp
{

iµu−σ |u|
[

1+ iβ
2
π

sgn(u) log(|u|)
]}

. (2.9)

It can be shown that E(X2) < ∞ if and only if α = 2 (i.e. X is Gaussian) and that
E(|X |) < ∞ if and only if 1 < α ≤ 2. All stable random variables have densities fX ,
which can in general be expressed in a series form. In three important cases, there are
closed forms.

1. The normal distribution

α = 2 X ∼ N(µ,σ2); (2.10)
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2. The Cauchy distribution

α = 1,β = 0, fX (x) =
σ

π[(x−µ)2 +σ2]
(2.11)

3. The Lèvy distribution

α = 1,β = 1,

fX (x) =
(

σ

2π

)1/2 1
(x−µ)3/2 exp

[
−σ

2(x−µ)

]
for x > µ. (2.12)

As we can notice, stable distributions are both Normal and Cauchy distributions, the
latter belongs to the family of the so called Heavy-tailed distributions (not exponentially
bounded) so as the Pareto distribution. However it is not always possible to have an
analytical form for a general alpha stable distribution, and in these cases we can only
write the corresponding characteristic function ψ expressed as the Fourier transform of
the probability density.

More precisely, note that if a stable random variable is symmetric then Theorem 2.3
yields

ψX (u) = exp(−ρ
α |u|α) ∀ 0 < α ≤ 2

where ρ = σ for 0 < α < 2 and ρ = σ
√

2 when α = 2.
One of the reasons why stable laws are so important is the decay properties of the

tails. For example, with α = 2 we have an exponential decay, indeed for a standard
normal X

P(X > y)∼ e−y2/2
√

2πy
as y→ ∞

. On the other side, when α 6= 2 we have a slower, polynomial, decay as expressed by:

lim
y→∞

yα P(X > y) =Cα

1+β

2
σ

α

lim
y→∞

yα P(X <−y) =Cα

1−β

2
σ

α

where Cα > 1. The relatively slow decay of the tails of non-Gaussian stable laws makes
them ideally suited for modelling a wide range of interesting phenomena, some of which
exhibit long-range dependence.
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2.2 Point processes and Palm Calculus

In the following sections we will give some basic notion on point processes and Poisson
point processes and how we can exploit the tools that the Palm calculus offers us.

2.2.1 Poisson Point Process

Consider the d-dimensional Euclidean space R.

Definition 2.8. A spatial point process (p.p.) Φ is a random, finite of countably-infinite
collection of points in the space Rd , without accumulation points.

One can consider any given realization φ of a p.p as a discrete subset φ = {xi} ⊂ Rd

of the space. It is often more convenient to think of φ as a counting measure or a point
measure φ = ∑i δxi where δx is the Dirac measure at x.
Consequently, φ(A) gives the number of “points” of φ in A. Also, for all real functions
f defined on Rd , we have ∑i f (xi) =

∫
Rd f (x)φdx. We will denote by M the set of all

point measures that do not have accumulation points in Rd . This means that any φ ∈M
is locally finite, that is φ(A) < ∞ for any bounded A ⊂ Rd (a set is bounded if it is
contained in a ball with finite radius). Note that a p.p. Φ can be seen as a stochastic
process Φ = Φ(A)A∈B with state space Φ(A) ∈ N = {0,1, . . .} and where the index A
runs over bounded Borel subsets of Rd .

Definition and Characterization

Let Λ be a locally finite non-null measure on Rd

Definition 2.9. The Poisson Point Process Φ of intensity measure Λ is defined by
means of its finite-dimensional distributions:

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk}=
k

∏
i=1

(
e−Λ(Ai)

Λ(Ai)
ni

ni!

)
(2.13)

for every k = 1,2, . . . and all bounded, mutually disjointed sets Ai for i = 1, . . . ,k. If
Λ(ds) = λdx is a multiple of a Lebesgue measure (volume) in Rd , we call Φ a homo-
geneous Poisson p.p. and λ is its intensity parameter.

Remark 2.3. Φ is a Poisson p.p. iff ∀k = 1,2, . . . and all bounded, mutually disjoint Ai ⊂
Rd with i = 1, . . . ,k , (Φ(A1), . . . ,Φ(Ak)), is a vector of independent Poisson random
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variables of parameter (Λ(A1), . . . ,Λ(Ak)), respectively. In particular, E(Φ(A)) =Λ(A)
for all A.

Remark 2.4. Let W be some bounded observation window and let A1, . . . ,Ak be some
partition of this window: Ai∩A j = /0 for i 6= j and

⋃
i Ai =W . For all n, n1, . . . ,nk ∈ N

with ∑i ni = n,

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk|Φ(W ) = n}=
n!

n1! · · ·nk!
1

Λ(W )n ∏
i

Λ(Ai)
ni . (2.14)

Operations Preserving the Poisson Law

Superposition

Definition 2.10. The superposition of p.p. Φk is defined as the sum Φ = ∑k Φk

Note that the summation in the above definition is understood as the summation of
(point) measures. It always defines a point measure, which however, in general, might
not be locally finite (we do not assume the last sum to have finitely many terms). Here
is a useful condition to guarantee the above property.

Lemma 2.1. The superposition Φ = ∑k Φk is a p.p. if ∑k E[Φk(·)] is a locally finite
measure.

A refined sufficient condition may be found by the Borel-Cantelli lemma.

Proposition 2.4. The superposition of independent Poisson point processes with inten-
sities Λk is a Poisson p.p. with intensity measure Φ = ∑k Λk if and only if the latter is a
locally finite measure.

Thinning

Consider a function ρ : Rd 7→ [0,1] and a p.p Φ .

Definition 2.11. The thinning of Φ with the retention function ρ is a p.p. given by

Φ
ρ = ∑

k
γkδxk (2.15)
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where the random variables {γk}k are independent given Φ , and P{γk = 1|Φ} =
1−P{γk = 0|Φ} = p(xk). Less formally, we can say that a realization of Φρ can be
constructed from that of Φ by randomly and independently removing some fraction of
points; the probability that a given point of Φ located at x is not removed (i.e. is retained
inΦρ ) is equal to ρ(x).

Random Transformation of Points

Definition 2.12. (Probability kernel). A measure kernel from a measurable space
(Ξ ,X ) to another measurable space (ϒ ,Y ) is a function κ : Ξ ×Y 7→ R+2 such that

1. for any Y ∈ϒ , κ(x,Y ) is X -measurable;
2. for any x∈Ξ , κ(x,Y )≡ κx(Y ) is a measure of (ϒ ,Y ). We will write the integral of

a function f : ϒ 7→ R, with respect to this measure, as
∫

f (y)κ(x,dy),
∫

f (y)κx(dy),
or , most compactly, κ f (y).

If, in addition, κx is a probability measure on ϒ ,Y for all x, then κ is a probability
kernel.

Consider a probability kernel κ(x,B) from Rd to Rd′ , where d′ ≥ 1, i.e. for all x ∈
Rd , κ(x, ·) is a probability measure on Rd′ .

Definition 2.13. The transformation Φκ of a p.p. Φ by a probability kernel κ(·, ·) is a
p.p. in Rd′ given by

Φ
κ = ∑

i
δyi (2.16)

where the Rd′ -valued random vectors {yi}i are independent given Φ , with P{yi ∈
B′|Φ}= p(xi,B′).

In other words, Φκ is obtained by randomly and independently displacing each point
of Φ from Rd to some new location in Rd′according to the kernel κ . This operation
preserves the Poisson p.p. property as stated in the following theorem.

Theorem 2.4. (Displacement Theorem). The transformation of the Poisson p.p. of in-
tensity measure Λ by a probability kernel κ is the Poisson p.p. with intensity measure
Λ ′(A) =

∫
Rd κ(x,A)Λ(dx), A⊂ Rd′ .

2 R+
denotes the extended real number set.
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2.2.2 Palm Theory

Palm theory formalizes the notion of the conditional distribution of a general p.p. given
it has a point at some location. Note that for a p.p. without a fixed atom at this particular
location, the probability of the condition is equal to 0 and the basic discrete definition of
the conditional probability does not apply. In this section we will outline the definition
based on the Radon-Nikodỳm theorem.

We first define two measures associated with a general point process:

Definition 2.14. The mean measure of a p.p. Φ is the measure

M(A) = E[Φ(A)] (2.17)

on Rd . The reduced Campbell measure of Φ is the measure

C!(A×Γ ) = E
[∫

A
χ(Φ−δx ∈ Γ )Φ(dx)

]
(2.18)

on Rd×M, where M denotes the set of point measures.

Note that M(A) is simply the mean number of points of Φ in A. The reduced Camp-
bell measure C!(A×Γ ) is a refinement of this mean measure; it gives the expected
number of points of Φ in A such that when removing a particular point from Φ , the
resulting configuration satisfies property Γ . The fact that one measure is a refinement
of the other, or more formally, that C!(·×Γ ) for each Γ is absolutely continuous with
respect to M(·), allows us to express the former as an integral of some function P!

x ,
called the Radon-Nikodym derivative with respect to the latter:

C!(A×Γ ) =
∫

A
P!

x M(dx) forall A⊂ Rd . (2.19)

The function P!
x = P!

x(Γ ) depends on Γ . Moreover, if M(·)is a locally finite measure,
P!

x(·)can be chosen as a probability distribution in M for each given x.

Definition 2.15. Given a point process with a locally finite mean measure, the distribu-
tion P!

x(·) is called the reduced Palm distribution of Φ given a point at x.

The following central formula of Palm calculus, which is called the Campbell-Mecke
formula, is a mere rewriting of the above definition when f (x,ν) = χ(x ∈ A,ν ∈ Γ ).

Theorem 2.5. (Reduced Campbell-Mecke Formula). For all non-negative functions de-
fined on Rd×M

E
[∫

Rd
f (x,Φ−δx)Φ(dx)

]
=
∫
Rd

∫
M

f (x,φ)P!
x(dφ)M(dx) (2.20)
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Corollary 2.2. The mean measure of a Poisson p.p. is equal to its intensity measure
M(·) = Λ(·).

We now state a central result of the Palm theory for Poisson p.p. It makes clear why the
reduced Palm distributions are more convenient in many situations.

Theorem 2.6. (Slivnyak-Mecke Theorem). Let Φ be a Poisson p.p. with intensity mea-
sure Λ . For Λ almost all x ∈ Rd ,

P!
x = P{Φ ∈ ·} (2.21)

that is, the reduced Palm distribution of the Poisson p.p. is equal to its (original) distri-
bution.

Using now the convention, according to which a p.p. is a family of random variables
Φ = {xi}i, which identify the locations of its atoms (according to some particular order)
we can rewrite the reduced Campbell formula for Poisson p.p.

E

[
∑

xi∈Φ

f (xi,Φ{xi})

]
=
∫
Rd

E[ f (x,Φ)]M(dx) (2.22)

2.2.3 Stationarity

Throughout this section we will use the following notation:

v+Φ = v+∑
i

δxi = ∑
i

δv+xi

Definition 2.16. A point process Φ is stationary if its distribution is invariant under
translation through any vector v ∈ Rd ; i.e. P{v+Φ ∈ Γ }= P{Φ ∈ Γ }.

Proposition 2.5. A homogeneous Poisson p.p. is stationary

Corollary 2.3. Given a stationary point process Φ , its mean measure is a multiple of
Lebesgue measure: M(dx) = λ dx

We have that λ = E[Φ(B)] for any set B ∈ Rd of Lebesgue measure l. One defines
the Campbell-Matthes measure of the stationary p.p. Φ as the following measure on
Rd×M:

C(A×Γ )E
[∫

A
χ(Φ− x ∈ Γ )Φ(dx)

]
= E

[
∑

i
χ(xi ∈ A)χ(Φ− xi ∈ Γ )

]
. (2.23)
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If λ < ∞, one can define a probability measure P0 on M, such that

C(A×Γ ) = λ |A|P0(Γ ) (2.24)

for all Γ

Definition 2.17. Intensity and Palm distribution of a stationary p.p. For a stationary
point process Φ , we call the constant λ described in Corollary 2.3 the intensity param-
eter of Φ . The probability measure P0 defined in (2.24) provided λ < ∞ is called the
Palm-Matthes distribution of Φ .

One can interpret P0 as conditional probability given that Φ has a point at the origin.
Below, we always assume 0 < λ < ∞. The following formula, which will often be used
in what follows, can be deduced immediately from (2.24):

Corollary 2.4. (Campbell-Matthes formula for a stationary p.p.). For a stationary
point process Φ with finite, non-null intensity λ , for all positive functions g

E
[∫

Rd
g(x,Φ− x)Φ(dx)

]
= λ

∫
Rd

∫
M

g(x,Φ)P0(dφ)dx. (2.25)

Remark 2.5. It should not be surprising that in the case of a stationary p.p. we actually
define only one conditional distribution given a point at the origin 0. One may guess
that due to the stationarity of the original distribution of the p.p. conditional distribution
given a point at another location x should be somehow related to P0. Indeed, using
formulae (2.25) and (1.11) one can prove a simple relation between Px and P0 . More
specifically, taking g(x,Φ) = χ(Φ + x ∈ Γ ) we obtain∫

Rd
Px{φ : φ ∈ Γ }ds =

∫
Rd

P0{φ : φ + x ∈ Γ } (2.26)

which means that for almost all x ∈ Rd the measure Px is the image of the measure P0

by the mapping Φ 7→ Φ + x on M. This means in simple words, that the conditional
distribution of points of Φ seen from the origin given Φ has a point there is exactly
the same as the conditional distribution of points of Φ seen from an arbitrary location
x given Φ has a point at x. In this context, P0 (resp. Px) is often called the distribution
of Φ seen from its typical point located at 0 (resp. at x). Finally, note by the Slivnyak
Theorem 2.6 that for a stationary Poisson p.p. Φ , P0 corresponds to the law of Φ + δ0
under the original distribution.

In what follows we will often consider, besides Φ , other stochastic objects related to
Φ . Then, one may be interested in the conditional distribution of these objects seen
from the typical point of Φ . In these situations it is more convenient to define the Palm-
Matthes (or shortly Palm) probability P0 on the probability space where the p.p. Φ
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and all other objects are assumed to be defined, rather than on (some extension of) M
as above. Expectation with respect to P0 will be denoted by E0. Thus the Campbell-
Matthes formula (2.25) can be rewritten as

E
[∫

Rd
g(x,Φ− x)Φ(dx)

]
= λ

∫
Rd

E0[g(x,Φ)]dx. (2.27)

2.3 Statistical framework

2.3.1 Sampling mechanism

Now our focus here is on data. What we want to do is to organize the data {d1, . . . ,dm}
available about a given phenomenon in a way suitable for future operations. Thus, we
refer to a parametric inference problem that we may summarize as follows. Assume
we know that the continuation of the observations log of a given phenomenon is such
that the frequency of observations showing a value less than a current x is asymptoti-
cally close to a function FXθ

(x), but we do not know the value of θ . So we say that the
log is described by a random variable X with Cumulative Distribution Function (CDF)
FXθ

(x) completely known, except for a vector parameter θ . On the basis of {d1, . . . ,dm},
we want to quantify θ . Moreover, since the parameter concerns an unknown future, we
look for a set of θ values that we describe through a random variable (call it random pa-
rameter) Θ as well. The sole reason why we can infer Θ from {d1, . . . ,dm} is that both
the latter and X refer to the same variable of a given phenomenon. Hence, we rename the
data as the sample {x1, . . . ,xm} of X . A very suitable ancillary condition is that we may
assume the xis to be realizations of random variables {X1, . . . ,Xm} that have the same
CDF as X and are mutually independent. With these assumptions, we may say that both
the sample and its continuation – call it population with the further understanding that
it is so long that the above frequency practically coincides with FXθ

(x) – are generated
by the same sampling mechanism as follows.

Definition 2.18. (Sampling Mechanism). With reference to the random variable X , a
sampling mechanism MX is a pair (Z,gθ ),where Z is a completely specified random
variable and gθ is a function that maps from realizations of Z to realizations of X . The
scenario is the following. We generate a sample of X starting from a sample of Z, which
figures the seeds of the former, and using the function gθ (called explaining function)
which we split into a common part g and a free parameter θ . In turn, we can determine
the latter in relation to the global features of X . For the sake of generality, we assume θ

to be a vector by default.
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An example of a universal sampling mechanism is suggested by the integral transfor-
mation theorem [115]. It is represented by MX = (U, F̃−1

Xθ
), where U is a [0,1]-uniform

variable and F̃−1
Xθ

is a generalized inverse function of the CDF FXθ
of the questioned

random variable X . Namely F̃−1
Xθ

(u) = min{x|FXθ
(x) ≥ u}. The above definition reads

F̃−1
Xθ

(u) = (x|FXθ
(x) = u) for continuous X , with an obvious extension for discrete X .

With this scenario, an entire observation history, made of the actual prefix – the sample
– and the data we will observe in the future – the population – appears as a sequence
of seeds (in its turn partitioned into those that refer to the sample and those that refer
to the population) mapped onto the history through the explaining function. Actually,
at this point we know almost everything about the constituting parts of the sampling
mechanism except for the free parameter θ of the explaining function that, on the other
end, it is crucial to being able to generate samples compatible with the phenomenon we
are observing. We cannot say in advance the value of θ because we don’t know the cor-
responding seeds associated with θ . Thus what we can do is to transfer the probability
mass of the seed from the sample to the parameter value realizing the sample. The key
concept of this approach is the compatibility of the CDF (hence of the value of θ , since
g is known) with the observed sample-a measure we deal with in terms of probabilities
and a random parameter Θ . The key operational tool to exploit the concept is a property
of the sample to contrast with the unknown parameter which we denote as statistic sΘ .
3 More formally:

Definition 2.19. (Master equation). Given a statistic s as a function ρ of {x1, . . . ,xm}
the master equation is the direct relation:

s = h(θ ,z1, . . . ,zm) (2.28)

between statistic and seeds deriving from s = ρ(gθ (z1), . . . ,gθ (zm)), obtained by plug-
ging the explaining function into the expression

ρ(x1, . . . ,xm)

In order to transfer the probability masses from seeds that generate samples to seeds that
generate parameters, we go through a master equation (2.28) that denotes these masses
as compatible with the observed property of a sample. The correctness of the transfer lies
in the fact that each element of the Θ sample has a definite weight within the sample
and the asymptotic probability masses sum to 1. These requisites are reflected in the
properties of the statistic that denote it as well-behaving w.r.t. the parameter [12].

3 Let us comment on the notation. S is a random vector representing a sample property but here he we
focus on its realization s which we actually observe in the drawn sample. Conversely, we expect that
exactly one value θ has generated this sample. However, we do not know this value and index s with
the random parameter Θ with which we handle this lack of knowledge.
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Definition 2.20. (Well-behaving statistics). Given a random variable X whose distribu-
tion law depends on a parameter θ , for a sample {x1, . . . ,xm}, a function ρ(x1, . . . ,xm)
is a well-behaving statistic w.r.t. θ if it satisfies following three properties:

1. strongly monotonic relationship. There must exist a unique solution of (2.28) in θ .
In the case of scalar parameter θ we simply need a scalar statistic as well, where
the uniqueness occurs when a uniform monotonic relation exists between s and θ for
any fixed seeds {z1, . . . ,zm}. Otherwise the same relation will concern in a non trivial
way the outputs of suitable ordering functions in the two domains S and Θ where S
and Θ , respectively span;

2. well-definition. On each observed s the statistic is well defined for every value of
θ , i.e., any sample realization {x1, . . . ,xm} ∈ Xm such that ρ(x1, . . . ,xm) = s has a
probability density different from 0;

3. local sufficiency. Parameter Θ is the modeling counterpart of exactly the property
we observe and nothing else-so that θ̆i realizations are independent of the particular
sample {x1, . . . ,xm} which the S realization is based on. This, in turn, means that
the probability of observing the sample depends on θ only through the computed
s, so that the probability of the same event for a given s does not depend on θ – a
condition that looks like a local joint sufficiency of the statistic S as a loose variant
of the sufficient statistics introduced by Fisher [52].

Definition 2.21. (Compatible distribution). For a random variable and a sample as
in 2.20, a compatible distribution is a distribution that has the same sampling mechanism
MX = (Z,gθ ) of X with a value θ̆ of the parameter θ derived from a master equation
(2.28) which is rooted in a well-behaving statistic s. In turn, θ̆ is a θ value compatible
with the sample.

Once the master equations have been set, we have two ways of actually deducing the
Θ population: one numerical-which we call population bootstrap-and one analytical-
which we have customarily referred to as the twisting argument.

2.3.2 Population Bootstrap

Starting from the sample {x1, . . . ,xm}, we compute a (possibly well-behaving ) statistic
s, then we sample Θ realizations compatible with them in a number n as large as desired
to compute an empirical distribution of Θ . We achieve this by extracting n samples
of size m from the variable Z used for drawing seeds. Referring (2.28) to each seed
(z̆1, . . . , z̆m) of the statistic, we solve the master equation in θ , so as to obtain an n-long
set of candidate θ̆s, hence the Θ ECDF through:
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F̂Θ (θ) =
n

∑
j=1

1
n

χ(−∞,θ ](θ̆ j) (2.29)

where the extension of the characteristic function to vector instances entails χ(−∞,θ ](θ̆ j)=

1 if −∞ < θ̆ ji ≤ θi, for each i-th component fo the parameter vector.

2.4 Artificial Neural Network

2.4.1 Basic definitions

Actually the concept of Artificial Neural Network is widely known, thus only for com-
pleteness we will shortly give just few definitions about the the basic notions concerning
artificial neural networks.

Definition 2.22. (Neural Network). An Artificial Neural Network is a graph consti-
tuted of ν processing units (PE) connected by oriented arcs 4. The graph is not neces-
sarily fully connected, in the sense that it may lack a connection between some pairs of
PE’s. The PE’s may be either symbolic or sub-symbolic. In case both kind of processors
appear in the network, we generally speak of hybrid neural networks.

Definition 2.23. (Network state). The state τ = (τ1, . . . ,τν) is the current ordered set
of messages in output of each processor, where each message τi takes values in a set
T⊆R. We introduce the order to identify the messages of the single PE’s, thus we refer
to a state vector. If we want to specify a time dependence we will denote the state with
τ(t), and a sub-state related to PEs’ location L (capital letter) with τL.

Definition 2.24. (Free parameters). The free parameters (w,θ) consist of the weight
vector w = (w11, . . . ,wi j, . . . ,wνν) ∈DW where wi j is associated to the connection from
processor j to processor i (wi j = 0 if no connection exists from j to i), and the inner
parameters vector θ = (θ1, . . . ,θν ), where θi is associated to processor i. Depending on
its use, typically according to (2.30) later on, when no ambiguity occurs we will refer
to the sole vector w adding a dummy PE piping a signal constantly equal to 1 to the i-th
PE through a connection with weight set to θi.

Definition 2.25. (Activation function). The activation function vector is the ordered set
of functions hi : Tν 7→ T computing a new state τi = hi(τ) of the i-th PE in function of
the current state vector (as a component of the hypothesis h computed by the whole
network).

4 Thus the arc connecting PE i to PE j is different from the one connecting PE j to PE i.
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Definition 2.26. (Activation mode). Activation mode is the synchronization order of
the single processors. We may distinguish for instance between the following activation
modes:

1. parallel: the PE updates its state at the same time as the other PE’s synchronized with
it.

2. asynchronous: the PE updates its state according to an inner clock.
3. random: the ith PE tosses a die with as many faces as there are randomly activated

processors in the network. It renews its state when the die outcomes exactly i).
4. delayed: the PE updates its state a given time after the updating of the afferent PE’s.

In particular, instantaneous mode means a delay equal to 0.

In the case of sub-symbolic processors (the sole processors considered in this paper)
the notation specifies as follows:

• PE→ neuron;
• arc→ connection;
• free parameters: wi j → connection weight, θi → threshold;
• activation function: hi(τ) = f (neti(τ)), where

neti(τ) =
ν

∑
j=1

wi jτ j +θi (2.30)

is the net input to PE i. Hiding the neuron index, the most common expressions of f
are the following:

1. the simplest one is a linear function:

f (net) = βnet (2.31)

with β ∈ R;
2. the primary nonlinear one is the Heaviside function:

f (net) =

{
1 if net≥ 0
0 otherwise

(2.32)

which smooths in two directions described in the following two points;
3. the primary probabilistic one is described as follows:

P( f (net) = 1) =
1

1+ e−βnet ; P( f (net) = 0) =
1

1+ eβnet (2.33)
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with β ∈ R+, which smooths function (2.32) in terms of random events, coincid-
ing with the original function for β =+∞ 5. Hence the meaning of β is the inverse
of a temperature θ of a thermodynamic process determining the value of τ;

4. the primary continuous one is the so-called sigmoid function:

f (net) =
1

1+ e−βnet (2.34)

with an analogous smoothing effect, f (net) in (2.34) being the expected value of
f (net) in (2.33).

If the connections’ grid does not contain a loop the graph shows an orientation. Thus
we may interpret the nodes without incoming arcs as input nodes and those without out-
coming nodes as output nodes. We fix the state τ I = xI of the former, then wait for all
the nodes to have updated their states after this external solicitation (we may figure this
as a propagation of the input through the network). We consider the states of the output
nodes as the output τO of the function h computed by the network. Training a network
is the most common way of fixing their connection weights. We fix a cost function E to
penalize the difference between τO and the value xO you expect in correspondence of
τ I , sum the values of E instantiated on a series of pairs (xI ,xO) constituting the training
set, and look for the w minimizing this sum. Here below we consider two instances of
this procedure: i. the archetype of these algorithms aimed to train a single neuron, and ii.
the back-propagation algorithm that we will use, with some changes and improvements,
in this thesis work.

2.4.2 Perceptron

The simplest neural network is called perceptron, it computes an indicator function la-
beling with 1 the points x = τ I having a positive distance d(x) from the hyperplane h
described by a constant θ0 and coefficients w0 j (being 0 the index of the output neuron)
– let us call them positive points – and with 0 those having negative distance – negative
points. Indeed

net(τ I) = h(x) =
νI

∑
j=1

w0 jx j +θ0 and d(x) =
h(x)√

∑
νi
j=1 w2

0 j

(2.35)

5 Hence P( f (net) = 1)+P( f (net) = 0) = 1.
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The following theorem states that we can easily adapt the perceptron’s free parameters
to divide the unitary hypercube according to any hyperplane. More precisely, identi-
fying concepts and hypotheses with both the indicator functions and the underlying
hyperplanes, if a hyperplane c divides a set of points x into positive points and negative
points but we have no record of it apart from the labels f (c(x)) of the points, with little
computational effort we can build another hyperplane h equivalent to the former.

Namely, for whatever starting values we give the parameters, we must change these
values according to the following simple rule:

1. pick a point x in the sample and compute a label f (h(x)) for it according to the
current values of the free parameters, where σ is computed according to (2.32).

2. If it coincides with the original label f (c(x)) then do nothing.
3. Otherwise, if f (c(x)) = 1 and f (h(x)) = 0 (denoting too low an h(x)) increase w,

vice versa decrease it.

If for the sake of uniformity we include θ 0 in the vector w (by adding a dummy input
neuron piping a signal equal to 1 through a connection with weight exactly equal to
θ0), we obtain these changes on w simply by adding or subtracting the augmented input
(x,1) to/from the augmented parameter (w0,θ0).

2.4.3 Gradient descent minimization method

If we have that the cost is a continuous function s(w), then we know its minima lie in
points where the first derivative with respect to every wi j is 0. This occurs for instance
in a fully connected network of neurons activated as in (2.34). Then, like in many NP-
hard search problems, the algorithm for finding an exact solution is well defined, but its
implementation might prove computationally unfeasible, for example even only the set
of ν2 equations 

∂ s(w)

∂w11
= 0

...
∂ s(w)

∂wνν

= 0

(2.36)

is generally hard to solve analytically. Moreover, to distinguish minima from maxima,
more complex conditions must be checked on the second derivatives. Therefore we gen-
erally look for incremental methods, where we move along directions in the parameter
space where the derivatives of s do not increase, thus denoting a local descent of it.

This strategy has many drawbacks. The first is represented by the local minima traps.
Another is that we have no guarantee in general about the running time even to reach so
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poor a minimum. All depends on the length of the step we take in the descent direction:
if it is too long, it could trespass the minimum; if too short, it could require an unsustain-
able time to get close to minimum. And then we can invent a lot of degenerate minimum
situations where the point in the parameter space runs infinitely along a loop of two or
more points, etc. Despite all these considerations, the gradient descent strategy is not
only the one most commonly used for training a neural network, but the most successful
one as well. The fact is that, in the absence of exploitable formal knowledge on the cost
landscape, the more elementary the method the more robust it is.

2.4.4 The back-propagation algorithm

The most popular learning scheme in this framework is the so called Back-Propagation
algorithm [116] that one may find in many mathematical software libraries and can
easily download from the web as well. In its basic version, the method refers to a cost
function represented by the quadratic error:

E =
m

∑
i=1

l2(τO
i −xO

i ) (2.37)

where l2 is the quadratic norm, and a neural network with a multilayer layout (usually
referred to multilayer perceptron, MLP, for short) consisting of a set of ordered layers.
The neurons of each layer are exclusively connected to those of the subsequent one,
hence without any back or self-connection, in the absence of connections between neu-
rons of the same layer. At the bottom we have the input layer whose neurons have states
set to external values coding τ I . These values are piped up through the various layers up
to the last one (say R-th) coding the function output. At each cross of a neuron the signal
is updated according to the activation rules so that the output neurons code a signal that
we compare with the xO associated to xI in the training set and the quadratic difference
between them is added in (2.37). As mentioned before, the learning method consists in
the steepest descent along the E landscape in the parameter space. The basic ingredient
is the computation of the derivatives of E w.r.t. the single parameters wi js and θis. This
is obtained through the derivative chain rule rising a back-propagation of the error terms
from output to input layer through the intermediate layers, denoted as hidden layers, that
gives the name to the corresponding algorithms’ family. Namely, the recurrent formulas
read
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∂E(w)

∂w jk
= δ jτk, with (2.38)

δ j =

{
∂E

∂h(x) j
f ′(net j) if j denotes an output neuron

f ′(net j)∑
ν
h=1 δhwh j if j denotes a hidden neuron

Hence we have a forward phase, where the input τ I
k is flown till the output layer

through (2.30) and (2.33) to obtain τO
k and the corresponding cost ek = (τO

k − xO
k )

2 on
the k-th output neuron, and a backward phase where ek is piped back to the input layer
trough (2.37) and (2.38).

There are many ways to use the gradient. The most elementary is to make a step in the
parameters space exactly in the direction of the E(w) steepest descent. This corresponds
to updating each parameter according to

wi j = wi j−η
∂E(w)

∂wi j
(2.39)

It represents an algorithmic counterpart of a local independence assumption of the single
weight influences. The step width η is denoted learning rate. New wi j give rise to new
costs ek and a new run of the bcak-propagation algorithm.

2.5 BICA: Boolean Independent Component Analysis

BICA is a feature extraction procedure oriented to optimize the performances of a clas-
sification algorithm. It is framed in the Algorithmic Inference approach and takes its
rationale from entropic results.

2.5.1 A peculiar clustering framework

Given a set of m objects that we identify through a set of vectorial patterns ym =
{y1, . . . ,ym}, the clustering problem is to group them into n clusters {d1, . . . ,dn} in a
suitable way. We denote by di the i-th class, by ∆i the decision of attributing a generic
pattern y to it, and by l(∆i,d j) the comparative cost (loss function) of attributing y to
di in place of d j. In this framework, we identify the problem of establishing clusters
of patterns with that of maximizing the cost C of an incorrect attribution of patterns
to clusters, i.e. of misclassification once we decide to actually use clusters as classes.
Hence, we want to partition the pattern space Y into n subsets through a decision rule



26 2 Mathematical tools

∆(y) : Y→{d1, . . . ,dn} such that

∆ = argmax
∆̃

C(∆̃) = argmax
∆̃

{
∑

y∈ym

n

∑
j=1

l(∆̃(y),d j)

}
(2.40)

whose solution depends on the shape of l, i.e. we want to sharply discriminate the clus-
ter on the basis of the loss function. For instance, for l identified with the Euclidean
distance, i.e. with the l2 metric

l(∆(y),d j) =

{
0 if ∆(y) = d j

(y−µd j)
T (y−µd j) otherwise

(2.41)

where µd j plays the role of representative of class d j, then the solution is

∆(y) = argmin
j

{
(y−µd j)

T (y−µd j)
}

(2.42)

µd j =
1
ν j

ν j

∑
i=1

y ji (2.43)

with ν j the number of objects y ji with index i attributed to the j-th cluster. 6

2.5.2 The representation problem

Denoting by H(X) and H(X |Z) the entropy of X and the conditional entropy of X given
Z respectively, for Y normally distributed around the representative of its cluster the
above rule consists in the minimization of conditional entropy H(Y|D) of the data given
the distribution of the clusters, rather, of its sample estimate. Indeed, by definition

H(Y|D) =−∑
di

pdiH(Y|di) (2.44)

where pdi is the probability measure of cluster di. With this notation

6 Note that rule (2.42) and templates (2.43) come form the conventional Bayesian approach to cluster-
ing [41] as well. Our enunciation of the problem however does not requires the existence a priori of
true classes of data. Rather, they come from the use as a suitable way of organizing data, in the thread
of Algorithmic Inference.
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fY(y) =
n

∑
i=1

pdi fY|D=d j(y) =
n

∑
i=1

pdi

1
(2π)n/2 exp [−(y−µdi)

T (y−µdi)] (2.45)

Hence
H(Y|D) = ∑

di

pdiE[(Y−µdi)
T (Y−µdi)]+a (2.46)

where a is a constant and E denotes the expectation operator. By denoting with I(X ,Y )
the mutual information between X and Y and re-reading in true entropic terms our clus-
tering strategy, the general goal of any useful mapping from Y to D is to ensure a high
mutual information [16]. Now, in the case where the mapping realizes a partition of Y
range, hence in the case of univocal mapping, we have the following expression of the
mutual information.

Lemma 2.2. For any univocal mapping from Y to D,

H(Y|D) = H(Y)−H(D) (2.47)

I(Y,D) = H(D) (2.48)

Claim (2.48) says that a clustering so more preserves information of patterns the more
the entropy of clusters is higher, i.e. the more they are detailed. Claim (2.47) denotes the
gap between entropy of patterns and entropy of clusters that is managed by the clustering
algorithm. As H(Y) is not up to us, the algorithm may decide to group the patterns so
as to increase H(D), in line with the claim (2.48) suggestion.

In a case where the labels of the patterns are given and no other information about
them is granted, we are harmless with respect to the H(D) management. Rather, our
problem is to find an algorithm that reproduces the given labeling. If the task is hard,
we may try to split it into two steps: i) improve the pattern representation so that their
label may be more understandable, and ii) find a clustering algorithm with this new
input. This corresponds to dividing the gap between H(Y) and H(D) in two steps and,
ultimately, looking for an encoding Z of Y minimizing H(Z|D), i.e. the residual gap
H(Z)−H(D). We have two constraints to this minimization. One is to maintain the
partitioning property of the final mapping. Hence

Definition 2.27. Consider a set A of Y patterns, each affected by a label d ∈ D. We will
say that an encoding Z of Y is correct if it never happens that two patterns of A with
different labels receive the same codeword 7.

The second constraint is strategic: as we do not know the algorithm we will invent to
cluster the patterns, we try to preserve almost all information that could be useful to a
profitable running of the algorithm.

7 of course we will check this property on the available patterns, with no guarantee as to any future
pattern we will meet.
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This goal is somehow fuzzy, since vice versa our final goal is to reduce the mean
information of the patterns exactly to its lower bound H(D). A property that is opera-
tionally proof against the mentioned fuzziness is the independence of the components
of Z. The following claim is connected to a special way of minimizing H(Z). This is
why we speak of operationally proofness. It is however a very natural way in absence of
any further constraint on Z.

Lemma 2.3. Consider a set A of Y patterns and a probability distribution π over the
patterns. Assume that for any mapping from Y to Z entailing an entropy H(Z) there
exists a mapping from Y to Z′ with H(Z′) = H(Z) such that Z′ are independent. Then
the function

H̃(Z) =−∑
k

pk ln pk−∑
k
(1− pk) ln(1− pk) (2.49)

with k spanning the image of A, has minima over the above mappings in Zs having
independent components.

2.5.3 The Boolean option

Finally, with the aim of lowering the vagueness of our entropic goal, we want to have
Boolean Z, as a way of forcing some reduction of data redundancy and information as
well, in the direction of taking a discrete decision, ultimately, the clustering. This pro-
duces the side benefit of a concise description of both patterns and clustering formulas
as a nice premise for a semantic readability of them. To this end, and limiting ourselves
to a binary partition of the patterns, we assume as cost function of the single pattern s
in our coding problem the following Schur-concave function [72] which we call edge
pulling function:

Es = ln

(
n

∏
k=1

z
−zs,k
s,k (1− zs,k)

−(1−zs,k)

)
(2.50)

where zs,k is the k-th components of the encoding of the pattern s. In line with the
general capability of Schur-concave functions of leading to independent component lo-
cated on the boundaries of their domain [113], we may prove that minimizing over the
possible encodings the sum H̆ of the logarithm of Es over all patterns leads us to a rep-
resentation of the patterns that is binary and with independent bits, which we call BICA
representation.

Lemma 2.4. Any Z mapping that is correct according to Definition 2.27 and meets as-
sumptions in Lemma 2.3 while minimizing the edge pulling function (2.50) is expected
to produce Boolean independent components minimizing (2.44) as well.
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Fig. 2.1 Graph of the function Es with n = 2.





Chapter 3
Capturing aggregation dynamics in space and time

We introduce our mobility model using a social community as a leading scenario. This
allows us to focus on the agent intentionality as the key feature differentiating it from
a particle in a gas boule. The latter is the archetype of total random community of non
intelligent agents whose interaction is just uniformly ruled by the rigid body elastic col-
lision laws. On the contrary, a social community is a crasis between social networks and
virtual communities, hence a set of persons grouped together in a community because
they share a common interest (the social core of the community) and need a communi-
cation network to cultivate this interest (the structural counterpart) [43].

For the members of this community we introduce a wait and chase scheme modeling
their inter-contact times starting from the metaphor of a duel between dodgem cars.
This calls for a mobility process that is stochastic but with memory at the same time,
with the former component subtended by Brownian motions and the latter by the chaser
capability of maintaining the correct angle of the line connecting him to the target. In this
way, we add a further mobility model to the vast literature on the field, giving rise to a
distribution law of the inter-contact times merging features of both negative exponential
and Pareto distribution laws. Of this law we:

1. discuss the probabilistic features,
2. isolate a few free parameters and related almost sufficient statistics,
3. estimate them in order to fit experimental data,
4. provide a constructive model for simulating data,
5. regress statistical parameters into mobility physical parameters,
6. contrast results with the state-of-the-art models in the literature.

The experimental data are partly produced by ourselves through expressly featured
devices within an accurate experimental campaign, and partly drawn both from spe-
cific benchmarks in the field of opportunistic networks [121], and from wider scope

31
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databases recently collected through GPS devices within members of more or less ex-
plicit location-based social communities [112, 103].

3.1 The dynamics of a social community

Social community is the common attractor of the evolutionary trajectory of many re-
cent ICT (Information Communication Technology) ventures, from pervasive comput-
ing [59] to ensembles of agents [136], collaborative computational intelligence [5],
emerging functionalities [10], and so on. While from a static perspective, the main em-
phasis in social networks, such as LinkedIn [81] or Facebook [49], is placed on the
relationship graph between the agents (the role assignment problem [79]), as a result of
sophisticated studies (in terms, for instance, of linguistic/Bayesian analysis of direction-
sensitive messages sent between agents [89], statistical mechanics [4], or solution of
ecological graph coloring problems [19]), the time variability of these graphs is com-
monly dealt with in terms Dynamic Network Analysis (DNA) by combining previous
approaches with multi-agent simulation techniques [27], or even through more abstract
dynamical structures such as in [83].

However, new paradigms connected with the empowered telecommunication tech-
nologies, such as the mobile wireless ad hoc network (MANET) [101], stress a richer
management of the communications, now under the decision of the agents, which bring
back the connection timing, and the updating timing consequently, at a meso-scale that
cannot be ignored [54]. It is a different approach to the network evolution, for it is rooted
on the individual behavior of the single communicating members having the network as
a corollary rather than the reference gear of the dynamics. In this, we expect the re-
sults of the two complementary approaches to be suitably integrated into various DNA
branches [23]. Epidemic processes [22] and opportunistic networks [129, 94] are two
instances of this focus on the dynamics of a social community where the scientific com-
munity has focused research efforts in recent years. The main ingredients are: a) the
fact that the members of the community travel inside it; b) they have a limited infection
raw, so that a message must rely on many hops from one member to another in order
to cross the entire community or even a subset of it; and c) each member may manage
the message transmission by himself – for instance to decide whether or not to receive
a message, whether or not to forward it to another member.

The presented scenario produces a new form of proactive connectionist system whose
primary engine of information exchange lies in the mobility habits of the agents. We
keep our focus on the connection timing, pursuing the dry technical task of understand-
ing the intercontact times distribution between members of the same community [70]
– i.e. the distribution law of the random variable reckoning the elapsed times between
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contacts stated within the community. The sole assumption we make is that if a member
has something to transmit to others, he looks for an individual within the community
who is reachable and chases him until he succeeds in transferring the message. This is
the atomic motion of the community, consisting of a wait phase (until the member has
something to transmit and someone to whom transmit it) and the above chase phase.
Plugging these atomic motions into a stationary dynamics, we deduce the inter-contact
times distribution law. This distribution has been investigated for about ten years in the
frame of opportunistic networks, but interest in it dates much further back in analogous
frames, such as animal foraging patterns [106] or human mobility at the basis of infec-
tious diseases [32]. With these patterns we move from Brownian motion [46] – which
is the favorite framework in physics to study inanimate particles ensemble dynamics –
to Lévy flights [24, 112] – which denote a definite bias of animal patterns toward food
locations. We identify this bias with the intentionality of the animal, say of the agent
in general, and give it a constructive model as a modification of the original Brownian
motion. As Palm probability theory explains [14], this leads to a timing of events that
may diverge from the negative exponential distribution, still allowing for an equilibrium
distribution of the mobility process, which leads to the family of Pareto distribution
laws.

3.2 Processes with memory

In very essential terms, we speak of memory if we have a direction along which to order
the events. Now, for any ordered variable T , such that events on their sorted values are
of interest to us, the following master equation holds

P(T > t|T > k) = P(T > q|T > k)P(T > t|T > q) ,∀k ≤ q ≤ t (3.1)

It comes simply from the fact that in the expression of the conditional probability

P(T > t|T > k) =
P(T > t)
P(T > k)

=
g(t)
g(k)

(3.2)

we may separate the conditioned variables from the conditioning ones. While (3.1) de-
notes the time splitting in the fashion of the Chapmann-Kolmogorov theorem [74] as a
general property of any sequence of data, equation (3.2) highlights that events (T > t)
and (T > k) are by definition never independent. What is generally the target of the
memory divide in random processes is the time t− k elapsing between two events. In
this perspective, the template of the memoryless phenomena descriptor is the (homoge-
neous) Poisson process, whose basic property is P(T > t) = P(T > q)P(T > t− q), if
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t > q. It says that if a random event (for instance a hard disk failure) did not occur before
time q and we ask what will happen within time t, we must forget this former situation
(it means that the disk did not become either more robust or weaker), since your our
question concerns whether or not the event will occur at a time t − q. Hence our true
variable is T = T − q, and the above property is satisfied by the negative exponential
distribution law with

P(T > t) = 1−FT (t) = e−λ t (3.3)

for constant λ , since with this law (3.1) reads

e−λ (t−k) = e−λ (q−k)e−λ (t−q) (3.4)

and the property that g(t)
g(k) in (3.2) equals g(t − k) is owned only by the exponential

function.
On the contrary, we introduce a memory of the past (q-long) if we cannot separate

T − q from q. Here we consider very simple cases where this occurs because the time
dependence is of the form T= (T/q)β . The simplest solution of (3.1) is represented by

P(T > t|T > k) =
( t

k

)−α

(3.5)

so that the master equation reads( t
k

)−α

=

(
t
q

)−α (q
k

)−α

(3.6)

Note that this distribution, commonly called Pareto distribution [102], is defined only for
t ≥ k, with k > 0 denoting the true time origin, where α identifies the distribution with
the scale of its logarithm (more details will be presented in Subsection 3.2.1). The main
difference w.r.t. the negative exponential distribution is highlighted by the LogLogPlots
of FT in Fig. 3.1: a line segment with a Pareto curve (see picture (a)) in contrast to a
more than linearly decreasing curve with the exponential distribution (Fig. 3.1(b)).

The difference between the graphs in Fig. 3.1 shows that, for a same mean value
of the variable, we may expect this occurrence in a more delayed time if we maintain
memory of it as a target to be achieved, rather than if we rely on chance.

Let us introduce a local time t̃ as a companion of the universal time t measured by
any standard clock system. Locality stands for the specificity of the time features that are
relevant for a given phenomenon. In the exponential model the two time scales coincide
(with the sole exception of the two time origins). In the Pareto model the local time is
measured in multiples ( t

k in (3.5)) of the last time you know the questioned event has
not yet occurred. Moreover, you pass from a Pareto T to an exponential variable Θ just
by reckoning the time in logarithmic scale rather than linear scale, which means that
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Fig. 3.1 CCDF LogLogPlot when T follows: (a) a Pareto law with α = 1.1 and k = 1; (b) a negative
exponential law with λ = 0.09. Parameters were chosen to have the same mean.

Θ = logT , so that

P(Θ > θ) = P(T > eθ ) =

(
eθ

k

)−α

= e−α(θ−θ0) (3.7)

with θ0 = logk, inviting us to read θ in terms of the logarithm of a corresponding linear
time t. Hence the homogeneity of the process, in the sense of a constant rate with time
in (3.4), is just a matter of considering a suitable time metering. In addition, on the one
hand the time homogeneity of exponential distribution gives rise to a stationary counting
process ruled by a stationary Poisson distribution.

3.2.1 The Pareto family

The Pareto distribution is named after an Italian-born Swiss professor of economics,
Vilfredo Pareto (1848-1923). Pareto’s law, as formulated by him (1897), dealt with the
distribution of income over a population and can be stated as follows:

N = kx−α (3.8)

where N is the number of persons having income greater that x, and k,α are param-
eters: α is the shape parameter and k is the scale parameter. During years the Pareto
distribution has maintained its original form

FX (x) = P(X ≥ x) =
(

k
x

)α

, k > 0,α > 0,x≥ k (3.9)
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where FX (x) is the complementary cumulative distribution function and represents the
probability that the income is equal to greater than x and k represents some minimum
income. Then we can write the CDF of X as

FX (x) = 1−
(

k
x

)α

, k > 0,α > 0,x≥ k (3.10)

and the PDF
fX (x) = αkα x−(α+1), k > 0,α > 0,x≥ k (3.11)

The (3.10) is known as Pareto distribution of the first kind. Two other forms of this dis-
tributions were proposed by Pareto. The first one, now referred to as Pareto distribution
of the second kind (also called Lomax distribution) has the form

FX (x) = 1−
(

C
(x+C)

)α

, x≥ 0 (3.12)

This was used by Lomax in 1954 for the analysis of the business failure data. The Pareto
of type II in its standard form has C = 1 so that its PDF reads:

fX (x) = α(1+ x)−α−1, x > 0,α > 0 (3.13)

and the survival function is

FX (x) = (1+ x)−α , x > 0,α > 0 (3.14)

The third distribution proposed by Pareto - the Pareto distribution of the third kind - has
the CDF:

FX (x) = 1− Ce−bx

(x+C)α
, x > 0 (3.15)

The original form and its variants found many rationales during the years. For Instance,
in his work, Harris [60] has pointed out that a mixture of exponential distributions, with
parameter θ−1 having a Gamma distribution, and with origin at zero, gives rise to a
Pareto distribution. Indeed if

P(X ≤ x) = 1− e−x/θ (3.16)

with µ = θ−1, then
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P(X ≤ x) =
1

β αΓ (α)

∫
∞

0
tα−1e−t/β (1− e−tx)dt

= 1− 1
β αΓ (α)

∫
∞

0
tα−1e−t(x+β−1)dt

= 1− (βx+1)−α (3.17)

More in general the Pareto family is a wide scope family that proves capable of describ-
ing many phenomena in the field of social communities, from various internet commu-
nication aspects (such as node outdegrees [64], byte flow per request [135], number of
crawled links [25] and so on) to traditional communication volumes in terms of tele-
phone calls [1, 2], physical travels of community members [125], or citations of scien-
tific papers [39], etc., taking theoretical roots on various paradigms, such as rich gets
richer i.e. preferential attachment [137, 84], transmission entropy minimization [86],
log-returns [85, 70], phase transitions and self-organized criticality [40], etc. For short,
in our perspective, facing two random times, distributed respectively according to a neg-
ative exponential and to a Pareto distribution, if they have the same average, the latter
has a longer tail denoting the possibility of having a contact even after a long period. We
may interpret this persistency as an expression of the agent intentionality, in turn viewed
as a consequence of the fact that the underlying random process has a memory. Said in
other words, it is easy to recognize that we move from exponentially distributed times –
denoting intervals between sorted points uniformly drawn in a large segment – to Pareto
times just by increasing at any exponential rate the scale of these intervals, like in (3.7).
On the one hand this time expansion captures the heavy tailed feature of mobility pro-
cesses that run faster than diffusive ones [90] (often associated to Lévy flights [123]).
On the other hand, it denotes in our vision an intrinsic memory of these processes.

While in the rest of this thesis we will concentrate on the Pareto type II distribution,
in the next section we will investigate from an analytical perspective the above time
stretching which characterize the Pareto type I distribution.

3.3 Reasoning about scalable processes

Until now we considered the processes with and without memory as separated and very
different entities. Actually they are, but we are interested in understanding more about
their connection and more precisely their generative procedure, in the aim of finding
relevant statistics for a deep inference of their sampling mechanisms.
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The generative model

Let (0,a) be a segment on the real axis u and {u1, . . . ,um} the sorted coordinates of
points uniformly randomly shot on it. The random variable Ti/a = (Ui+1 −Ui)/a is
distributed as a Beta distribution with parameters α = 1,β = m. In the limit a/m→ 0,
Ti follows a negative exponential distribution law. Namely

fTi(t) = λe−λ t I[0,∞); ∀i (3.18)

with λ = m/a. Note that:

• under the above limit hypothesis, we may reformulate the joint distribution of
(Ui,Ui+1) as follows:

fUi,Ui+1(ui,ui+1) = fU,T (ui,ui+1−ui) = fU (ui) fT (ui+1−ui) (3.19)

• for Y = exp(T ) we have

FY (t) = P(T < log t) = 1− exp(−λ log t) = 1−
(

1
t

)λ

(3.20)

Hence we pass from a process without memory whose times are distributed according
to a negative exponential distribution of parameter λ to one with memory whose
times are distributed according to a Pareto distribution of parameters 1,λ just after a
change of scales.

It is a notably change of scale the one considered in the previous point, which largely
extend the time elapsed between two events of our point process. We will investigate on
it in the next subsection in order to capture its property and the one of similar processes.

Sampling mechanism

As mentioned in Section 2.3.1 the seed of a sampling mechanism may be anyone, pro-
vided its distribution law is completely known. Here we focus on Ui+1−Ui (and possibly
Ui as well) as the seed of the random variable Ti according to various explaining func-
tions. Let us start with the following equalities which partly hold only approximately
for small ui+1−ui.
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(ui+1−ui)≈ exp(ui+1−ui)−1 =

exp(ui+1−ui)− exp(0) (3.21)

(ui+1−ui)≈ exp
(∫ ui+1

s=ui

ds
)
−1 =

∫ ui+1−ui

s=0
exp(s)ds (3.22)

ti ≈
nti

∏
i=1

exp(∆s)−1≈
nti

∑
s=0

ns

∏
i=1

exp(∆s) (3.23)

The former one roots on the first terms of the Taylor expansion of ex, namely:

ex ≈ 1+ x (3.24)

The second line translates these results in terms of local operations done on the infinites-
imal segments ds joining ui to ui+1. The latter rewrite them in terms of finite differences
∆s.
Remarks:

1. Equation (3.23) highlights a non uniform process as the basis of the random process
filling the segment (ui,ui+1) of terms that are progressively decreasing. This is an
interpretative key of our sampling mechanism.

2. Equation (3.24) denotes that if T follows and exponential distribution, T +1 follows
a Pareto distribution of parameters 1,λ . Actually T +1≈ exp(T ) , as seen in (3.20).
The approximation holds for a/m→ 0. But the shape of the distribution is not depen-
dent on a liner scale, so that this remains true for any a provided we adopt the correct
parameters of the Pareto distribution.

3. With a small linear scale factor c, such that c(Ui+1−Ui)� 1 so that (3.24) still holds,
we have :

ct ≈ exp[ct]−1 = exp
(∫ ui+1

s=ui

c ds
)
−1 =

c
∫ ui+1−ui

s=0
exp(cs)ds (3.25)

ti =
nti

∏
i=1

exp(c∆s)−1 =

nti

∑
s=0

ns

∏
i=1

exp(c∆s) (3.26)

Since c∆s� 1, we remain with an exponential distribution, namely:

FT (t) = 1− exp
(ca

m
t
)

(3.27)
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4. If we increase c in (3.25), so that c∆s > 1, or even we adopt a non linear scale, i.e with
a scale factor c(s) increasing with s, then (3.27) does not hold longer. An interesting
family of c(s) is represented by c(s) = log[h(s)] with h(s) moderately increasing with
s. Reasoning with finite elements we have:

ti =
nti

∏
i=1

h(s)∆s −1 =

nti

∑
s=0

ns

∏
i=1

h(s)∆s (3.28)

And passing to the infinitesimal calculus

exp
(∫ ui+1

s=ui

log(h(s)) ds
)
−1 =

∫ ui+1−ui

s=0
exp(s log(h(s))) ds (3.29)

So that, in particular:

• with h(s) = s/ log(s) – rather with its extension

h(s) =

{
1 if s < e

log
(

s
log(s)

)
otherwise

it results:
– the sampling mechanism

ti = exp
(∫ ui+1

s=ui

log(h(s)) ds
)
−1 (3.30)

does no longer generates a negative exponential variable. Meanwhile,
– the sampling mechanism

ti = exp
(∫ ui+1

s=ui

log(h(s)) ds
)

(3.31)

generates a Pareto variable.
• Idem for large h(s) = c, for instance with c = 10.
• With still more fast increasing functions, for instance h(t) = t0.5, both sampling

mechanisms give rise to a Pareto distribution, denoting that the offset−1 becomes
inessential.
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3.3.1 The sampling mechanism benefits

On the one side, we easily estimate the parameters of a Pareto distribution on the basis of
the joint sufficient statistics mini ti and ∑i log(ti). A more challenging task is to entering
the sampling mechanism in order to estimate for instance the parameters (c,α) as well
of h(s) = c and h(s) = sα , respectively. The aim is to get these estimates on the basis of
simple statistics again, possibly regardless of the sequence of observed times. Actually,
exploiting the Palm calculus we can change the reference frame of t from the generic ui
to the fixed origin 0:

Proposition 3.1. E [W (t)] = E0
[∫ T

s=0 W (s)ds
]

when t is computed from the origin. The

notation on left hand side of the equation represents the mean E[W (s)] cumulated on all
the trajectories of values of Ui < s <Ui+1, averaged on T and normalized by 1/λ .

The stationarity requires W (t) =W (t−ui), in this way we can figure all traits (ui,ui+1)
to be dragged back to 0 so becoming (0,ui+1−ui). This is both the rational of the above
integral and the way of computing E [W (t)] = E [W (0)] from a sample coming from the
above mechanism. Thanks to the ergodicity of the process we can

• either integrate W (t) along the whole segment (0,a) and divide by a,
• or integrate W (t) separately along the different traits (ui,ui+1), then take the sample

mean of these values, and finally divide by the sample mean of the traits length.

This statement finds a companion on the following equality that is true for any c

exp
(∫ ui+1

s=ui

c ds
)
−1 = c

∫ ui+1−ui

s=0
exp(c s) ds (3.32)

We look for analogous formulas also for non constant h(s). For instance, we are looking
for β mediating the h(s) values, such that:

ti = exp
(∫ ui+1

s=ui

log(h(s))ds/h(ui)

)
−1≈ α

∫ ui+1−ui

s=0
exp(s log(h(s))α)ds (3.33)

In this way we try to pair a non homogeneously scaled process (we normalize the inte-
gral in the exponent of the first member by a function of one of the extremes), on the
one side, with a function of the sole observed times, on the other, in view of discovering
parameters of the original process.

The matter of this section is still an open problem. Rather, in the next section we
work with a specific generative model which proved very suitable in many operational
fields.
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Fig. 3.2 Trajectories described by: (a) Brownian motion, (b) Lévy flights, and (c) the proposed mobility
model.

3.4 A Model to maintain memory in a time process

Brownian motion has for long time been the favorite process to describe ensembles of
particles within a system in equilibrium [93], for instance a gas in a cylinder, or even
a crowd at an expo. In the second case we consider people behaving no differently
from inanimate particles: each individual moves along a series of steps, giving each of
them a constant size and no preference re the direction options, so that the symmetry
of the starting scenario is maintained during its evolution (see Fig. 3.2(a)). On the con-
trary, a distinguishing feature of animate agents within a well structured ensemble –
such as a social community – is the causality of their actions, say their intentionality. In
turn, intentionality introduces local asymmetries in the motion that have been variously
studied. Following [71], we may extend the reproducibility property of the Brownian
motion – so that, in analogy with fractal systems [87], the large scale dynamics repro-
duces the low scale one, in that both are ruled by Gaussian distribution laws – using
Lévy flights [56] in place of random walks [68] as elementary traits of the motion. The
theoretical framework of this motion is described in Chapter 2, Section 2.1. A typical
picture of a sequence of Lévy flights is shown in Fig. 3.2(b). It denotes trajectories that
may describe the foraging patterns of animals such as monkeys [106], albatrosses [44],
and targeted human walking as well [112]: namely, local stays in place (to eat and rest)
plus sudden jumps here and there (to chase the food). The drawback of this dynamics is
its high dispersion, so that the central limit theorem does not hold in its classical form
(hence we do not come to a Gaussian distribution in spite of the fact that we are tracking
the sum of equally distributed movements). Rather, while the scaling of the Brownian
motion is

√
t (since the variance is proportional to the elapsed time t), Lévy flights (with

concentration parameter α < 2) have no scaling factor with time as a consequence that
the single step has no finite variance [30].
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Fig. 3.3 Joint traces of two cars (plain and dashed curves respectively) when: (a) both move according
to a Brownian motion behavior; (b) the former moves only in one quadrant (absolute value of the
Brownian motion components) from a trigger time on; and (c) an oracle rotates this trajectory toward
the other car with some approximation (quantified by the ray of a proximity circle).

Here we present a model having the same two-phase pattern as animal foraging, but
with a greater prominence of local stays in place and therefore a less dispersed general
behavior (see Fig. 3.2(c)), at some expense of the reproducibility property. To introduce
it, think of the dodgem cars at an amusement park.

Assume you are playing with dodgem cars. You drive around until, from time to
time, you decide to bang into a given car which is unaware of your intent. For the sake
of simplicity, we may assume the trajectory of each car to be a plane Brownian motion
before the chase triggering. Thus, with the reference frame in Fig. 3.3(a), indexing with
i = 1,2 the cars whose stories we are following, we have

Xi(t)∼N0,
√

t Yi(t)∼N0,
√

t (3.34)

where Nµ,σ is a Gaussian variable of mean µ and standard deviation σ . Then you,
sitting in the first car, decide at time w to reach and crash into the second car. The ques-
tioned variable records the instant T > w when you succeed. In the case study, where
cars are points in the plane, in order to identify this instant we must specify: i) an oper-
ational definition of the cars’ clash since the probability of exact matching is 0, and ii)
the symmetry break introduced by the chase intention. The chase effectiveness depends
on the ability to orient your motion in the direction of the target, which corresponds
to converting a part of the motion along the cars’ connecting line from symmetric to
oriented moves. Mathematically, orientation corresponds to taking the absolute value
of the elementary steps in that direction, so as to work with Chi distributed addends in
place of Gaussian ones (see Fig. 3.3(b)).
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In order to overcome analytical complications and fulfill point i) as well, we propose
this simple scheme. As the difference between two Gaussian variables is a Gaussian
variable too, we may use (3.34) also to describe the components of the distance ∆ be-
tween the two cars before w. We just need to multiply them by

√
2 so as X∆ (t)∼N0,

√
2t

and similarly for Y∆ (t). Moreover, if we move to polar coordinates (r,θ) with x = r cosθ

and y = r sinθ , the density function f∆ of ∆ becomes

f∆ (r,θ) =
1

4πt
re−

r2
4t (3.35)

which looks for the joint density function of (R,Θ), with R a Chi variable with 2 degrees
of freedom scaled by a factor

√
2t, and Θ a variable uniformly distributed in [0,2π) inde-

pendently of R. Our assumption about the pursuit is that, with reference to the distances
D1 and D2 of the two cars from the position of the first one at time w, you are able to
maneuver Θ1 from w on, so that when D1 = D2 also Θ1 =Θ2 (see Fig. 3.3(c)). As men-
tioned before, per se the probability of a match between two points representing the cars
is null. Thus your task is unrealistic. However, intentionality recovers feasibility thanks
to the fact that in practice it is enough that the angles are sufficiently close to entangle
the two cars. The actual correspondence with the pursuit dynamics is facilitated by some
free coefficients which will be embedded in the model.

With this assumption we are interested in the time t when D1 = D2. Given the conti-
nuity of the latter we may measure only a probability density with t. In other words, at
any change of the sign in the difference D1−D2 with the running of the two cars, there
will correspond a matching time as a specification of a continuous variable T . Since
both D1 and D2 scale with the square root of time, expressing their dependence on the
trigger time w and the pursuit time τ , we have

D1(t) =
√

τχ21 ; D2(τ) =
√

2w+ τχ22 (3.36)

where χ2 denotes a two degrees of freedom Chi variable whose density function is:

fχ2(z) = ze−
z2
2 . Thus, after equating D1(τ) with D2(τ) we obtain

1 =
D2(τ)

D1(τ)
=

χ22

χ21

√
2w+ τ√

τ
(3.37)

under the condition χ22 ≥ χ21 . Denoting with T the random variable with specifications
τ and W with specifications w, this equation finds a stochastic solution in the random
variable

V =
T

W
= 2

(
χ2

21

χ2
22

−1

)−1

(3.38)
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It follows the same distribution law of the ratio between two unconstrained Chi square
variables, i.e. an F variable with parameters (2,2) [52], whose cumulative distribution
function (CDF) reads

FV (v) = 1− 1
1+ v

I[0,∞)(v) (3.39)

where I[a,b](x) is the indicator function of x w.r.t. the interval [a,b], thus being 1 for
a≤ x≤ b, 0 otherwise.

Since τ = vw, to have the car pursuit time T , we need to have a convolution of the
above distribution with the one of the trigger times. Let fW be the probability density
function (PDF) of the latter, defined in a range (winf,wsup). Since τ +w = (v+1)w, we
obtain FT , with T = T +W , by computing

FT (t) =
∫ min{t,wsup}

winf

FV

( t
w
−1
)

fW (w)dw (3.40)

The dependence of the convolution integral extreme on t induces a tangible depen-
dence of the final distribution on the trigger time’s. Nevertheless, having in mind some
experimental results we will discuss in the next sections, we look for a general shape of
T distribution that is capable of recovering the mentioned dependences in a wide range
of operational fields. To this aim, we first generalize the form (3.39) into

FV (v) = 1− 1
1+ v2α

I[0,∞)(v) (3.41)

obtained by changing
√

t into tα in (3.34). In this way we extend the scaling of the
stochastic dynamics from the 1

2 power – used in the Brownian motion – to a generic
power α – in analogy to Lévy flights. Then, we approximate and further generalize this
form through

FV (v) = 1− b+1
b+( v

c +1)a I[0,∞)(v) (3.42)

whose template shape is reported in Fig. 3.4 in terms of both FT (t) in normal scale
(see picture (b)), and FT (t) = 1−FT (t), i.e. the complemetary cumulative distribution
function (CCDF), in LogLog scale (see picture (b)) – thus representing both abscissas
and ordinates in logarithmic scale. We call it a shifted-Pareto distribution since its typical
elbow shape in the latter representation may be recovered from a Pareto distribution [96]
just by shifting the time origin, i.e. through a law

FX (x) =
b

b+ xα
I[0,∞)(x) (3.43)
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Though somewhat structurally different from (3.41), (3.42) coincides exactly with
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Fig. 3.4 (a) CDF Plot of a shifted-Pareto distribution, and (b) LogLogPlot representation of its com-
plement .

(3.39) when a = c = 1 and b = 0. Indeed, the main benefit we draw from (3.42) is
the gain in model generality and flexibility: thanks to the three free parameters, we may
get satisfactory approximations not only of (3.41) but also of (3.40) in a wide range of
operational frameworks. Actually, by plugging (3.41) or (3.42) and the chosen trigger
time distribution in (3.40), we obtain expressions whose analytical form is generally not
easily computable. For instance, an approximate expression of the above convolution
integral for a Pareto trigger time distribution, such as

FW (w) = 1−
(w

k

)−ν

I[k,∞)(w) (3.44)

under the condition τ � w is:

FT (t) =
ν

(
1−
( k

t

)2α
)
−2α

((
1− k

t

)ν
)

ν−2α
(3.45)

with an analogous power dependence on t. A better understanding of the interpolating
role of (3.42) can be appreciated by referring to numerical integrations of (3.40), whose
typical curves are reported in Figs. 3.5(a) to (c). They refer to different trigger time
distributions – reflecting in slight changes in the length of the initial plateau, in the
slope of the linear trend, and also in the smoothness of their unions – which are well
recovered by the parameters of (3.42).

Thus we will refer to the random variable T as a generic success time concerning the
wait and chase process, expressed either as a ratio V between chase T and wait time W ,
or as pure chase time T , otherwise as the sum T +W of the two times. In any case we
expect this variable to be described by the CDF (3.42) with suitable parameters.
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Fig. 3.5 CCDF LogLogPlot of contact times with a trigger time varying according to distribution law:
(a) Pareto; (b) negative exponential; and (c) uniform. Parameter α = 0.9 in (3.41) for all distributions,
while parameters specific to the various trigger distributions are set in order to have the same expected
value for the latter.

3.4.1 Completing the mobility model

A second component we must take into account to model the clash times is represented
by non intentional encounters interleaving with the desired ones. By their nature, we
may expect them to be biased toward short values, which may be ruled by a negative
exponential distribution law. A further matter is that we are generally interested in the
difference between subsequent clash times, as an instance of intercontact times in the
mobility models. While this is precisely the true variable T we deal with through the
exponential distribution of the non intentional clashes, with the chase target we have no
strict theoretical results. However, basing on loose reproducibility properties deriving
from both Brownian and Lévy processes ours lies between [55], we rely on the same
distribution law (3.42), with proper parameters, also for these differences. We recover
these aspects numerically. For instance, denoting with F̂T (t) the empirical complemen-
tary cumulative distribution function (ECCDF) for a sample t = {t1, . . . , tm} drawn from
T , i.e.

F̂T (t) = 1− 1
m

m

∑
i=1

I(−∞,t](ti) (3.46)
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in Fig. 3.6 we see two ECCDFs LogLogPlot referring to a T sample obtained by drawing
a trigger time uniform in [1,150] and reckoning intervals between subsequent clash
times whose ratio w.r.t. the former is simulated through (3.41). To these points we add
further samples coming from an exponential distribution with a set parameter λ . In both
figures we see a plateau analogous to those in Fig. 3.5, having the abscissa of its right
end at around 100, followed by a linear slope that may be recoverd through a shifted-
Pareto distribution (3.42). The effect of the exponentially drawn points is the small hump
over the sloping course that variously characterizes the experimental curves with respect
to their interpolations through the mentioned distribution. Thus from this and similar
graphs, we may recognize a general trait of the figures that we will use henceforth,
where: i) the length of the plateau plays the twofold role of order of magnitude of the
mean trigger time, as for the constructive model, and of b

1
a , as for the interpolating law;

and ii) the slope of the linear trend is close to a. To sharpen our intuition, in very broad
terms we will refer to the first part of the curve as gathering almost exclusively the non
intentional encounters, while the second describes almost entirely the intentional ones.
On the contrary, the difference in the graphs in Fig. 3.6 is related both to the number
me of exponentially drawn points w.r.t. the size of the sample connected to distribution
(3.42), and to the respective values of parameters λ and α . As we may appreciate from
the CDF course, these additional times have the effects of globally delaying the times
within the plateau and of incrementing their number after its end. While in both cases
α = 0.9, the former has me

m = 0.5 and λ = 0.1, the latter me
m = 0.4 and λ = 0.0001.

Shifted-Pareto parameters read a = 1.85,b = 11,819 and c = 1.27 in the first settings,
and a = 3.61,b = 7.55×1010 and c = 0.85 in the second one.

3.5 Real world benchmarks and artificial datasets

While the paradigms of social networks and virtual communities date to over forty years
ago [105, 95, 133, 134], social communities, in the dynamics connotation we explained
in our introduction, represent a social and technological phenomenon whose features are
still in progress [127, 43, 27]. We acquainted them from the narrow technological per-
spective of communication protocols, and adopted a loose opportunistic networks sce-
nario [129, 94] in order to stress the communication features we expect from advanced
social communities. In a strict sense, they are networks of mobile radio devices carried
by community members, equipped with a short-range antenna and limited batteries yet
with a topology continuously evolving as a function of mobility. With these devices,
which you may imagine as a further enhancement of your mobile (as in smartphones,
netbooks, etc.), you must abandon any real-time ambitions and reliability requirements.
It works because you and other members want to communicate through a message that
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Fig. 3.6 Recovering the intercontact ECCDF shape through our mobility model. First row: CDF, second
row: CCDF. Columns: different mobility parameters. Gray curves: experimental distributions; black
curves: their interpolations.

reaches you because someone in the immediate past decided to send it and others to
transpond it. Since the atomic action of this protocol is a contact between (at least) two
members to transfer a message – a hop in the message trip from the origin to the desti-
nation – we study exactly the distribution of the time elapsing between one contact and
the next. In a looser sense, we may consider as potential hop all occasions where two
people of a same community are close enough.

Of these intercontact times we have collected a huge amount of data, partly by our-
selves and partly from either public or proprietary repositories available on the web. We
produced our own experimental data as well, so as both to compare ours with the for-
mer’s features and to check the generality of the proposed model. In addition, we have
simulated a huge dataset as an efficient trait-d’union between probability model and
truth, with the aim of checking the appropriateness both of the former with the mobility
model and of this model with the virtual community we are exploring. The essentials of
the benchmarks are reported in Table 3.1, while a short description of them is reported
here below.
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Dataset Location Technology # Agents Mean Trace
Length

# Processed
Agents

Beaconing
Time (sec.)

Artificial Intel Core 2 Duo – 39 275 39 1
PTR Computer Science

Dept. in Milan
PTR 39 1876 39 1.5

Crawdad
CH1 Intel Research in Cam-

bridge
iMote 9 145 9 125

CH2 Cambridge Univ. Com-
puter Lab

iMote 12 342 12 125

CH3 IEEE INFOCOM 2005
Conf. in Miami

iMote 41 510 41 125

HMTD

Orlando Disney World Garmin GPS 60CSx 37 68 18 30
NCSU Raleigh (North Car-

olina) Univ. campus
Garmin GPS 60CSx 30 34 15 30

NY New York City Garmin GPS 60CSx 35 25 18 30
KAIST Daejeon (Korea) Univ.

campus
Garmin GPS 60CSx 91 308 12 30

Nokia Helsinki Helsinki GPS equipped mobile 522 212 50 1
London London GPS equipped mobile 199 233 50 1

Table 3.1 Description of real world and synthetic benchmarks.

3.5.1 Benchmarks from the WEB

We check our methods on two categories of benchmarks: a former expressly connected
with opportunistic networks, the latter to virtual communities which could implement
analogous communication protocols thanks to the contacts between their members.

3.5.1.1 The Cambridge/Haggle (CH) datasets

The Cambridge/Haggle (CH) datasets represent four of the earliest benchmarks avail-
able on the web, stored in the Crawdad database [121]. These data concern contact times
between mobile agents whose companion inter-contacts, of a single agent versus the re-
maining ones, may be appreciated as usual through CCDF curves as in Fig. 3.7. The
first dataset (CH1) refers to eight researchers and interns working at Intel Research in
Cambridge. The second (CH2) records data from twelve doctoral students and faculty
comprising a research group at the University of Cambridge Computer Lab. The third
(CH3) concerns contacts collected from 41 attendees of the IEEE INFOCOM 2005 4-
day conference held in Miami. We skipped the fourth dataset because it is less homo-
geneous as for both the people exchanging messages and the devices carrying them.
During the former experiments, very short messages are exchanged between the agents
through the iMote platform [66], an embedded device equipped with ARM processor,
Bluetooth radio, and flash RAM, all fed by CR2 battery. Optimized algorithms deduce
both contact – the period when two agents are in range of one another – and intercontact
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Fig. 3.7 LogLogPlot of ECCDF intercontact times for datasets CH1 (a), CH2 (b) and CH3 (c). Gray
curves: individual intercontacts; black curves: merge of the former.

times – the period between the contact times, when data are not directly transferrable
between the two agents – through a Bluetooth base-band layer inquiry, a sort of beacon-
ing strategy where a five seconds “enabled inquiry mode” alternates with a 120 seconds
“sleep mode” to save batteries.

Here we focus on intercontact times, where the usual basic inspection tool is the
ECCDF of the time log registered on a single individual getting in contact with any
other of the agents participating in the experiment. We jointly visualize these curves for
all devices in LogLog scale in Fig. 3.7. Namely, the time logs constitute the traces of
the single agents in the time domain as a companion of their trajectories in the space
domain. The corresponding ECCDF LogLog representations are the agent tracks from
a statistical perspective. In the following we will consider them both as a curve sheaf
and through single representatives. While when referring to the interpolating parameters
central values such as medians will be suitable, the overall shape of the tracks looks to
be better preserved by the merge of the curves, i.e. the ECCDF of the merged traces.

3.5.1.2 GPS trajectories

In the last few years we had a wide proliferation of personal devices, mainly smart-
phones, endowed with GPS facilities. This, on the one hand, stimulated the devising of
many location-based services, mainly shared by members of a same social community.
On the other hand, it made a plenty of mobility GPS trajectories available, as a result
of current activities and a necessary basis for planning new ones. The exchange of in-
formation, and actions in general, between the involved mobile agents constitutes the
core point of many of these ventures, where the exchange occurs after the encounter be-
tween agents, who may have different meeting modalities. To check extreme instances,
we analyze two benchmarks where in the former – the Human Mobility Trace Dataset
(HMTD) collected at the NC State University of Raileigh (NC) [111] – encounters occur
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Fig. 3.8 Agent trajectories and tracks for HTMD and Nokia datasets, one per benchmark in Table 3.1.
Gray ECCDF curves: individual inter-contact times; black ECCDF curves: merge of the former ones.

when people enter a relatively large interaction neighborhood re topological distances
but at the same time instant. We consider the complementary situation in the second
benchmark, coming from Nokia’s Sports Tracker project [98]. It concerns people who
virtually interact with one another because they cross the same site though at (possibly)
different times.

The trajectories in the HMTD dataset, collected worldwide on various cities/ cam-
puses through Garmin GPS devices, are at the basis of many research activities concern-
ing human mobility modeling, routing, content search and distribution in delay tolerant
networks (DTN) and ad hoc (MANET) environment [111]. From these signals, after
a preprocessing phase (for instance isolating only the logs recorded within a radius of
10 km from the center of each site), and focusing on a single area where they have
been collected, for instance New York City, we obtain the cartesian coordinates of the
walkers position, as shown on the left in Fig. 3.8(a-b). Stating that a contact occurs
when two people are less than 250 meters from each other, we obtain the companion
inter-contact times ECCDF as in Fig. 3.8(a-b) on the right. In Table 3.1 we distinguish
between the number of available agents for each location and the number of them pro-
cessed to get statistics. This denotes that some trajectories have been discarded in that
tangibly anomalous (for instance 2 or less inter-contacts) w.r.t. the phenomenon we are
considering.
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The second dataset is definitely larger and increases continuously. It is the follow-out
of the Nokia Sports Tracker service [98] to which any person may apply by running a
specific software on his own GPS-equipped smartphone. Now more than 125,000 tra-
jectories are available, collected at a rate of one beacon per second from many regions
in the world. They reduce to 9,000 circa when we focus on people walking (neither
running nor cycling or anything else) and to 522 and 199, respectively in the cities of
Helsinki and London, after having discarded bugged trajectories. With reference to the
pic on the left in Fig. 3.8(b), we isolated 236 trajectories spanning mainly at the bot-
tom left corner. Then we sampled variously 50 tracks re the walker we monitor and the
number of other walkers (10 to 100) whose trajectories we consider to reckon contacts.
We did analogously for the London tracks. In Table 3.2 we will distinguish between less
crowded (sparse: fewer than 60 crossing walkers) and more crowded (dense) trajecto-
ries.

3.5.2 The ground truth

The puzzling point of the above interpretations is that all found a tangible number of
authors sustaining them with theoretical and numerical arguments. Thus, in order to
have a clearer perspective of the phenomenon, we decided to essentially replicate the
experiment but with a finer time scale and, in any case, with perfectly known environ-
ment conditions. We achieved this by both developing portable radio devices, denoted
as Pocket Traces Recorders (PTRs), and deploying the test bed [53].

Requirements

The design of the PTR has functional as well as architectural requirements. The former
are related to traces collection, recording and transferring to a server station for off-line
analysis. The primary focus of the PTR design is the collection of data that describe the
contacts among encountering devices. The main architectural requirement is to enable
experiments to last 3-4 weeks with limited human intervention as to battery changes.
Consequently, we too base the communication protocol on beaconing transmission with
a limited frequency. After sending its beacon, a PTR enters a sleep mode and wakes up
whenever it receives a beacon from the neighborhood. Whenever a beacon is received
from a given encounter, the device creates a new entry in the local contact-log. The
beacon contains the following items: i) local ID and ID of the encounter PTR; ii) the
timestamp of the first contact; and iii) the time stamp of the contact closing event. As for
the latter, an entry in the contact-log is closed whenever no beacons are received from
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Fig. 3.9 PTR architecture.

the encounter device for more than t seconds, with t = 60 seconds in our experiments.
The local memory size has been dimensioned to store traces of experiments lasting up
to 3 weeks. As a matter of fact, our test beds have generated on average 1900 contacts
per device, with beaconing time set to 1.5 seconds.

The Architecture

The overall PTR architecture is described in Fig. 3.9. It uses the Cypress CY8C29566
micro-controller and the radio module AUREL, model RTX-RTLP. The radio range has
been limited to 10 meters in order both to maintain a sparse PTR distribution even in an
office area and to limit power consumption. In particular, the experiments may last for
more than a week with common batteries NiMh, AA 1.2V . Each PTR is equipped with
1 MB flash memory, capable of storing more than 50.000 contacts.

The PTR firmware implements the first two layers of ISO-OSI model [73]: Manch-
ester coding is used at the physical layer, while a CSMA non-persistent MAC protocol
that regulates access to the 2400b/s channel implements the data-link layer. The local
time is set at the configuration time. The clock drift in 3-week experiments has been
evaluated in 10-12 seconds and therefore we have not executed any run-time clock syn-
chronization. Each PTR uses an USB interface to communicate with the Pocket Viewer,
the Desktop application software, which has been used to configure the devices, collect
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ECCDF curves: merge of the former ones.

the recorded data at the end of the experiment, and support data analysis and device
monitoring.

The collected data

The data were collected through a set of 50 PTRs circa in two experimental campaigns
between February and October 2008 [11]. Each device was enabled to send and collect
signals for 18 days with a couple of battery recharges. The PTRs were distributed to
students and administrative / teaching staff within the Computer Science Department of
the University of Milano. At the conclusion of the campaign their logs were gathered in
a single server and remodulated so as to remove artifacts. In particular, we eliminated
idle periods represented by the time intervals where people were expected to be far from
the campus. Namely, we contracted to 0 the time intervals between 7 p.m and 8 a.m. of
workdays and all during the weekend. We also clamped to 0 the last 60 seconds of
contacts artificially generated by the above beaconing control rule.

After this preprocessing, we computed for each PTR a log of its inter-contact times
with any other of the PTRs participating in the experiment 3.10.

3.5.3 The artificial dataset

We have numerically implemented the mobility model introduced in Section 3.4 on a
simulated field. Namely, replacing the agents of the PTR campaign with dodgem cars,
we consider a field of 200×200 square meters with 39 individuals uniformly located
inside it as our initial configuration. Each agent has two mobility modes: random way-
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Fig. 3.11 Agent trajectories and tracks from the Artificial datasets. Gray ECCDF curves: individual
intercontact times; black ECCDF curves: merge of the former ones.

point [67] up to trigger time w, and the mentioned pursuit strategy after it. In the first
mode, an agent randomly selects a direction that follows for a time length θ uniformly
drawn in [0,2000] steps with a mean velocity of v = 1.47 meters per second (mean
pedestrian velocity). This is simulated by tossing a positive random number less than
or equal to 2000, as for θ , a uniform value between 0 and 2π , as for direction, and
a random number drawn from a Chi distribution with 2 degrees of freedom scaled by
1.17t (to maintain the mentioned mean velocity), to sample the distance D(t) covered
by the agent at time t. At the completion of time θ , it selects a new random direction
and so on. When the trigger time w expires, it shifts to the second mode: the above Chi
step is now coupled with a suitable angle rotation directing the agent toward the chosen
target. A match occurs when, for any reason, an agent gets closer than 10 meters to an-
other one. We remark that we do not impose any constraint on the agent location (i.e.
rebounds handling, etc.) since the chase features automatically maintain an overall at-
tractor within the original 200×200 square. Fig. 3.11(a) reproduces a story of this model
when the trigger time is drawn, for a mere choice of convenience, according to Pareto
distribution (3.44) (see Fig. 3.5). In particular, dynamics parameters α (the exponent in
(3.41) modulating the agent mean speed versus time in this phase) and ν (describing
the rate of the trigger time distribution (3.44)) were set to 0.9 and 1.5, respectively, and
suitable values were chosen for ancillary parameters, such as k or the chased target dis-
tribution. The contact times are collected along the entire experiment log corresponding
to 18 days of simulated time.



3.6 Fitting the model traces 57

3.6 Fitting the model traces

Our final goal is to propose our mobility model as an adequate tool for interpreting
mobility tracks observed in some relevant social communities. To this aim, denoting
with t = {t1, . . . , tm} the sample of intercontact times of a given trace, we solve two
orders of inference problems:

1. fitting of t through form (3.42), by identifying statistical parameters a,b,c (s-
parameters, henceforth) for each agent, with the aim of proving suitability of the
proposed model to describe mobility;

2. regression of the s-parameters versus the mobility parameters (for short m-parameters),
which accounts for understanding the main traits of human mobility. Here we focus
on α and ν (the parameters of (3.41) and (3.44) respectively), whose acquaintance
allows us to better appreciate the departure of human mobility from pure Brown-
ian motion, as we will show in the next section. In turn, these parameters may be
thought as critical ingredients in the efficient implementation of any optimized mes-
sage forwarding algorithm, a task to be the subject of further research conducted by
the authors.

To be most convincing, we solve these problems in two steps, in terms of: i) a recon-
struction problem, by working with the artificial dataset introduced in Section 3.5.3, and
ii) true inference problems over real world data described in Sections 3.5.1 and 3.5.2.

Having an efficient automatic procedure to draw the interpolating curves is a first
matter. Actually, inferring a shifted-Pareto distribution is not a standard task per se.
In addition, we must consider that, besides the hump discussed earlier, empirical data
are affected by many artifacts, linked for instance to seasonal phenomena such as user
habits during a particular week and/or on a particular day of the week, special tasks
shared exclusively by some pairs of users, etc. Thus, rather than expecting a perfect
fitting, we look for tight regions, such as confidence regions [7] where the experimental
curves lie completely with a good probability. The identification of these regions is a
favorite task of Algorithmic Inference paradigm [12], which we exploit here as follows.

3.6.1 The Statistical Bases

Looking at curves as in Fig. 3.11, we may consider our estimation problem in terms
of drawing a regression curve through the set of pairs

(
ti, F̂T (ti)

)
, coupling the ob-

served intercontact time with the ECCDF computed on it. According to our model, this
regression curve depends on three s-parameters: a,b,c. Following our stated goal, we
look for a suitable region containing this curve that we consider as a specification of



58 3 Capturing aggregation dynamics in space and time

a random function, in principle. Thus, in analogy with the usual notion of confidence
interval [114], we may define a confidence region as follows.

Definition 3.1. For sets X,Y and a random function C : X 7→Y, denote by abuse c⊆D
the inclusion of the set {x,c(x);∀x ∈ X} in D. We define a confidence region at level γ

to be a domain D⊆ X×Y such that

P(C ⊆D) = 1− γ. (3.47)

Within the Algorithmic Inference framework [9], we infer this region via a bootstrap
procedure in a slightly different version of the Efron paradigm [45]. The lead idea is
that, starting from the observed data

{(
ti, F̂T (ti)

)}
, we generate a huge set of curves

that could fit them. They represent replicas of a random curve (i.e. a curve with random
parameters) at the basis of these data, where the bootstrap generation method allows us
to attribute a probability to each curve whose reckoning identifies the confidence region.
With this perspective we devise a procedure running through the following steps [8].

1. Sampling mechanism. According to Definition 2.18, the explaining function for T
distributed according to (3.42) is

t = F−1
T (u) = ga,b,c(u) = c

((
bu+1
1−u

) 1
a

−1

)
(3.48)

2. Master equations. The actual connection between the model and the observed data
is exploited in terms of a set of relations between statistics on the data and unknown
parameters that come as a corollary of the sampling mechanism. With these relations
we may inspect the values of the parameters that could have generated a sample
with the observed statistic from a particular setting of the seeds. Hence, if we draw
seeds according to their known distribution – uniform in our case – we get a sample
of compatible parameters in response. As mentioned in Section 2.3.1, in order to
ensure this sample clean properties – so as to have clear connection between the
model and the observed data – it is enough to involve sufficient statistics w.r.t. the
parameters [126] in the master equations. Unluckily, because of the shift terms, the
parameters are so embedded in the density function of T that we cannot identify
such statistics for them. Rather we may rely on statistics that are well behaving with
analogous benefits [9].
Namely, denoting by t(i) the i-th element of the sorted intercontact times and by m

the quantity
⌊
(m+1)

2

⌋
, we use the well behaving statistics



3.6 Fitting the model traces 59

100 1000 10
4

0.10

1.00

0.50

0.20

0.30

0.15

0.70

logFT

log t(a)
1 10 100 1000 10

4
10

5

0.05

0.10

0.20

0.50

1.00
logFT

log t(b)

Fig. 3.12 Curves fitting with compatible parameters. (a) Sample size: 30; (b) sample size: 500. Thick
plain curves: sample ECCDF; gray curves: 200 population replicas; thick dashed curves: median of the
replicas. Light gray region: 0.90 confidence region.

s1 = t(m) (3.49)

s2 =
1
m

m

∑
i=1

ti− s1 (3.50)

s3 =
m

∑
i=m

log t(i) (3.51)

Thanks to the sampling mechanism (3.48) relating a realization of the uniform ran-
dom variable U to a T ’s, we obtain the master equations

s1 = ga,b,c(u(m)) (3.52)

s2 =
1
m

m

∑
i=1

ga,b,c(ui)−ga,b,c(u(m)) (3.53)

s3 =
ξ m
2

logc+
1
a

m

∑
i=m

log
(

bui +1
1−ui

)
(3.54)

As usual, we solve them in the s-parameters in correspondence to a large set of ran-
domly drawn seeds {u1, . . . ,um}. In this way we obtain a sample of fitting curves, as
in Fig. 3.12, which we statistically interpret to be compatible with the observed data.
The two pictures differ only in the size of the sample generated through (3.48), shar-
ing the same s-parameters a = 1.1, b = 1000 and c = 1.2. The free parameter ξ is set
to a value slightly greater than 1 in order to compensate the bias coming both from
computing the last statistic only on a part of the observed sample, and, in the case
of simulated/real tracks, from the truncation at the last intercontact, as a direct con-
sequence of the finiteness of the campaign duration. In the figure we also report the
0.90 confidence regions for these curves. We obtain these regions through a standard
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peeling method [82, 7]. We remark that in these experiments we prefer referring to
the median as a central value, rather than the mean, because of the estimation method
we use, as explained in [6]. But different choices may be done as a function of spe-
cific statistical goals, as will be shown in Section 3.8. The pictures highlight the tight
influence of the sample size on the width of the confidence region, which in any case
completely contains the whole ECCDF uniformly over its support in both situations.
We also note a sort of indeterminacy – to be read as non univocity – in the triples
fitting the observed ECCDF. We may attribute this both to the high variance of the
sample data and to the intricate interrelations among the trend of the curves and the
s-parameters per se. Namely, though the large sample allows us to infer s-parameters
closer to the original ones (ă = 1.14, b̆ = 1800 and c̆ = 1.05, with θ̆ denoting the
median estimate of parameter θ using the above extreme peeling procedure), with
the smaller sample we have acceptable interpolation as well, despite the great differ-
ence between the inferred parameters and their true values (ă = 0.87, b̆ = 320 and
c̆ = 0.87).

3.6.2 Testing the inference algorithm

First of all we tested the procedure on a controlled environment represented by the arti-
ficial dataset introduced in Section 3.5.3. Fig. 3.13(a) shows the fitting curves obtained
through our procedure. More in detail, from the tracks of the single agents we get the
confidence region at the top of the picture. Fitting intercontact times obtained by merg-
ing individual trajectories, we get the dashed curve at the bottom of the picture which
proves very close to the merge ECCDF curve.

We did not have the same success with real tracks. This motivated us to do a deeper
analysis of the data described in Sections 3.5.1 and 3.5.2, suggesting that the hypothesis
of their independence should be removed. While with intercontact times derived from
simulation this hypothesis is true (within the limit of our ability to generate independent
seeds in the sampling mechanisms ruling the simulation), with real people we may ex-
pect non independent performances. With the exception of cold individuals who allow
no influence on their attitude by external events, most people are more reactive to both
the environmental conditionings and their own personality traits. So we may expect that
with busy, sociable and/or even anxious people, if a task required a quick contact with
colleagues, a subsequent one will do the same with a high probability; idem for encoun-
ters that do not last very long. On the contrary, a different attitude may induce a greater
duration after a rushed task and vice versa. In our context, this calls essentially for re-
spectively positive and negative autocorrelation among intercontact times [37]. Far from
enunciating a general theory on non independent samples, we may within our sampling
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Fig. 3.14 ECDF of samples drawn according to the sampling mechanism ui ≡ u(
ui−1

k )
r

i (gray curves)
and ui ≡ ud

i (black curves) when: (a) r = −1,h = 1,d = 4,ρUi,Ui+1 = −0.24; and (b) r = 1,h = 3,d =
0.25,ρUi,Ui+1 = 0.37.

mechanism reverberate this dependence directly on the observation seeds uis entering
the sample mechanism (3.48). We may look directly at a Markov process on the seeds,
so that their conditional distribution depends on certain batches of previous seeds. If we
are so lucky that some standard conditions are satisfied [74], we may rely on an equi-
librium distribution from which to pick more suitable seeds of the sampling mechanism
of the observed non independent intercontact times. Using the special typed symbol U
(resp. u) to distinguish the new seed from the uniform variable U (or its realization u),
we have a very preliminary hypothesis on its CDF as follows:

FU(u) = u1/d (3.55)

with d > 0. It is definitely a gross hypothesis, relying just on some similitude between
the ECDF of samples generated by the mechanism ui ≡ ud

i (hence from the random

variable Ud having exactly the CDF (3.55)) and the sampling mechanism ui ≡ u(
ui−1

h )
r

i
(reproducing a Markovian dependence of the current ui from the previous one ui−1),
for suitable d as a function of r, with h a suitable tuning parameter (see Fig. 3.14). As
for the autocorrelation ρUi,Ui+1 , the value d = 1 denotes independence between sample
items, whereas d < 1 corresponds to r > 0 and ρUi,Ui+1 > 0, and d > 1 to r < 0 and
ρUi,Ui+1 < 0.

On the one hand with known d nothing changes on the above statistical procedures,
apart from the new seed generation, since the sampling mechanism now reads

t = c

(bud +1
1−ud

) 1
a

−1

 (3.56)
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Fig. 3.15 Discovering the seed bias from a correlation rooted on reconstructed data. (a) The reconstruc-
tion mechanism. (b) Course of correlation with the biasing exponent.

leading to the CDF

FT (t) =

(
1− (b+1)

b+
( t

c +1
)a

) 1
d

(3.57)

On the other hand, adding d within the set of s-parameters would unbearably compli-
cate the procedure. Thus we decide to use d as an external parameter that we infer by
inspection with the help of the correlation ρT,T̃ between actually observed times tis and
reconstructed times t̃is. The latter are obtained by inverting the inferred CDF FT̃ on the
ECDF F̂T specifications computed on tis. Namely, with reference to Fig. 3.15(a),

t̃i = (t : FT̃ (t) = F̂T̃ (ti)) (3.58)

This corresponds to relating ti to the i
m -th quantile t̃i of FT̃ , with i = 1, . . . ,m.

We choose the d maximizing the above correlation, with the further expedient of
selecting a proper scale for the input data. In this respect, we experimentally found that
the best indication comes from ρT,T̃ when the times are recorded in logarithmic scale
and possibly truncated to their minimum value (see Fig. 3.15(b)).

In this way we obtain the other pictures in Fig. 3.13, to complete the analogous
ones in Fig. 3.11, yet referring to different datasets within the same benchmarks so as
to widen the inspection on the data. We see that the confidence regions satisfactorily
include the empirical curves, whereas the median of the compatible curves absorbs the
hump commonly occurring in the right part of the curve (after the plateau). As discussed
earlier, we may attribute it to a superposition of casual encounters which go in parallel
to the intentional ones. While with Crawdad and HMTD benchmarks the bending of the
ECCDF around the estimated median curve suggests the presence of further local phe-
nomena to generate these balanced shifts, the more regular course of Nokia tracks may
depend on the different way of collecting intercontacts. With the former benchmarks
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Single tracks Merge track
ă b̆ c̆ d̆ ă b̆ c̆ d̆

Artificial 1.834 (0.215) 30584.6 (28461.6) 1.177 (0.046) 1. (0.) 2.97367 4.46×108 1.02844 6
PTR 1.484 (0.115) 44920.6 (39575.6) 1.097 (0.042) 2.6 (0.6) 1.752 709781 0.959 4

HMTD

Orlando 1.018 (0.185) 31.881 (27.445) 1.261 (0.142) 0.2 (0.) 2.005 2.08×107 0.959 8.
NCSU 1.084 (0.262) 8336.36 (8334.31) 0.959 (0.388) 6. (2.) 1.329 151719. 1.531 6.6

NewYork 1.099 (0.304) 10048.3 (9611.62) 1.133 (0.183) 2.6 (0.) 1.305 244650. 1.337 5.8
KAIST 0.794 (0.17) 5.376 (4.204) 1.012 (0.21) 0.2 (0.) 1.819 1.73×107 0.798 11.

Nokia

Helsinkidense 1.318 (0.324) 2.118 (1.517) 0.71 (0.067) 0.4 (0.2) 1.092 1.738 0.63 0.6
Helsinkisparse 1.524 (0.334) 11.45 (10.881) 0.835 (0.094) 0.6 (0.4) 1.328 0.933 0.758 0.2
Londondense 1.883 (0.897) 32.886 (31.314) 0.863 (0.026) 1.2 (0.6) 1.646 1.985 0.829 0.2
Londonsparse 2.922 (0.217) 715.551 (318.767) 0.869 (0.014) 1.7 (0.1) 2.991 1441.7 0.858 2.4

Crawdad
CH1 0.934 (0.166) 118.228 (98.693) 0.939 (0.128) 0.2 (0.) 0.879 106.163 0.926 0.3
CH2 0.849 (0.122) 41.172 (26.771) 0.762 (0.111) 0.2 (0.) 0.977 530.91 0.724 0.8
CH3 0.872 (0.082) 54.245 (32.943) 1.68 (0.24) 0.2 (0.) 0.813 31.488 1.725 0.2

Table 3.2 Synopsis of the parameters fitting the benchmark tracks. Cell values: single track column 7→
median and MAD (in brackets) of the estimated parameters within the dataset; merge track column 7→
parameters fitting this track.

we reckon the time differences between one contact and the next one for one agent ver-
sus another specific one, and subsequently gather the differences referring to the same
agent. With the latter, for a same agent we reckon the time difference between contacts
with any other agent.

As for the merge curves, we observe again a good fitting of the inferred median
parameters.

3.6.3 An overall evaluation

In Table 3.2 we sum up the above inference on the benchmarks listed in Table 3.1. As
mentioned before, our main statistic is the median of the parameters of the compatible
curves computed for each agent. In turn, of these values we report in the first column
the median and the median absolute deviation (MAD) [58] to capture, respectively, the
central trend and the dispersion over the agents. In the second column we refer directly
to the merge traces of the various benchmarks for which we analogously report the com-
patible curve median parameters. A first insight arising from an overall outlook is that
with our model we cover a vast variety of targeted short-range walking situations, as for
walking mode (relaxed, jogging), common goals (work, entertainment, sport, shopping,
etc), geographic location (from Europe to U.S.A. to Asia) and recording method (merge
of specific pair contacts, one trajectory crossing a variable number of other trajectories,
merge tracks). This reverberates in a parameter variety, though with some structural
commonalities.
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While we will contrast a general good fitting performance with other methods in the
next section, focusing on the specific features of our model, from a modeling perspec-
tive we note that the weak reproducibility property of our shifted-Pareto distribution
hypothesized in Section 3.4.1 reflects in the parameters as well (with some exceptions).
Indeed, taking note that the plateau parameter to be compared is b

1
a , we see the param-

eters of the merge track close to the medians of the single agent parameters enough,
with the main exceptions for Orlando and KAIST, plus discrepancies on a restricted
number of parameters in three other sites. There is no clear relationship between these
discrepancies and the dispersion of the parameters drawn from the single agents. Rather,
we note that they never occur alone, but on at least a couple of parameters per bench-
mark. Paired with the variability of the solutions of the inversion problem (3.52-3.54)
we mentioned in Section 3.6.1 and the chimeric effects due to tracks mixing, the above
fact might suggest attribute discrepancies to numerical artifacts rather than to statisti-
cal reasons. In this sense paradigmatic is the high correlation described by parameter d,
which takes values much greater than 1 in the merge curve of the artificial benchmark, in
spite of the true intercontact independence (by construction) in the single agent traces.
The benefit of our approach, in any case, is that from a possible unconstrained number
of compatible curves we may select the best fitting one according to the fitness criterion
we decide, in order to for example preserve reproducibility, stress some centrality index,
or follow statistical reasonings like those we will use in Section 3.8. As for the parame-
ter dispersion, which we appreciate through MAD, we actually do not expect moderate
values as an indicator of good estimates. Rather, on the one hand their high values are
again a consequence of the different experimental condition each track refers to, where
the almost coincidence with median for b denotes an exponential distribution law of this
parameter, while other minor peculiarities emerge for the others. On the other hand, we
cumulated a set of around 300 traces for a total of 140,000 observed intercontacts circa
that we will exploit as a whole in Section 3.8 to have very meaningful fitness tests. For
the moment we get rid of the experiment variations through the structural coherence
between data and use the different values as a cue to characterize the experiments.

From an operational perspective, in Table 3.2 we note that the slopes ăs have a value
slightly less than 1 with the Crawdad datasets and notably greater than 1 with the others.
Now, values of a outside of the interval (0,1) stands for a favorable feasibility indicator.
Indeed, in [29] it is shown that this interval gathers unfavorable values of the slope ν

of a Pareto distribution describing intercontact times, since with these slopes none of
the algorithms developed up till now for MANET routing protocols can guarantee a
finite message delivery expected delay [138]. This suggests that the feasibility of an
opportunistic communication protocol is not a free lunch in social communities. Rather,
it may occur with a well featured mobility model in conjunction with a good practice
level, like with our experiment. On the contrary, Crawdad experimental settings seem
not to be destined to support these protocols, at least not at this level of investigation.
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3.7 Understanding the mobility model

In the previous section we are left with a satisfactory match between experimental data
and their modelization made up of three ingredients: 1) the ability of the dodgem car
model to capture the main features of the agent mobility; 2) the robustness of the ex-
pression (3.42) to synthesize these dynamics even in the presence of many additional
effects drifting the dynamics from the model; and 3) the adequacy of the Algorithmic
Inference statistical tools to draw probabilistic scenarios compatible with the observed
data, even in the presence of variations in the mobility parameters. Now we want to ex-
ploit these statistical benefits to invert the model, i.e. to deduce the m-parameters from
the s-parameters (recall their definition at the beginning of Section 3.6). It accounts for
a regression problem that we solve using artificial datasets like in Section 3.5.3 as train-
ing set. Namely, we kept α and ν exponents as free parameters in a range compliant
with the PTR opportunistic network. In detail, we let α vary in the range [0.35,1.05],
so as to appreciate sensible deviations from pure Brownian motion (i.e. α = 0.5), and
ν in [0.1,20], spanning a wide range of Pareto rates to cover both finite and non finite
moments of this distribution (see rightmost picture in Fig. 3.16). Note that the d pa-
rameter is out of the question, since it is constantly equal to 1 in the artificial setup. To
learn the regression function of the remaining s-parameters a,b,c versus m-parameters
α and ν , first we identify the median as a template of the CCDF curves, then we regress
its parameters through a polynomial in the m-parameters. In Fig. 3.16 we see the best
fitting we obtain separately on a, b

1
a and c. The interpretation of these curves is far from

simple. As a matter of fact, with this kind of mobility phenomena we theoretically rely
mainly on asymptotic results in space and time domains, and on tighter results only in
the Fourier transform framework [21]. Hence, here we just venture some guesses, declar-
ing in advance that they are partial and need serious validation. With these caveats, we
note that the first graph shows a complex trend of a with α that we interpret in this way.
On the one hand, the comparative inspection of curves as in Fig. 3.17 shows that an a
increase (a↑) in (3.42) has the effect of shifting the elbow between the non-Pareto and
Pareto trends back (as for turning time) and down (as for the corresponding probabil-
ity). This produces the twofold effect of reducing both the distribution time scale (t↓)
and the rate of contact times (r↓) falling in the second trend (call them the intentional
times according to our broad curve interpretation in Section 3.4.1). On the other hand,
we see that a has a parabolic trend with α having the top in the surrounding of α ≈ 0.5,
a value that calls for the Brownian motion as the basic component of the model. Mov-
ing far from this value, we see a decreasing of a that we alternatively relate to the two
effects t↓ and r↓. Namely, since α is a mobility speed-up factor, on the lefthand side
of the trend we relate the increase of a with α to a decrease in the time scale (t↓). This
effect is contrasted by the rarefaction of the random encounters when α becomes still
higher, since the probability of crossing a same 10 meter raw transmitting coverage di-
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Fig. 3.17 CCDF LogPlot of shifted-Pareto distribution (3.42) with a ranging from 2 (black curve) to
3.6 (light gray curve).

minishes with the velocity due to the low agent density. Under these conditions we have
an overwhelming amount of intentional contacts (belonging to the Pareto trend) (r↑).

We may similarly explain the second graph, where we broadly relate the b
1
a parame-

ter to the scale of the non intentional encounter times. In principle, this scale decreases
with ν – since the average of the related Pareto does so – and increases with α – be-
cause of the aforementioned spreading effects of this parameter. However, in this case
too we have a saturation effect, so that very small νs equalize the trigger times. As a
consequence, the number of (now almost purely intentional) contacts follows a Poisson
distribution that is analogous to the one of the almost purely non intentional encounters
reckoned in the opposite corner. Likewise, we have seen that short as in correspondence
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Simil-Pareto Best Simil-Pareto Median Exponential Pareto LogNormal Tapered Pareto Truncated Pareto

PTR 0.154 0.077 0.821 0. 0.026 0. 0.077
0.949 0.923 0. 0. 0.026 0. 0.

Crawdad 0.508 0.169 0.067 0.051 0.034 0.017 0.068
0.441 0.101 0. 0. 0.288 0. 0.271

HMTD 0.593 0.468 0. 0.25 0.468 0.562 0.781
0.656 0.469 0. 0. 0. 0.062 0.281

Nokia 0.937 0.796 0. 0.312 0.641 0.437 0.328
0.531 0.281 0. 0.218 0.141 0. 0.109

Table 3.3 Statistical comparison between competitor models. Rows: benchmarks; column: models;
cells: CvM test acceptance rate (upper line) and Akaike criterion winning rate (lower line).

to short αs may reduce the number of non intentional encounters (since r↑) contributing
to the definition of the scale of the non Pareto trend.

The third parameter, c, looks like a fine tuning factor indirectly affected by the m-
parameters.

Moving on the experimental datasets, we want to discover both the mean velocity
and mean waiting time of the people who wear the beaconing device using the above
regression curves. Namely, having computed s-parameter replicas compatible with the
collected experimental datasets through master equations (3.52-3.54), as in Section 3.6,
we look for the corresponding m-parameters α and ν that minimize the relative error
between the computed a,b,c and the triple obtained through the regression curves. We
depict all of them (merged re the benchmark subsets) in Fig. 3.18.

Omitting for a moment the third column, we see that the former two denote a notable
generalization of the regression curves on the new points, despite their location in re-
gions that may be far from the ones spanned by the training set. The clouds of points
refer to the union of numerous curves (hence the triplets of parameters specifying them)
that are compatible with the single agent tracks. For instance, we have 73,180 curves
related to the PTR benchmark, 20,000 to the Nokia benchmark, and so on. For all these
curves, on the one hand we obtain values in line with the overall trend of both a and b
with α and ν , as modeled in the previous sections. On the other hand, these values are
compatible with the physics of the people’s dynamics and reflect the two polarizations
of the dynamics (before and after α = 0.5) discussed in the previous section.

To get these results we had to do a small preprocessing of the GPS benchmarks.
Namely we had to suitably enlarge b through a scale factor that depends on the single
dataset. As this parameter is a gross indicator of the mean span of the waiting phase, we
are not surprised by the need for this correction in order to adapt the regression curves
drawn on the ideal model to track peculiarities, such as the time difference vanishing
with which people cross each other in the Nokia trajectories. However, this rescaling
appears to be consistent. Still within the Nokia datasets, we must enlarge more the b val-
ues referring to dense traces rather than to sparse ones. Moreover, we cannot guarantee
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trigger times to be Pareto distributed. But we have also realized a broad independence of
the final distribution on the specific trigger one, so that we may appreciate the inferred
ν as an indicator of the first and second moment values.

With c things go worse. But this is to be expected given the tuning role of this pa-
rameter. We note, however, that taking into account its value in back-regressing α and
ν (through the minimizing procedure) diminishes the spread of these parameters.

Fig. 3.18, fourth column reinforces the hypothesis of a common phenomenon at the
basis of the different community mobilities. Indeed, it highlights the great similarity be-
tween the mobility parameters underlying the different benchmarks. This comes through
in the shape of the clouds gathering them and even in the location of the centroids of
the clusters emerging from a naive k-means algorithm [61] computed on the whitened
data [41] (to take into account the different dispersion of the mobility features).

3.8 Contrasting the literature

The common features emerging from the various tracks drawn from the different exper-
imental setups include: a prominent elbow, separating the plateau from the slope, and
a linearity of the tail. Actually, the elbow is an artifact of the CCDF LogLog represen-
tation of a vast variety of distribution laws, from uniform distribution to Gaussian, and
even to exponential one. Among them, the following distributions are adopted in the
literature as candidates to cope with a prominence of this feature: exponential, Pareto,
lognormal, tapered Pareto, truncated Pareto. In this section we will use these as com-
petitors of our shifted-Pareto distribution. An exception w.r.t. this feature is precisely
represented by the power law, here identified with the Pareto distribution, i.e. the most
simple version of the generalized power laws enunciated in the literature [124], whose
graph, on the contrary, fully meets the second feature of our tracks (see Figs. 3.11 and
3.13).

The time distribution we propose captures both features (prominent elbow and linear
slope) by introducing a shift in the coordinate of the power law distribution as done by
Pareto himself over a century ago [102]. Then, in analogy with the 3-parameter gener-
alized Pareto described by the formula

FT (t) =
(

1+
a(t− c)

b

)− 1
a

I[c,+∞)(t) (3.59)

we introduce in (3.42) further scale parameters to render it adaptive to many experimen-
tal situations, but in a slight different way than in (3.59) in order to get more efficient
statistical tools for estimating its parameters as in Section 3.6. By contrast, the random
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Fig. 3.19 CCDF LogLogPlot of a T randomly varying according to: (a) a double Pareto; (b) a tapered
Pareto.

process we consider, is quite different from those to which the Pareto family usually
applies [96], as mentioned in our introduction. Thus, the wait and chase model has no
direct connection with the rich get richer paradigm used both in economics [110] and in
web consensus phenomena [25]. The same holds for the dynamics of exceptional events
in nature, such as earthquakes [104], which are far from the dynamics of our agents.

From a strictly analytical perspective, with our curves we have a course that is close
to be exponential before the elbow and definitely power law after it. They cope re-
spectively with the mentioned plateau and slope we observe in the experimental tracks.
Wanting to explicitly maintain this dichotomy, other authors gave different readings of
these courses, for instance in terms of: i) a double Pareto curve (a lower power curve
followed by a greater power one) [109], or, in alternative, ii) a temporal sequencing of a
Pareto trend proceeding with an exponential distribution that quickly nears 0 [29]. Now,
while extensively studied in growth phenomena [91, 110], the double Pareto not only
has been adapted to mobility studies with feeble results; it also misses the real course of
the first part of the experimental curves (see Fig. 3.19(a)). Vice versa, the tapered Pareto
distribution [69]

FT (t) = 1−
(

k
t

)α

e
k−t

b I[k,+∞)(t) (3.60)

and similar ones [26, 66] recently brushed out to cope with the questioned phenom-
ena [29] in line with alternative ii), have the exponential decrease in the rightmost part of
the curve as their main drawback (see Fig. 3.19(b)). This is somehow explained in terms
of nomadic motion [76], and find a good fitting only with specially devised traces [112].
As a matter of fact, researchers working on Nokia datasets also [103] lean toward an
analytical description of these data through a tapered Pareto distribution, though admit
that other types of mobility patterns, and consequent distributions, could equally serve
their purpose.
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Other authors prefer concentrating their analysis on the most populated part of the
traces to gain simplicity. Thus they [26, 29] bind the analysis near the plateau, lowering
the relevance of the remaining times with the twofold effect of shading off times that are
exceedingly long and exceedingly costly to process re parameter estimation. Then, they
analyze the surviving data according to the candidate distributions mentioned in this
section, using various goodness-of-fit (GoF) tests to decide the ultimate model. Aiming
to show the benefits of our model, we both repeat part of these tests and make specific
theoretical considerations as a further preference argument.

We use the same statistics as in [33] and [65], i.e. the Cramer-von-Mises (CvM)
test [35] and the Akaike criterion [3], respectively. Thus in Table 3.3 we index the rows
with the experimental benchmarks considered, and head the columns with the candidate
distributions. In each cell we report both the percentage of traces not rejected by the
CvM test having the column distribution as null hypothesis, and the percentage of traces
whose Akaike statistic computed on the column distribution proves to be the best, i.e.
the lowest, re the other candidates. To be compliant with analogous tables in the cited
papers, we used the maximum likelihood estimators of the competitor distribution laws,
mentioning that their computation deserves some numerical instability when referred to
the tapered distribution [69].

We remark the general superiority of our distribution, which is partly due to the re-
called fact that for each trace we have concretely available a huge set of compatible
distributions from which to select the one minimizing the test statistic. Fig. 3.20 shows
this point with respect to one of these curves. Of the compatible distributions, we re-
ported both the median one (the usual reference term of the other pictures) and the
optimal one re the adopted test. From their comparison, two different inference targets
clearly emerge. The median curve aims to fit the entire experimental track well with
special regard to the tail, due to the special features of heavy tailed distributions on the
one hand and the involved statistics on the other one. The optimal curve focuses on
the mean score of the fitted points, thus tending to sacrifice the tail points at the entire
benefit of the remaining bulk. This is particularly true with the CvM test, where the con-
tribution of each point to the statistic is at most 1

m , no matter how far the point is from
the hypothesized track. Actually, while the Akaike criterion is always in our favor, the
CvM test promotes the truncated Pareto distribution on the HMTD benchmark, and the
exponential distribution on the PTR benchmark. Note that on the other two benchmarks
we beat the other candidates also on the basis of the median curves. The difference
between the two inference targets mainly determines the beneficial difference between
ours and most alternative approaches. Actually, the various artifices to embed an elbow
in the Pareto distribution, such as by multiplying it with an exponential distribution (the
origin of tapered distribution), or truncating the former to its maximum observed value
(the origin of the truncated Pareto), have the main effect of canceling the heavy tailed
feature. As a consequence we miss the fitting of the tail observations, which neverthe-
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Fig. 3.20 Comparison between median curves (thick black) and the best fitting ones (dashed black)
computed according to: (a) CvM test, and (b) Akaike criterion, for a Helsinkidense track. Same notation
as in Fig. 3.13.

less constitute however almost one third of the entire sample. Thus, losing the CvM test
in the mentioned benchmarks, despite we win w.r.t. the Akaike criterion, may denote
the unsuitability of this test to our inference goal rather than a failure of the inference.
In any case, since these statistics are distribution free, we may state that, over a sample
of 303 elements, the goodness of fitting a general walker mobility through our model
passes the CvM test in 81.52% of the cases and beats the competitor models on the basis
of Akaike statistic 100% of the time.

Summarizing the comparison with state-of-the-art models, we can say that ours gives
rise to an intercontact distribution law having a strong rationale in the dynamics of
human agents within a social community and that it enjoys efficient statistical tools to
infer its free parameters. These tools are so powerful that they meet different fitting
criteria. We often beat competitor models as for standard GoF tests, with the additional
ability to earn comparable scores even under the unprecedented constraint of preserving
the heavy tailed feature of the observed data.

3.9 Concluding remarks

In view of discussing the genuine roots of the non Brownian motions we toss in this
chapter the non symmetry features of the involved random phenomena. Reading these
features in terms of intentionality driving the members of a social community far from
a simple random walk, we focus on elementary processes where trajectories cannot be
considered as the accumulation of a symmetric noise. To this aim we have introduced an
extended Pareto distribution law with which we analyzed some intentional trajectories.
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Actually, discovering a law ruling Nature requires managing features that are com-
mon to its application field. Without any philosophical pretension, we may identify them
with properties with a certain degree of uniformity. It may refer to invariance of physical
laws [97], uniformity of organic systems [120] or constancy of living systems’ morphol-
ogy [47], and so on. Under a logical perspective all of them share the minimal feature
of symmetry as both a fairness guarantee and a universality prerequisite. Moving from
static laws to algorithms, their correctness has been customary tossed in terms of homo-
geneity: the algorithm is correct since it produces a correct output for whatever input,
with the understatement that an extended form of symmetry now concerns the tool for
processing data and not the phenomenon generating them. Recently, the granular com-
putation framework [9] moved a step ahead in the consideration of symmetry constraints
versus benefits. Within this framework, an algorithm is satisfactory if it works well on
a certain set of inputs, not necessarily coinciding with the input universe. To be use-
ful, however, we expect that this set covers a wide family of instances that we may
encounter in the real world. Now, with this strategy algorithms are tailored on data, thus
producing statistics, by definition. The study of statistics, however, is tightly connected
to the study of probabilistic models, in turn heavily biased by symmetry constraints as
antidotes to lack of knowledge. This opens a hiatus in the above sequence toward the
symmetry release. So, in this chapter, on the one side we introduce a very elementary
model to explain the clean, and complex as well, phenomena connected to the bumps
of a dodgem car, in the ambition of having them as a template of a vast family of inten-
tional processes. On the other side, to empower the model, we have been pushed to fill
the mentioned gap between model and statistics for its identification.

Facing a new kind of processes we found beneficiary using a new statistical frame-
work represented by the Algorithmic Inference, getting some satisfactory results. Far
from considering exhausted the matter, in the next chapter we introduce this mobil-
ity model in a very complex process implementing a subsymbolic learning procedure.
Learning indeed looks us to be the archetype of the intentional processes.



Chapter 4
Information driven dynamics

One of the most relevant topic of the computer science is the computational learning, i.e.
to design algorithms enabling a computer system to (almost) autonomously add a new
program in its software library just after analyzing relevant data. This looks us to be the
archetype and the abstraction as well of any intentional behavior. Relating the degree of
autonomy to the absence of any structured knowledge transmitted by other systems, an
extreme stretching of the above goal is to reach it through a sub-symbolic computational
tool, say a neural network. With these premises, in this chapter we toss the augmentation
of a neural network through the addition of the motion facility of its neurons. For short:
What’s better than a neural network? A network of mobile neurons. We interpret this
empowering as an addition of a further intentionality expression. Hence we finalize the
neuron motion to exploit a greater cognitive performance, like it happens in Nature. This
is why we start this chapter with some biological recalls. Then we move to our artificial
implementation, by introducing a new paradigm of neural network by coupling the well
assessed evolution of the network parameters through the back-propagation algorithm
with a dynamics of its neurons. They move according to Newtonian laws which are
parametrized on cognitive quantities and finalized to reaching a ground state denoting a
firm stability of the acquired knowledge. This entails a new training algorithm that we
toss on two common benchmarks for regression and classification tasks, respectively.
Besides the canonical efficiency indicator, such as convergency speed and test error, we
discuss of the structural features emerging from the dynamics of this network.

75
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4.1 A biological insight of intentionality

The macro-scale intentional behavior we caught by the use of processes with memory
can be found also in the micro-scale domain. Moving for a while our discussion to biol-
ogy, we can find a very similar representation of the previously discussed intentionality,
though intended in a little different way. We are referring to what happens during the
process of the human brain morphogenesis, here the first step in wiring the nervous
system together is the generation of neurons. Consider for example the striate cortex.
In the adult, there are six cortical layers, and the neurons in each of these layers have
characteristic appearances and connections that distinguish striate cortex from other ar-
eas. Neuronal structure develops in three major stages: cell proliferation, cell migration,
and cell differentiation. We will use the central visual system as an example of this
process [15].

Cell proliferation

The brain develops from the walls of the five fluid-filled vesicles. These fluid-filled
spaces remain in the adult and constitute the ventricular system. Very early in develop-
ment, the walls of the vesicles consist of only two layers: the ventricular zone and the
marginal zone. The ventricular zone lines the inside of each vesicle, and the marginal
zone faces the overlying pia mater1. Within these layers of the telencephalic vesicle, a
cellular ballet is performed that gives rise to all the neurons and glia of the visual cortex.
The process can be summarized as follows:

1. A cell in the ventricular zone extends a process toward the pia mater that reaches the
upward zone of the cortical plate.

2. The nucleus of the cell migrates upward from the ventricular surface toward the pial
surface; the cell’s DNA is copied.

3. The nucleus, containing two complete copies of the genetic instructions, settles back
to the ventricular surface.

4. The cell retracts its arm from the pial surface.
5. The cell divides in two.

The fate of newly formed daughter cell depends of a number of factors. As a matter
of fact, a ventricular zone precursor cell that is cleaved vertically during division has
different fate than one that is cleaved horizontally. After vertical cleavage, both daughter

1 The surface of the central nervous system is covered by three membranes called meninges: the dura
mater, the arachnoid membrane and the pia mater. The pia mater is the innermost of these three
meninges.
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cells remain in the ventricular zone to divide again and again. This mode of cell division
predominates early in development to expand the population of neuronal precursors.
Later in development, horizontal cleavage is the rule. In this case, the daughter cell lying
farthest away from the ventricular surface migrates away to take up tis position in the
cortex, where it will never divide again. The other daughter remains in the ventricular
zone to undergo more divisions. Ventricular zone precursor cells repeat this pattern until
all the neurons and glia of the cortex have been generated (see Fig. 4.1).

Fig. 4.1 (Up-left) The wall of the brain vesicles Initially consists of only two layers, the marginal zone
and the ventricular zone. Each cell performs a characteristic ”dance” as it divides, shown here from
left to right. The circled numbers correspond to the five ”positions” described in the text. The fate
of the daughter cells depends On the plane of cleavage during division. (Up-right) After cleavage in
the vertical plane. both daughters remain in the ventricular zone to divide again. (Down-right) After
cleavage in the horizontal plane, the daughter farthest away from the ventricle ceases further division
and migrates away.
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In humans, the vast majority of neocortical neurons are born between the fifth week
and the fifth month of gestation, peaking at the astonishing rate of 250,000 new neu-
rons per minute. Recent findings suggest that although most of the action is over well
before birth, the adult ventricular zone retains some capacity to generate new neurons.
However, it is important to realize that once a daughter cell commits to a neuronal fate,
it will never divide again.

Mature cortical cells can be classified as glia or neurons, and the neurons can be fur-
ther classified according to the layer in which they reside, their dendritic morphology,
and the neurotransmitter they use. Conceivably, this diversity could arise from different
types of precursor cell in the ventricular zone. In other words, there could be one class
of precursor cell that gives rise only to layer V I pyramidal cells, another that gives rise
to layer V cells, and so on. However, this is not the case. Multiple cell types, including
neurons and glia, can arise from the same precursor cell. Because of this potential to give
rise to many different types of tissue, these precursor cells are also called neural stem
cells. The ultimate fate of the migrating daughter cell is determined by a combination of
factors, including the age of the precursor cell, its position within the ventricular zone,
and its environment at the time of division. Cortical pyramidal neurons and astrocytes
derive from the dorsal ventricular zone, whereas inhibitory interneurons and oligoden-
droglia derive from the ventral telencephalon. The first cell to migrate away from the
dorsal ventricular zone are destined to reside in a layer called the subplate, which even-
tually disappears as development proceeds. The next cells to divide become layer V I
neurons, followed by the neurons of layers V , IV , III and II.

Cell migration

Many daughter cells migrate by slithering along thin fibers that radiate from the ven-
tricular zone toward the pia. These fibers are derived from specialized radial glial cells,
providing the scaffold on which the cortex is build. The immature neurons, called neu-
roblasts, follow this initial radial path from the ventricular zone toward the surface of the
brain. Recent studies indicate that some neurons actually derive from radial glia. In this
case, migration occurs by the movement of the soma within the fiber that connects the
ventricular zone and pia. When cortical assembly is complete, the radial glia withdraw
their radial processes. Not all migrating cells follow the path provided by the radial glia
cells, however. About one-third of the neuroblasts destined to become sub-plate cells
are among the first to migrate away from the ventricular zone. Neuroblasts destined to
become the adult cortex migrate next. They cross the sub-plate and form another cell
layer called the cortical plate. The first cells to arrive in the cortical plate are those that
will become layer V I neurons. Next come the layer V cells, followed by layer IV cells,
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Fig. 4.2 The first cells to migrate to the cortical plate are those that form the sub-plate. As these differ-
entiate into neurons. the neuroblasts destined to become layer VI cells migrate past and collect in the
cortical plate. This process repeats again and again until all layers of the cortex have differentiated. The
sub-plate neurons then disappear.

and so on. Notice that each new wave of neuroblasts migrates right past those in the
existing cortical plate. In this way, the cortex is said to be assembled inside-out (see
Fig. 4.2). This orderly process can be disrupted by a number of gene mutations.

Cell differentiation

The process in which a cell takes on the appearance and characteristics of a neuron is
called cell differentiation. Differentiation is the consequence of a specific spatiotemporal
pattern of gene expression. Neuroblasts differentiation begins as soon as the precursor
cells divide with the uneven distribution of cell constituents. Further neuronal differen-
tiation occurs when the neuroblast arrives in the cortical plate. Thus, layer V and V I
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neurons have differentiated into recognizable pyramidal cells even before layer II cells
have migrated into the cortical plate. Neuronal differentiation occurs first, followed by
astrocytes differentiation that peaks at about the time of birth. Oligodendrocytes are the
last cells to differentiate.

Differentiation of the neuroblast into a neuron begins with the appearance about the
same, but soon, one becomes recognizable as the axon and the other dendrites.

4.2 Moving from biological neural networks to Artificial Neural
Networks

After the completion of the morphogenesis process, the resulting structure is a com-
plex network spread on almost seven layers representing one of the fundamental part
of the whole abstraction and learning mechanism. Few years ago, in the artificial neu-
ral network field there were the first attempt to pass from the usual 1,2 or 3 levels
architecture to a deeper one with 5,6 or 7 layers, like the human brain really is. The
passage was not so easy due to the fact that the common learning algorithms used to
train artificial neural network, when applied to this deeper architecture present a great
deterioration in term of performances. For example the well known back-propagation
learning algorithm run on this deep architectures used to get stuck in poor local minima
of the objective function [75]. Thus, new ways to train such deep networks have been
crafted: the seminal work on this was done by Hinton et al. who introduced the so called
Deep Belief Networks (DBN) [62] with a learning algorithm that greedily trains one
layer at a time, exploiting an unsupervised learning algorithm for each layer, named Re-
stricted Boltzmann Machine (RBM) [119]. These kind of networks have been applied
successfully to a huge number of problems: classification tasks [18, 107, 78], but also
in regression [118], dimensionality reduction [117], modeling textures [100], modeling
motion [128], object segmentation [80], information retrieval [130], natural language
processing [92], etc . However the question remains: is it possible to profitably train a
deep neural network with standard algorithms like back-propagation so that to maintain
a simple learning procedure without having to pay in terms of performances ?

4.3 An Artificial Neural Network with mobile neurons

Looking at biology we can state that the success of a complex biological neural network
is determined by two main factors [88]:

1. an effective mobility of neurons during the brain morphogenesis



4.3 An Artificial Neural Network with mobile neurons 81

2. a selective formation of synaptic connections

In the field of Artificial Neural Networks we can find a huge quantity of techniques
inspired on the second point, we can mention for example the ART algorithms [28] or
the whole family of growing and pruning methods [20]. While the second point has been
deeply investigated, the first one has never been taken into account explicitly, indeed
many author preferred to consider directly the entire neural architecture to evolve toward
an optimal configuration to be trained [99].

To fill this lack we introduce both a mobility paradigm for the neurons of a multilayer
neural network and a methodology to train this new kind of network so that all neurons,
though acting as single entities, cooperate together bringing out a collective behavior.
The lead idea is that neurons move toward the most informative mates to better learn
how to fulfill their part in the overall functionality of the network. Thus, on the one hand
neurons from the upper layer attract those lying on the lower layer with the strength of
the information they pipe (the back-propagated delta term). On the other hand, the latter
repulse one another whenever they do the same job, i.e. have similar weights connecting
them with upwards neurons. If we associate a potential field to these attraction/reaction
forces, and put neurons in this field as particles ruled by a Newtonian dynamics, we
obtain a neuron dynamics that we plan to be modulated by the learning process. With
this aim we have to add the Hamiltonian of this motion into the cost function of the
training process thus obtaining a great synergy between the physical and information
components of an extended Lagrangian ruling the entire dynamics of the network.

Thanks to this contrivance we are able to work well with deep neural network archi-
tectures on different benchmarks bypassing the mentioned drawbacks (as seen before)
and getting satisfactory learning results, though not yet stretched to compete with the
best ones available in the literature. Rather, we use these benchmarks to capture some
features of the above physics-cognition synergy.

4.3.1 The model

Let us start with a standard model of an r-layer neural network where all neurons of
a layer are located in a Euclidean space X which is two-dimensional by default. The
activation of the generic neuron is ruled by:

τ j = f (net j); net j =
ν`

∑
i=1

w jiλ jiτi; λ ji = e−µd ji ; (4.1)

where τ j is the state of the j-th neuron in the `+ 1-th layer, w ji the weight of the con-
nection from the i-th neuron of the lower layer ` (with an additional dummy connection
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in the role of neuron threshold), ν` the number of neurons lying on layer `, and f the
activation function, as usual. By contrast, net j is a new expression of j-neuron net-input
where λ ji is a penalty factor depending on the topological distance d ji between the two
neurons, or from another point of view it can be read as the scaling factor that influences
the contribution coming from the neurons belonging to the layer `. This reads in the
following rule: the closer is a neuron on the layer ` to one lying on the `+1 the greater
is its contribution to the state of the latter. Namely, d ji = ‖x j−xi‖ 2, where x j denotes
the position of the neuron within its layer. Note that the distance formula does not take
into account the value ` of the layer where the single neurons lie. Thus, if they belong to
two different layers we may figure them as projected into the same X plane. The penalty
factor is a distinguishing feature of our model linking the cognitive aspects to the neu-
ron dynamics determining the distance d ji – a feature that we ascribe to the physical
aspects of the network. As for the latter, we assume the neurons to be embedded into
a potential field smeared in a single X plane into which we project contiguous layers.
The potentials are linked to the mentioned attraction/repulsion forces which move the
neurons according to a Newtonian dynamics (see Fig. 4.3).

4.3.2 Potentials

Let us fix the notation:

• with the subscript j we refer to the neurons belonging to the layer `+1;
• with the subscript i,i′ we identify the neurons belonging to the layer `;
• ` goes from 1 to r.

For each neuron of the network, let us say the i-th neuron, we have:

1. an attraction force A by every j-th neuron of the upward layer expressed by the
formula:

A = G
m jmi

ζ 2
ji

(4.2)

where G is the gravitational constant and ζ ji is the distance between the two neurons
in their role of particles of masses mi,m j. The distance is considered in a three-
dimensional space, where the third coordinate refers to the distance between layers.
We assume it to be a constant h so high that it allows us to resume in it both the
contribution of the components in the X plane and the square root of G, for the sake
of simplicity;

2 With ‖ · ‖i we denote the Li-norm, where i = 2 is assumed wherever not expressly indicated in the
subscript.
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Fig. 4.3 Potential field generated by both attractive upward neurons (black bullets) and repulsive sib-
lings (gray bullets). The bullet size is proportional to the strength of the field, hence either to the neuron
mass (black neurons) or to the outgoing connection weight averaged similarity (gray neurons). Arrows:
stream of the potential field; black contour lines: isopotential curves.

2. an l-repulsive elastic force R between particles of the same layer which are closer
than l, expressed by:

R = kii′max{0, l−dii′} (4.3)

where kii′ is the elastic constant between particles i and i′. The force is linearly de-
pendent on the compression l−dii′ between them.

3. a mass m expressed in term of the information content of each i-th neuron identifiable
in our back-propagation training procedure by the error term δ :
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mi =
δi

‖δ‖1
(4.4)

where in the standard formulation δ is defined as:

δi =

{
f ′(neti)(τi−oi) if `= r
f ′(neti)∑ j δ jw ji otherwise.

(4.5)

In the next paragraphs there will emerge that when ` < r the formula is quite different
due to the introduction of an entropic term we will motivate later.

Let now combine the attraction force A with both the repulsive force R and another term
expressing the kinetic energy in correspondence to the neuron velocities v’s, obtaining
the energy of the network by the formula:

P = ξP1P1 +ξP2P2 +ξP3 P3 (4.6)

where ξP1 ,ξP2 ,ξP3 are suitable coefficient in the role of tuning parameters and

P1 =
1
h ∑

i, j
mim j (4.7)

P2 =
1
2 ∑

i,i′
kii′max(0, l−dii′)

2 (4.8)

P3 =
1
2 ∑

i
mi‖vi‖2 (4.9)

Equation (4.7) state the gravitational potential according to (4.2) whereas eq. (4.8) iden-
tifies the l-repulsive elastic energy where the elastic constant kii′ is a function of the an-
gular distance between the weight vectors wi,wi′ connecting the i, i′-th neuron to those
lying on the layer `+1:

kii′ =

∣∣∣∣ 〈wi ·wi′〉
‖wi‖ · ‖wi′‖

∣∣∣∣=
∣∣∣∣∣∣∣

∑ j wi jwi′ j√
∑ j w2

i j

√
∑ j w2

i′ j

∣∣∣∣∣∣∣ (4.10)

Finally, P3 is the kinetic energy of the network where vi is the velocity of the i-th neuron
calculated using the following formulas relating together the position xi, the velocity vi
and the acceleration ai of each computational moving unit:

x(n) = x(0)+
n

∑
h=1

v(h)t(h) = x(n−1)+v(n)t(n) (4.11)
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v(n) =
n

∑
h=1

a(h)t(h) = v(n−1)+a(n)t(n) (4.12)

where the superscript refers to h-th discrete time instant. Now we can substitute (4.12)
in (4.11) so that we are able to compute x(n) using the formula:

x(n) = x(n−1)+v(n−1)t(n)+a(n)t2(n) (4.13)

so it remains to calculate the acceleration a(n) at time n. Through the potential P we
are able to calculate the global acceleration of the system: on the one side the potential
energy moves the i-th neuron toward the j-th neuron with higher δ , according to the
formula

∑
j

m jsign(x j−xi) (4.14)

on the other side the elastic repulsion moves away the neurons on the same layer with an
acceleration i) in inverse proportion to the angular distance between the synaptic weights
of the neurons lying on the same layer and ii) in inverse proportion to their distances.

By design we decided to introduce a rest position through the constant ` beyond
which there is no repulsion, so the complete formula is

−∑
i

kii′max(0, l−dii′)sign(xi′ −xi) (4.15)

and finally we obtain the acceleration formula for the generic neuron i:

ai = ξ1 ∑
j

m jsign(x j−xi)−ξ2 ∑
i

kii′max(0, l−dii′)sign(xi′ −xi) (4.16)

for proper ξis. Actually, for the sake of simplicity we embed the mass of the accelerated
particle into ξ2. Since this mass is not a constant, it turns out to be an abuse which
makes us forget some sensitivity terms during the training of the network. Moreover, in
order to guide the system toward a stable configuration, we add a viscosity term which
is inversely proportional to the actual velocity, namely −ξ3vi, which we do not reckon
within the Lagrangian addends for analogous simplicity reasons. It is worth noting that
the ξh, h = 1,2,3 multipliers are different from those introduced in (4.6), moreover here
the superscript indicating the time instant is not reported for a better readability.
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4.3.3 Error term

The missing part that completes our model creating in the meanwhile a cost function
comprehensive of both dynamics and cognitive aspects, can be resumed in:

• a customary quadratic error function

Ec =
1
2 ∑

o
(τo− zo)

2 (4.17)

where o indexes the output neurons, τ is the network output and z is the target output.
• an entropic term devoted to promoting a representation of the neuron state vector

through independent Boolean components via a Schur-concave function as discussed
in Section 2.5. According to the notation of this section, the edge pulling function
reads now:

Eb = ln

(
∏

i
τ
−τi
i (1− τi)

−(1−τi)

)
(4.18)

As a conclusion, we put together both the Lagrangian of physical part of the neuron
motion and the cognitive parts regarding the error terms, thus obtaining an Hamiltonian
H of the form:

H = ξecEc +ξebEb +ξp1P1 +ξp2P2 +ξp3P3 (4.19)

and substituting with have:

H = ξe
1
2 ∑

o
(τo− zo)

2 +ξbln

(
∏

i
τ
(−τi)
i (1− τi)

−(1−τi)

)
+

ξ1 ∑
i, j

mim j +ξ2
1
2 ∑

i,i′
kii′max{0, l−dii′}2 +ξ3

1
2 ∑

i
mi‖vi‖2 (4.20)

We want to minimize (4.20) in order to find the configuration of lower energy that better
approximates the function we are trying to learn.

4.4 Training the network

In spite of recent trends to look for different strategies for training the multilayer per-
ceptron, specially if designed with more than one hidden layer, once again we commit
back-propagation (Chapter 2) to perform this task. The idea is that the dynamic we in-
troduce on the neurons’ layout, along with the augmentation of the cognitive aspects,
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will be sufficient to get rid of some of the standard implementation drawbacks [17]. Per
se, the classical back-propagation algorithm comes directly from the functional mini-
mization of a Lagrangian related exactly to the quadratic error Ec [36]. Rather, taking
for granted the Newtonian dynamics that comes from the extended Lagrangian as well,
we focus on the Hamiltonian of our system and specifically look for its parametric min-
imization. This leads to the identification of the system ground state which according to
quantum mechanics denotes one of the most stable configurations of the system equi-
librium. Actually, the framing of neural networks into the quantum physics scenario has
been variously challenged in recent years [57]. However these efforts mainly concern the
quantum computing field, hence enhanced computing capabilities of the neurons. Here
we consider conventional computations and classical mechanics. Rather, superposition
aspects concern the various endpoints of learning trajectories. Many of them may prove
interesting (say, stretching valuable intuitions). But a few, possibly one, attain stability
with a near to zero entropy – a condition which we strengthen through the additional
viscosity term.

Looking for the minimum of the cost function (4.20) requires only a careful compu-
tation of the derivatives of all its addends w.r.t. each connection weight w ji. In particular,
as for the cognitive part, we must consider the dependence of λ ji on w ji which passes
through the dependence of the position xi and x j on the same parameter. As for the phys-
ical part, we must also consider the dependence of the acceleration ai, velocity vi and
the elastic constant k ji on w ji.Thus the main expressions related to the above derivatives
are summarized in Table 4.1.

The interested reader could find all the details about the derivatives for the back-
propagation in Appendix A.

4.5 Numerical Experiments

Adding degrees of freedom to a neural network makes sense only if we are able to gov-
ern its evolution. The failure of this attitude is the common reason why we generally
abandon the implementation of both recurrent neural networks [63] and the most ingen-
uous versions of deep architectures as well [48]. Hence we stress our network of mobile
neurons – which copes both with the recursiveness through the neurons physical motion
and with the deepness of the architecture through a relatively high number of its layers
– on two typical benchmarks as a specimen of a regression problem and a classification
task, respectively.

1. The Pumadyn benchmark pumadyn8-nm. It is drawn from a family of datasets which
are synthetically generated from a Matlab simulation of a robot arm [34]. It contains
8,192 samples, each constituted by 8 inputs and one output. The former record the
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error

∂ (Ec +Eb)

∂w ji
=

(
1−

w ji

d ji
(x j−xi)

∂xi

∂w ji

)
λ jiτiδ j;

δ j = f ′(net j)

(
−γ ln

(
τ j

1− τ j

)
+∑

k
δkλk jwk j

)
; γ =
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ξec

potential
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sign(δi)
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)
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=
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∂a(n)i
∂w ji

)
∂kii′

∂w ji
= sign

(
〈wi ·wi′ 〉
‖wi‖ · ‖wi′‖

)w ji′‖wi‖ · ‖wi′‖−〈wi ·wi′ 〉w ji
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‖wi‖

(‖wi‖ · ‖wi′‖)2

∂dii′

∂w ji
= −xi′ −xi

dii′

∂xi

∂w ji

Table 4.1 Gradient expressions for the backward phase from last-but-one layer down.

angular positions and velocities of three arm joints plus the value of two applied
torques. The latter is the resulting angular acceleration of one of the joints. This
acceleration is a nonlinear function of the inputs which is affected by moderate noise
as well.

2. The MNIST benchmark. This handwritten digits benchmark [77] consists of a train-
ing and a test set of 60,000 and 10,000 examples, respectively. Each example con-
tains a 28×28 grid of 256-valued gray shades (between 0 and 255, with 0 meaning
black and 255 white). It is a typical benchmark for classification algorithms, given
the high variability of the handwritten representation of the same digit.

With these highly demanding datasets, at the moment we have no ambition to win a
competition with the many methods which have been tossed on them. Rather, we want
to use these data as different-size/different-task instances on which to carry out a test
lap of the new learning machinery we have set up.
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4.5.1 Assessing the new training procedure

At the start of the lap, we had to solve three kinds of partly nested problems:

1. designing the architecture,
2. assessing the particle dynamics,
3. tuning the learning parameters.

The solution we assessed for the moment are the following:

1. As for the former, we strove to stress the capability of working with deep networks.
Therefore we devised a 5-layer network in each experiment. We distribute the neu-
rons on the crosses of a plane square grid in each layer, apart from the output layer.
We standardize the grid edge to a size equal to 100 and centered each grid in (0,0).
Then, the number of neurons per layer is determined by the benchmarks as for in-
put and output, while is decided by us in order to be sufficient to manage the piped
information, as for the intermediate layers. In particular,

• for Pumadyn dataset we have 8 input neurons in a grid of 3×1 cells and only one
output neuron. This results in a 8×100×80×36×1 perceptron.

• For the MNIST benchmark, facing the 28×28 raster of the digits, we reduce the
number of pixels by 4, just by periodically taking the average of contiguous values
on both axes. Hence we have an input layer of 196 neurons spread in a grid of
13×13 cells. Concerning the output, we opted for a unary representation; hence we
commit a single neuron to answer 1 and the others 0 on each digit. We distributed
these neurons on a circle of ray equal to 50 centered in the axes origin like the
other layers. In conclusion, we have a 196×120×80×36×10 network.

This is for the initial layouts which we may see in Fig. 4.1e. Then the neurons will
find their proper positions by themselves.

2. The physics of the particle motion is characterized by a time step tn equal to 0.02
per state update. This is a critical parameter tuning the velocity of the physical parti-
cles within the Euclidean space w.r.t. the velocity of the same particles in the weight
space. We assume that particles are able to find the best reciprocal positions. How-
ever, an exceeding velocity could thwart any training effort because of the continually
changing configuration of the network. In Fig. 4.7 we highlight this crucial aspect
which we may synthesize by claiming that we need a gentle particle motion to avoid
hard training backtracking which frustrates the overall training.
Our neurons are cognitive particles which need a proper metering system. We take
care of it in a tight empirical way through the ξ coefficients with the practical aim of
balancing the cost terms in the Hamiltonian (4.20). It is suggestive the fact that we
use the same coefficients in the two benchmarks, in spite of the very different goals
of the two experiments.
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Fig. 4.1e The initial network layouts for: (a) Pumadyn, and (b) MNIST.

(a) (b)

Fig. 4.7 Neuron trajectories of: (a) a not well tuned training story, and (b) a successful one where the
dynamic is more gentle. Bullets: neurons of the second layer in the MNIST benchmark (grey/black:
initial/final position).

3. As for the cognitive aspects, the effect of neuron motion on the training process is
linked to two factors. An indirect one is represented by the enriching of the cost
function with physical energy terms, so that its minimization entails that the connec-
tion weights must change also in order to freeze the dynamics of the ground state.
The more direct effect comes from the penalty term λ ji which reduces the influence
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Fig. 4.9 Histograms of the state values of two typical hidden layer neurons at the end of training.

of farther neurons in the net-input accumulation. This plays a dual role of: 1) mod-
ulating the load of the Hamiltonian gradient cumulated over the reversed outgoing
connections, hence the amount of weight changes along the training steps, and 2)
determining the specialization rate of the various neurons w.r.t. the facing mates in
the contiguous layers. We experimented on several alternative time strategies aimed
at either reducing or increasing the radius of influence of the single back-propagating
neurons, attesting at end that the better choice is to keep the radius at fixed value – it
could be a different one layer per layer – along the training.
A second key aspect in the training process is the effect of the BICA term (4.18). As
aforementioned, this cost term is devoted to promoting a meaningful representation
of the network state vector τ at each layer, in terms of tendentially binary independent
components. At the beginning of the training, specially if we initialize the weights
to very small values in order to prevent bias, this term may prove exceedingly high,
and thus requires a proper calibration of the coefficient γ . As a matter of fact, we
want this stretching of the state vector components toward the extremes to occur
at the end of the training, so as to saturate the output of the activation functions to
suitable values. Moreover, to increase the sensitivity of the system, we adopt the
usual back-propagation trick of normalizing the state range to (−1,1) through the
hyperbolic tangent activation function. The sole exception is the output neuron’s of
the regression task, which is linear. Thus a typical histogram of the component states
is the one depicted in Fig. 4.9.
In essence, we venture the conjecture that motion plus BICA goal induce a prepro-
cessing of the state vector in the same direction as more explicit techniques like
Restricted Boltzmann machines [51] in the role of autoencoders [132], but in a sim-
pler and quicker way, without straying from the root of the back-propagation method.
The curves in Fig. 4.10 confirm our conjecture. Namely, the descent of the error term
Ec summed over the training set – the training Mean Square Error (MSE) – with the
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Fig. 4.10 Course of training MSE with weight updates’ number (wun) for the regression problem.
Same architecture different training algorithms: light gray curve → standard back-propagation, dark
gray curve→ back-propagation enriched with the BICA term, black curve→ our mob-neu algorithm.

iterations improves when we add the BICA term in the cost function of the standard
backpropagation, and improves still more when we add motion to the neurons of the
same architectures.
To complete the setup of the training procedure we have to fix the learning rate pa-
rameters. We differentiate a coefficient concerning the contribution to weight adapta-
tion deriving from the weight sensitivity of the cognitive part (Ec +Eb) from another
linked to the analogous sensitivity of the dynamic part (P1 +P2 +P3). Both are expo-
nentially decaying of a pair of orders with the number of elapsed steps, whereas their
fixing depends on the benchmark features and on batch size, as usual.

4.5.2 Discussing some results

4.5.2.1 The regression task

In Table 4.2 we compare the test-set MSE of our procedure on the Pumadyn benchmark
with the ones obtained with other methods in the literature. To have a fair compari-
son we use a completely standard framework. Namely, according to the Delve testing
scheme [108] applied to the pumadyn-8nm dataset, we generate five groups of training
sets, of size 64,128,256,512 and 1024, respectively. Each group is made up of 8 dif-
ferent subsets (4 subsets for the 1024 one) of the downloaded dataset, each paired with
a different test set of fixed dimension 512 (1024 for the last one) drawn from the same
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dataset. Each pair training/test-set is the basis for one experiment. To have comparable
results to be statistically considered for the same training set size, targets are normal-
ized around their median value using the Median Absolute Deviation as a scale factor.
MSE results are computed on the original feature set removing the above normalization.
Namely, on this framework we compare the mean and standard deviation of the MSEs
obtained by our network of mobile neurons (mob-neu) with those of other methods
drawn from the Delve repository. For small sizes (64 and 128), our method outperforms
the others based on back-propagation even when they benefit from both test and valida-
tion sets, while it loses out w.r.t. regression methods based on different strategies (for in-
stance hidden Markov models, Bayesian methods, and so on). Things become less sharp
with higher sizes, where a few trespasses occur between the methods as for the means
and tangible overlaps as well of the confidence intervals. Admittedly, the considered
methods date at least 20 years, yet offering a completely definite comparison frame-
work. Looking at the most recent results we find notably progresses in this regression
problem. For instance, support vector regression methods improve these results of even
two orders when they are based on very specialized kernels [38], while model selection
and specific error functions may reduce the MSE of the back-propagation procedure by
a factor ranging from 2 to 3 [122]. Rather, we remark that our implementation was very
naive, in the sense that we did not spend much time searching for the best updating
strategy and parameter tuning, nor did we stretch out the procedure for long time. More-
over, we did not miss the general-purpose features of the training scheme. We simply
enriched the structure and the functionality of the underlying neural network.

The typical MSE descent of the training error (in the normal scale) with the number
of weight updates is reported in Fig. 4.11(a) for a batch size equal to 20. We appreciate
the generalization capability of the network in Fig. 4.11(b), where we represent in gray
the sorted test set targets and in black the corresponding values computed by our network
for one of the 8 replicas of the 512 experiment. In Fig. 4.11(c) we also plot the sorted
lists of the absolute errors obtained by our method and a couple of competitors. Since the
latter refer to the first and last rows of Table 4.2 we may realize how close the proposed
method works to the best one.

Lastly, in Fig. 4.12(a) we report the final layout of the neural network after training, as
a companion to the initial layout reported in Fig. 4.1e(a). Even though we do not have
yet a functional interpretation of the new layout, its features denote some persistency
along the Delve replicas, which put them far from a random generation.

4.5.2.2 The classification task

Moving on the classification problem, Table 4.3 shows the confusion matrix of the clas-
sifier on the entire MNIST test set we get directly from the output of a well trained neural
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network (i.e. assigning to a test pattern the label of the output neuron which computes
the highest state value). Postponing a more deeply statistical analysis to a further work,
we note in the matrix a fair distribution of the errors on the digits, though reflecting the
widely recognized greater difficulty of classifying digits like ‘9’.

The cumulative error rate is about 3.26%, that is definitely worse than the best results,
which attest at around one order less [31], yet without suffering a bad ranking w.r.t. a
plenty of methods given the amount of tuning efforts (2 days), the number of weight
updates (50,000) and the length of the running time (128 minutes) we devote to this
task. For instance, in Fig. 4.13 we report a few example of hard handwritten digits that
have been correctly classified, together with another set of such digits on which the
network did not succeed. Considering their shape we wander if it makes sense looking
for a network which recognizes the second picture of the first line to be a 9. Oreationally,
a recognition percentage of 99.7% is better than 97.0%, of course. But it sounds like to
give label to random noise. Hence a question arises on the replicability of the experiment
on another dataset.

Fig. 4.14 shows the error decreasing of the 10 digits classification. We use a batch
size of 30 examples randomly drawn from the 60,000 long training set, whereas the
error reported in Fig. 4.14 is measured on 200 new examples – actually a generalization
error causing some ripples on the trajectories of the single digits.

From Fig. 4.12(b) we capture the different displacement of the nodes w.r.t. the orig-
inal layout, due to a motion which preserves some symmetries but generates some pe-

64 128 256 512 1024

mlp-mc-1 1.96726 1.61052 1.25143 1.13004 1.07711
(0.276) (0.154) (0.0613) (0.0397) (0.0355)

gp-map-1 2.00875 1.55786 1.31765 1.13152 1.0794
(0.132) (0.0506) (0.0363) (0.0319) (0.0312)

mob-neu 5.25507 2.24522 1.81821 1.28294 1.21273
(0.541) (0.154) (0.096) (0.036) (0.034)

mlp-mdl-3h 6.40296 3.12531 2.82356 2.35649 2.1694
(0.620) (0.475) (0.575) (0.417) (0.614)

mlp-mc-2 8.93908 1.43405 3.21679 2.35757 1.08938
(2.53) (0.0412) (1.85) (1.22) (0.0322)

mlp-ese-1 9.36373 3.81698 1.73787 1.37629 1.2133
(0.776) (0.225) (0.0455) (0.0378) (0.0340)

mlp-wd-1 19.3383 6.78868 3.56734 2.71222 2.14455
(1.84) (1.76) (0.252) (0.228) (0.364)

Table 4.2 Comparison of regression performances. Raw: method; column: size of the pumadyn8-nm
training set; cell: MSE average and standard deviation (in brackets)
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Fig. 4.11 Errors on regressing Pumadyn. Course of: (a) training MSE with weight updates’ number
, (b) network output with sorted target patterns (stp), and (c) sorted absolute test error of our model
(black curve) and competitor mlp-mc-1 and mlp-wd-1 (gray curves) in Table 4.2.

culiar features as well. As mentioned before, we cannot claim to have reached a great
classification result in absolute. However we use a relatively small amount of compu-
tational resources, and process examples that are roughly compressed just by averaging
neighboring pixels. Nevertheless, we are able to classify digits which would prove am-
biguous even to a human eye. In addition, we are able to train a network of 5 layers and
442 nodes without falling in a local minimum outputting the average target value, as of-
ten happens with these deep networks. Thus we are motivated to investigate whether and
how the introduction of the dynamics in the network layers could care these benefits.

A first consideration is that thanks to the large number of the employed neurons and
their stable evolution, almost the entire (60,000 long) training set is well digested by
the training procedure, even though each example is visited meanly twice according to
our batching strategy. We assume it to be due to the cognitive structure the moving neu-
rons realize within the network. As an early analysis, in Fig. 4.15 we capture the typical
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dendritic structure of the most correlated and active nodes reacting to the features of a
digit. Namely, here we represent only the nodes whose output is significantly far from
0 with a significant frequency during the processing of the test set. Then we establish a
link between those neurons, belonging to contiguous layers, which are highly correlated
during the processing of a specific digit. In this respect, the pictures in Fig. 4.15 high-
light a dendritic structure underlying the recognition of digits ‘3’ and ‘4’. An analogous
analysis on intra-layer neurons highlights cliques of neurons jointly highly correlated in
correspondence of the same digit, as shown in Fig. 4.16.

4.6 Further improvements

Fuzzyfication of λ s

The influence of the cognition on the dynamics is ruled by the cognitive masses and the
elastic constants, as shown before. The reciprocal influence of the dynamics on cogni-
tion is determined by the penalty terms λ jis. We may consider these coefficients in terms
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Fig. 4.12 The final layout of the multilayer perceptrons in Fig. 4.1e.
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Fig. 4.13 Examples of wrongly and correctly classified ‘9’s.

of membership degrees (see Fig 4.17). Actually the upper layer neurons act as attractors
of the lower-layer neurons as for the information piping. As their core business is to
learn, the latter must decide to which attractor to pay more attention. In terms of fuzzy
sets, this translates in the solution of a fuzzy c-means algorithm (FCM) [42] with given
cluster centroids (the above attractors), once a proper metric has been fixed. Using the
Euclidean distance of the lower-layer neuron to its upper-layer attractor as a metric, the
classical instantiation consists in solving the minimization problem:

min
λ

∑
i j

λ
µ

ji d
2
ji; µ > 0;∑

j
λ ji = 1 (4.21)

which find solution:

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 964 0 2 2 0 2 4 3 2 1 1.63
1 0 1119 2 4 0 2 4 0 4 0 1.41
2 6 0 997 2 2 2 4 11 8 0 3.39
3 0 0 5 982 0 7 0 6 6 4 2.77
4 1 0 2 0 946 2 7 2 1 21 3.67
5 5 1 1 10 0 859 7 1 5 3 3.70
6 5 3 1 0 3 10 933 0 3 0 2.61
7 1 5 14 5 2 1 0 988 3 9 3.89
8 4 1 2 8 3 3 8 4 938 3 3.70
9 5 6 0 11 12 8 1 11 7 948 6.05

Table 4.3 Confusion matrix of the MNIST classifier.
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λ ji =
1

∑k

(
d2

ji

d2
ki

) 1
µ−1

(4.22)

Here µ plays the role of the overposition factor. Like as in quantum mechanics, a neuron
may belong to more than one attracting basin (actually, its state) when µ 6= 1. Whereas,
the deterministic case, i.e. each neuron of the lower layer attributed to a single neuron
of the upper layer, occurres with µ exactly equal to 1. We get a solution more compliant
with our expression of the penalty term in (4.1), considering the negative entropy as
membership regularization [131] in the FCM solution. In this case the objective function
read:

min
λ

∑
i j

λ jid2
ji +µ ∑

i j
λ jilog ji; µ > 0;∑

j
λ ji = 1 (4.23)

with solution:

λ ji =
exp(−µd2

ji)

∑k exp(−µd2
ki)

(4.24)

with an analogous meaning of λ . The λ values computed in this way present some
normalization problems, since the constraint ∑ j λ ji = 1 gives rise to very small values
when the number of cluster is high, as usual with our networks. Therefore we restrict
the sum to the sole values exceeding a suitable quantile. In Fig. 4.18 is represented the
per layer λ s distribution of these coefficients. Their shapes denote a different role of the
nodes in the various layer as for their specialization.

10 000 20 000 30 000 40 000 50 000
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Fig. 4.14 Course of the single digits testing errors with the number of weight updates.
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Fig. 4.15 Dendritic structure in the production of digits: (a) ‘3’, and (b) ‘4’.
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Fig. 4.16 Cliques of highly correlated neurons on the same digits of Fig. 4.15. Bullets: locations of all
2-nd layer neurons.

A unified learning space

Recalling our aim regarding the study about the impact of the intentionality in learning
processes we want to strengthen the relationship between the topological space motion
of neurons and the cognitive information passing through them. In this way we are
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-200 -100 0 100 200

0

1

Fig. 4.17 Example of the membership functions determining the influence received by the downward
neurons from upward ones.

merging two substantially different spaces - the topological space and the weights space
- into a unified space. As a result we stress the membership of a lower-layer neuron to
a upper-layer companion by directly enhancing the absolute value of their connection
weight when the neurons get closer (i.e. the distance between them diminishes) and vice
versa when they get farther apart. Symmetrically, we directly push closer those neurons
in contiguous levels whose absolute value of the connection weights increases (and vice
versa). Namely, letting α , δw ji, c be the momentum term, the weight increment term
ruled by the back-propagation algorithm, and a suitable regularization term respectively,
we have the following update rules:

w ji(t +1) = w ji(t)+∆w ji(t) (4.25)
∆w ji(t) = ((1−α)∆w ji(t−1)+

α (δw ji(t)− c sign(w ji(t))(d ji(t)−d ji(t−1))))
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Fig. 4.18 Distribution of λ coefficients on the various layers `s at the last training iteration.
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Fig. 4.19 Course of the train (black) and test (gray) misclassification error on MNIST dataset with an
increasing number of output neurons ψo associated to the single target classes.

xi(t +1) = xi(t)−∆xi(t) (4.26)

∆xi(t) = ∑
j

xi(t)−x j(t)
d ji(t)

sign(w ji(t))δw ji(t)
1
c

In this way both weight and positions are very tightly correlated.

Replicated outputs

We further drawn on the biological original of our artificial neural network by replicat-
ing the goals of the output nodes. This induces a replicated representation of external
objects and, possibly, a better abstraction capability of our machinery. Think about the
classification task presented before with the MNIST dataset: we have 10 classes refer-
ring to handwritten digits from 0 to 9 and it is plausible to think that even in each single
class of digits (e.g. 0) we can find different samples that could be clustered in respect
to secondary features of the handwritten characters. As a counterpart, these features, if
not properly managed, may induce misclassifications. To fill this gap our approach is
to increase the number of output neurons per single class and train the network without
any further modification. At a first glance the results are promising, in Fig. 4.19 we can
notice a decreasing trend in the error percentage that goes with the number of output
neurons per single target class. In Table 4.5 is shown the final confusion matrix w.r.t. the
test set, that, if compared with Table 4.3 we can notice a significant, though not yet re-
ally competitive (see Table 4.6), improvement in the misclassification error percentage
reaching a final 2.76%.
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The new setup of the last layer introduce the necessity of putting into the game
a proper approach to deal with replicated outputs. We investigated different ways to
achieve this: the first and until now more profitable approach consists in the plain mul-
tiplication of the number of output neurons per target class, followed by the usual back-
propagation of the corresponding δ -errors. We tried also to induce a different behavior
in term of the quantity of δ -error back-propagated in order to promote a better differ-
entiation between the intra-class output but without getting better results than with the
plain approach. However this is still an open research line. In Fig. 4.20 we report the
fifth layer layout of an experiment where we split ten times the output. Hence 10 neu-
rons are deputed to output 0, then 1 and so on. The location of the neurons on the layer
prove to be essential for the success of the results.

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 5842 2 11 4 4 9 23 1 18 9 1.37
1 1 6626 35 15 8 0 3 17 30 7 1.72
2 7 8 5850 15 10 8 5 28 17 10 1.81
3 4 1 50 5910 3 55 2 44 37 25 3.60
4 5 13 9 0 5722 5 18 7 7 56 2.05
5 7 4 3 30 6 5303 35 1 15 17 2.18
6 13 6 1 2 8 26 5851 0 11 0 1.13
7 3 9 33 6 24 1 0 6124 11 54 2.25
8 10 22 18 16 11 25 14 3 5712 20 2.38
9 11 7 4 18 39 19 2 40 31 5778 2.87

Table 4.4 Confusion matrix of the MNIST classifier on 60,000 train samples.

output
0 1 2 3 4 5 6 7 8 9 % err

ta
rg

et

0 967 0 1 0 0 2 4 1 5 0 1.33
1 0 1121 4 2 0 1 2 0 5 0 1.23
2 7 1 1005 4 3 0 0 6 6 0 2.62
3 0 0 9 980 0 7 1 7 4 2 2.97
4 1 1 2 0 954 1 4 1 3 15 2.85
5 3 0 0 7 1 863 7 2 5 4 3.25
6 2 2 0 0 6 11 935 0 2 0 2.40
7 1 3 13 1 1 1 0 987 6 15 3.99
8 4 0 2 7 2 2 5 3 948 1 2.67
9 4 3 0 7 11 7 0 5 5 967 4.16

Table 4.5 Confusion matrix of the MNIST classifier on 10,000 test samples in the replicated output
experiment
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Fig. 4.20 Example of last last layer layout in the replicated output configuration.

4.7 Concluding remarks

At the end of this chapter we cannot conclude with breaking news. Our algorithms work
well, but not optimally. The final layouts of the considered neural networks suggest some
intriguing features, but do not show anything clear. The last contrivances we adopt to
improve the training procedure are promising, but need further refinements. Thus we
may sell at this moment only the philosophy, which we synthesize, in a very abstract
way, in two points:

• we manage motion as a physical counterpart of agent intentionality in a unified space,
where both cognitive forces and physical forces merge in a homogeneous milieu.
This appear a natural consequence of a mechanistic perspective where thoughts are
the output of neural circuits and the latter obey to the physical laws of Nature. Of
course, we are not claiming our Newtonian force fields to be the ones actually ruling
the intentionality. We simply assume them to may be a very simplistic modeling of
the physical-cognitive interaction.

• we revive the original Artificial Neural Network project, where a single, possibly
complex, neural device is able to face any kind of learning task, like our brain does.
Also in this case we carry out an extreme simplification of the matter. However, we
did so to solve two far different problems, as for goals, features and dimensionality,
with a same architecture and same training algorithm. The unique differences concern
the input and output layer layouts – which are determined by the training set features
– and a few tuning parameters, whose values need a relatively limited set of numerical
experiments for their assessment.
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As a matter of fact, the contrivance we raised up is definitely complex, and we expect
a long work is still necessary to get ride of its behavior. We just hope having thrown a
stone into the water and wait for a ripple reaching other researchers in the field.
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CLASSIFIER PREPROC. MISS%
linear classifier (1-layer NN) none 12
boosted stumps none 7.7
K-nearest-neighbors, Euclidean (L2) none 5
2-layer NN, 300 hidden units, mean square error none 4.7
2-layer NN, 1000 hidden units none 4.5
2-layer NN, 1000 HU, [distortions] none 3.8
1000 RBF + linear classifier none 3.6
2-layer NN, 300 HU, MSE, [distortions] none 3.6
40 PCA + quadratic classifier none 3.3
K-nearest-neighbors, Euclidean (L2) none 3.09
3-layer NN, 300+100 hidden units none 3.05
3-layer NN, 500+150 hidden units none 2.95
K-nearest-neighbors, L3 none 2.83
Mobneu, 120+80+36 hidden units none 2.76
3-layer NN, 300+100 HU [distortions] none 2.5
3-layer NN, 500+150 HU [distortions] none 2.45
2-layer NN, 800 HU, Cross-Entropy Loss none 1.6
3-layer NN, 500+300 HU, softmax, cross entropy, weight decay none 1.53
boosted trees (17 leaves) none 1.53
SVM, Gaussian Kernel none 1.4
products of boosted stumps (3 terms) none 1.26
2-layer NN, 800 HU, cross-entropy [affine distortions] none 1.1
Convolutional net LeNet-4 none 1.1
Convolutional net LeNet-4 with K-NN instead of last layer none 1.1
Convolutional net LeNet-4 with local learning instead of last layer none 1.1
NN, 784-500-500-2000-30 + nearest neighbor, RBM + NCA training [no distor-
tions]

none 1

Convolutional net LeNet-5, [no distortions] none 0.95
2-layer NN, 800 HU, MSE [elastic distortions] none 0.9
large conv. net, random features [no distortions] none 0.89
Convolutional net LeNet-5, [huge distortions] none 0.85
Trainable feature extractor + SVMs [no distortions] none 0.83
Virtual SVM deg-9 poly [distortions] none 0.8
Convolutional net LeNet-5, [distortions] none 0.8
2-layer NN, 800 HU, cross-entropy [elastic distortions] none 0.7
Convolutional net Boosted LeNet-4, [distortions] none 0.7
Virtual SVM, deg-9 poly, 1-pixel jittered none 0.68
large conv. net, unsup features [no distortions] none 0.62
Convolutional net, cross-entropy [affine distortions] none 0.6
large conv. net, unsup pretraining [no distortions] none 0.6
unsupervised sparse features + SVM, [no distortions] none 0.59
Trainable feature extractor + SVMs [elastic distortions] none 0.56
Trainable feature extractor + SVMs [affine distortions] none 0.54
large conv. net, unsup pretraining [no distortions] none 0.53
Convolutional net, cross-entropy [elastic distortions] none 0.4
large conv. net, unsup pretraining [elastic distortions] none 0.39
6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU) [elastic distortions] none 0.35

Table 4.6 Comparison between several methodologies applied on MNIST dataset [77]. All the tech-
niques do not use preprocessed data.





Chapter 5
Conclusions

In this thesis work we state a bridge between two kind of forces ruling the motion of
natural agents: cognitive forces expressed by the intentionality of the agents and physical
forces entailed by their masses. This bridge is at the basis of a mobility model that we
may recognize in Nature in humans, but also in animals and in other scenarios like in
the morphogenesis of the brain cortex.

Abandoning the symmetry of the Brownian motion – the template of non intelligent
agent motion – during this thesis work we have been drawn to understand the general
mechanism behind this duality between physics and intentionality.

First of all, we take under observation the social communities in terms of mobility
models. These models represented a challenge both for their exploitation in many social
contexts and for the sophistication of the theoretical tools required by their analysis and
identification. To this aim, we introduce an atomic wait and chase motion of the single
agents, essentially following a heuristic approach. However, we had in mind and tried to
relate methods and results to two very sophisticated theoretical paradigms represented
by the Lévy flights and the Palm Calculus. Thus we dealt with an ergodic process that
we followed along the single trajectories drawn by the dodgem cars in the case study,
but also along real trajectories emerging from operational scenarios such as those of
opportunistic networks, GPS tracking, and so on. To describe these real data we had
to abandon the canonical statistical framework in favor of a more ductile methodology
coming from Algorithmic Inference. In this way we were able to quickly infer the pa-
rameters of the mobility model as a necessary step to validate its suitability. Actually
we were successful even in the case of observations that are not mutually independent,
as we may expect from the behavior of humans rather than mechanical particles.

Then we moved our mobility model, and related intentional processes, form the
macro scale scenarios to the micro scale ones. The subject changes but the overall be-
havior does not: biological neurons that moves separately from one place to another in
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order to constitute the brain. Inspired by this behavior we tried to exploit it to design
a machinery that could benefit by this kind of intentionality, so that we build an artifi-
cial neural network where each neuron has additional degrees of freedom deriving on
a new element: its mobility. These entails a new kind of connectionist paradigm whose
exploration is at a very preliminary stage. We may observe that the multilayer networks
we handle do not suffer from the typical deep architecture network drawback of getting
stuck in local minima around the average output during the training. Tossing these net-
works on canonical benchmarks we cannot match the top results shown in the literature.
However, we work with a robust connectionist tool that requires no exceedingly sophis-
ticated tuning in correspondence of the specific computational tasks and, in any case,
no extra expedients generally devised by competitor methods. The neuron motion has a
social value: each neuron try to find its best reciprocal position w.r.t. the others in terms
of information transmission and production efficiency. This emerge a layout adaptivity
which seems to revive the initial connectionist project of one architecture for a vast va-
riety of learning tasks. A changing layout is more difficult to mould than a static one.
Thus, at this early stage of the research, the question whether the additional degrees of
freedom represent a benefit or a drawback. Preliminary experiments lean towards the
first option because of the emerging self-organizing attitude of the network. The cur-
rent advantage is that we get rid of complex networks, as for number of both layers and
neurons, with a suitable behavior and acceptable results.

To give a bit pretentious conclusion to this thesis work, and delineate a future re-
search line as well, we may observe the following. A milestone connection between
cognitive and physical aspects of thinking agents life has been stated in the past century
by the Boltzmann constant numerically connecting thermodynamic entropy to Shannon
entropy. Our idea is that this materialization of thought could nowadays continue with
an analogous numerical connection between the various kind of forces, from physical
to cognitive, ruling the motion of the thinking agents. We also remark that in this thesis
work we started with a model of the physical motion of the agents, and come to an over-
all model where the distinction between motion and learning is only a matter of different
coordinate spaces where the agent moves.



Appendix A
Derivation rules for the back-propagation
algorithm

A.1 Potential derivatives

Let us determine the sensibility of the potential P w.r.t. the synaptic weights

∂P

∂w ji
=

3

∑
k=1

ξk
∂Pk

∂w ji
(A.1)

A.1.1 Gravitational attraction P1

Let be the following derivation chain rule:

∂P1

∂w ji
=

∂P1

∂mi

∂mi

∂δi

∂δi

∂w ji
+

∂P1

∂m j

∂m j

∂δ j

∂δ j

∂w ji
(A.2)

• The first addend of the sum is the product of m j times sign(δi)
‖δ‖1−δi
‖δ‖21

that we can

write as sign(δ1)
‖δ‖1

(1−mi). Recalling the definition of δi in (4.5) we say that even not
expressively stated we will not consider the contributions of the neurons of the output
layer.

• The second addend does not contribute to the global variations due to ∂δ j
∂w ji

= 0.
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A.1.2 Elastik repulsion P2

Starting with the following derivation chain rule

∂P2

∂w ji
= ∑

i′

∂P2

∂kii′

∂kii′

∂w ji
+∑

∂P2

∂dii′

∂dii′

∂w ji
(A.3)

• We have
∂P2

∂kii′
=

1
2

max{0, l−dii′}2 (A.4)

whereas for the second factor ∂kii′
∂w ji

:

∂kii′

∂w ji
= sign

(
〈wi,wi′〉
‖wi‖ · ‖wi′‖

) ∂ 〈wi,wi′ 〉
∂w ji

‖wi‖ · ‖wi′‖−〈wi,wi′〉
∂‖wi‖·‖wi′‖

∂w ji

(‖wi‖ · ‖wi′‖)2

= sign
(
〈wi,wi′〉
‖wi‖ · ‖wi′‖

)w ji′‖wi‖ · ‖wi′‖−〈wi,wi′〉w ji
‖wi′‖

wi

(‖wi‖ · ‖wi′‖)2 (A.5)

• For the second addend we have

∂P2

∂dii′
=−kii′max{0, l−dii′} (A.6)

• and
∂dii′

∂w ji
=

∂dii′

∂xi

∂xi

∂w ji
+

∂dii′

∂xi′

∂xi′

∂w ji
=−xi′ −xi

dii′

∂xi

∂w ji
(A.7)

Going deeper inside the last equation, we need to consider the contributions from all the
components of the vector xi = {xi1, . . . ,xid}, with d = 2:

∂dii′

∂w ji
=

d

∑
p=1

∂dii′

∂xip

∂xip

∂w ji
+

∂dii′

∂xi′p

∂xi′p

∂w ji
(A.8)

In order to lighten the notation we rewrite the latter as

∂dii′

∂w ji
=

∂dii′

∂xi

∂xi

∂w ji
+

∂dii′

∂xi′

∂xi′

∂w ji
(A.9)

It is worth noting that the motion inside the layer ` and indexed with i remove the
sensibility of xi′ with reference to w ji. Instead, for the first addend we have
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∂dii′

∂xi
=− xi′ − xi

‖xi′ − xi‖
=−xi′ − xi

dii′

on the one side; on the other side we can exploit (4.11-4.13) as follows:

∂xn
i

∂w ji
=

∂xn−1
i

∂w ji
+

∂vn
i tn

∂w ji
=

∂xn−1
i

∂w ji
+ tn

∂vn
i

∂w ji
+ vn ∂ tn

∂w ji
=

∂xn−1
i

∂w ji
+ tn

∂an
i

∂w ji
(A.10)

∂vn
i

∂w ji
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∂vn−1
i

∂w ji

∂an
i tn

∂w ji
= tn

∂an
i

∂w ji
+ an

i
∂ tn

∂w ji
=

∂vn−1
i

∂w ji
+ tn

∂an
i

∂w ji
(A.11)

Summarizing
∂xn

i
∂w ji

=
∂xn−1

i
∂w ji

+ tn

(
∂vn−1

i
∂w ji

+ tn
∂an

i
∂w ji

)
(A.12)

It remains to calculate the term ∂an
i

∂w ji
that we will explicit in Section A.2. Finally we can

interpret
∂dii′

∂w ji
=−xi′ −xi

dii′

∂xi

∂w ji
(A.13)

as
∂dii′

∂w ji
=− 1

dii′

d

∑
p=1

(xi′p− xip)
∂xi

∂w ji
(A.14)

Kinetic energy P3

From the usual derivation chain rule we have

∂P3

∂w ji
=

∂P3

∂mi

∂mi

∂w ji
+

∂P3

∂vi

∂vi

∂w ji
(A.15)

• For the first added we have 1
2‖vi‖2 multiplied by ∂mi

∂w ji
as in Subsection A.1.1.

• For the second one we have mivi multiplied by ∂vi
∂w ji

. The computation of ∂P3
∂w ji

is done
component-wise in the vector vi.
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A.2 Computation of the acceleration derivative

From (4.15) we decompose the acceleration in its three components:

ai =
3

∑
k=1

ξkak
i (A.16)

and we derive the following derivation chain rules:

∂a1
i

∂w ji
=

∂a1
i

∂m j

∂m j

∂w ji
+
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i
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∂w ji
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∂x j

∂x j

∂w ji
(A.17)
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∂w ji
= ∑
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∂a2
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∂kii′

∂kii′

∂w ji
+

∂a2
i

∂dii′

∂dii′

∂w ji
+

∂a2
i

∂xi′
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∂w ji
(A.18)

∂a3
i

∂w ji
momentum term w.r.t. the time tn−1 (A.19)

In particular we have that:

a1
i No addends here are dependent from the synaptic weights because of:

– m j does not depend on w ji
– the derivative of the sign function is null
– ais are not dependent with respect to the positions x j of the upper-layer neurons.

a2
i For dii′ ≥ l the first addend is null, the third and the fourth are always null thus we

obtain:

∂a2
i

∂w ji
= ∑

i′
(max{0, l−dii′})sign(xi′ −xi)

∂kii′

∂w ji
+

−∑
i′

kii′sign(xi′ −xi)
∂dii′

∂w ji
(A.20)

where the two derivatives are computed according to (A.5) and (A.7).

A.3 Error derivatives

For the sake of simplicity we will use the subscript o to indicate those neurons belonging
to the output layer. Let us recall the error formulation:
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E =
1
2 ∑

o
(τo− zo)

2 (A.21)

where zo is the o-th target w.r.t. the o-th neuron.
Here we are interested in ∂E

∂w ji
that we calculate through the usual back-propagation rule

on the δ s defined in (4.5). However, due to the introduction of an additional term λ

inside the net formula, we have to recompute the derivatives as follows:

• on the output neurons:

∂E
∂woi

= (τo− zo) f ′(neto)
∂neto
∂woi

= δo

(
∂neto
∂woi

+
∂neto
∂λoi

∂λoi
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)
= δo

(
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∂doi

∂woi

)
=

(
1−woi
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∂woi

)
λoiτoδo (A.22)

• on the hidden layer neurons the derivatives are:

∂E
∂w ji

= ∑
o

δo
∂neto
∂w ji

= ∑
o

δo
∂neto
∂τ j

∂τ j

∂net j

(
∂net j

∂w ji
+
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∂λ ji
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)
= f ′(net j)∑

o
wo jδo

(
λ jiτi−w jiτi

∂d ji

∂w ji

)
=

(
1−w ji

∂d ji

∂w ji

)
λ jiτiδ j (A.23)

A.4 Thresholds

The introduction of the thresholds θ j into the network state function

net j = ∑
i

w jiλ jiτi +θ j (A.24)

can be interpreted as an additional fictitious neuron whose output is constantly equal to 1
and whose connections toward the `+1 layer are defined by the θ j parameter. However,
this neuron has no specific position in the plane; actually we may imagine it located at
infinity so as to have cosntant λ and no derivative in the Hamiltonian apart the error
term error term:

∂E
∂θ j

= δ j (A.25)
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1088. MIT Press, 2008.

93. H. Mori. Transport, collective motion, and Brownian motion. Progress of Theoretical Physics,
33(3):423–455, 1965.

94. M. Musolesi and C. Mascolo. A community based mobility model for ad hoc network research.
In REALMAN ’06: Proceedings of the 2nd international workshop on Multi-hop ad hoc networks:
from theory to reality, pages 31–38, New York, NY, USA, 2006. ACM.

95. S. F. Nadel. The Theory of Social Structure. Cohen and West, London, 1957.
96. M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics,

46:323–351, 2005.
97. T. D. Newton and E. P. Wigner. Localized states for elementary systems. Reviews of Modern

Physics, 21(3):400, 1949.
98. Nokia. Nokia sports tracker, 2009. http://sportstracker.nokia.com/.
99. S. Nolfi and D. Parisi. Handbook of brain theory and neural networks, Second Edition, chapter

Evolution of artificial neural networks, pages 418–421. Cambridge, MA: MIT Press, 2002.
100. Simon Osindero and Geoffrey E. Hinton. Modeling image patches with a directed hierarchy

of markov random fields. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis,
editors, NIPS. MIT Press, 2007.

101. K. T. Ozan and G. Ferrari. Ad Hoc Wireless Networks: A Communication-Theoretic Perspective.
John Wiley & Sons, 2006.

102. V. Pareto. Course d’Economie Politique. Rouge and Cie, Lausanne and Paris, 1897.
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